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Early breast cancer detection and diagnosis remain difficult tasks, especially in areas with 

little resources in the contemporary era of precision medicine. Existing imaging techniques 

like mammography, ultrasound, and thermal imaging provide valuable information, but each 

one's potential is sometimes constrained by exorbitant costs, radiation exposure, and poor 

accuracy rates. In order to combine data from mammography, ultrasound, optical imaging, 

and thermal imaging scans, this research suggests a cutting-edge multimodal correlation 

engine for the Internet of Medical Things (IoMT). The resulting technology makes pre-

emptive breast cancer analysis effective, affordable, and extremely accurate for different 

scenarios. The study uses the VGGNet 19 architecture for mammography data, but swaps 

out the fully connected layer with a group of classifiers that includes Naive Bayes, k-Nearest 

Neighbors (kNN), Support Vector Machines (SVM), and Logistic Regression (LR). This 

strategy guarantees a strong and varied learning approach. Radial Basis Function Networks 

(RBFNs), which offer a flexible and non-linear classification method, are used to classify 

ultrasound scans into cancer probabilities after being translated into multidimensional data 

using Frequency and iVector Analysis. The classified cancer levels are processed on the 

IoMT cloud, which assists in incremental improvements in the model’s performance for 

real-time scenarios. This performance was tested on the Breast Ultrasound Image (BUSI) 

dataset, Breast Thermal Image (THERMO) dataset, and Digital Database for Screening 

Mammography (DDSM) Dataset Samples, where this multifaceted approach has shown a 

significant increase in precision (12.5%), accuracy (14.9%), Area Under the Curve (AUC, 

8.5%), sensitivity (9.4%), and specificity (10.5%) when compared to recent methods. By 

combining many imaging modalities into a single, effective, and potent diagnostic tool, the 

suggested approach opens up new possibilities in the early identification of breast cancer 

types. This strategy offers potential implications for breast cancer pre-emption, especially 

in environments where resources and access to care are limited. 
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1. INTRODUCTION

Worldwide, breast cancer affects one in three women and is 

the most frequent malignancy among them [1]. As a result, it 

continues to be a serious public health problem and a major 

contributor to cancer-related morbidity and mortality. Despite 

the considerable improvements in treatment measures, 

improving patient outcomes and lowering mortality rates 

depends on early detection and precise diagnosis [2]. 

Traditional techniques for finding breast cancer, like 

mammography, ultrasound, optical imaging, and thermal 

imaging, each have their own advantages and unique 

viewpoints. They do, however, have drawbacks, such as high 

costs, the potential for dangerous radiation exposure, and 

variable accuracy rates [3].  

In order to provide a more thorough and accurate evaluation, 

the Internet of Medical Things (IoMT) offers a creative 

solution to this problem [4]. It enables the integration and 

analysis of data from various sources. This innovative method 

makes it possible to combine different imaging modalities, 

taking use of each one's advantages while also overcoming its 

weaknesses. IoMT has a lot of potential for the healthcare 

industry, but its integration with multimodal imaging for early 

breast cancer diagnosis is still understudied. 

Breast cancer remains one of the most prevalent and 

formidable health challenges worldwide, exerting a significant 
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toll on individuals, families, and healthcare systems. In the 

face of its pervasive impact, the importance of accurate breast 

cancer diagnosis cannot be overstated. 

(1) Early detection, better prognosis 

Early detection is paramount in the fight against breast 

cancer. Timely identification of the disease enables prompt 

initiation of treatment, which is pivotal in improving patient 

outcomes and increasing survival rates. Accurate diagnosis at 

an early stage allows for less invasive treatment options, 

reducing the need for aggressive interventions and potentially 

mitigating the physical and emotional burden on patients. 

(2) Tailored treatment strategies 

Accurate diagnosis lays the foundation for personalized 

treatment strategies tailored to individual patients. This 

approach enhances treatment efficacy while minimizing 

adverse effects, optimizing the balance between therapeutic 

benefits and patient well-being. 

(3) Minimization of overtreatment and under treatment 

Accurate diagnosis serves as a safeguard against both 

overtreatment and under treatment, ensuring that patients 

receive the appropriate level of care based on their specific 

disease status. Overtreatment, characterized by the 

unnecessary administration of aggressive therapies, poses 

risks of toxicity and long-term side effects without 

commensurate benefits. Conversely, under treatment, 

resulting from diagnostic inaccuracies or delays, may 

compromise patient outcomes by allowing the disease to 

progress unchecked. Accurate diagnosis mitigates these risks 

by guiding clinicians in selecting the most suitable treatment 

approach for each patient's unique circumstances. 

(4) Preservation of quality of life 

Accurate breast cancer diagnosis contributes to the 

preservation of patients' quality of life by minimizing the 

physical, emotional, and psychological impact of the disease 

and its treatment. By enabling the implementation of less 

invasive interventions and reducing the likelihood of 

treatment-related complications, accurate diagnosis supports 

patients in maintaining their functional independence, social 

connections, and overall well-being throughout the treatment 

journey. 

(5) Resource optimization in healthcare 

In addition to its clinical benefits, accurate breast cancer 

diagnosis plays a crucial role in optimizing resource allocation 

within healthcare systems. By avoiding unnecessary 

diagnostic procedures, treatments, and hospitalizations 

associated with misdiagnosis or delayed diagnosis, accurate 

diagnosis helps conserve healthcare resources, reduce 

healthcare costs, and enhance the efficiency of healthcare 

delivery. This ensures that resources are directed towards areas 

of greatest need, thereby maximizing the overall effectiveness 

and sustainability of healthcare services. 

In this study, an effective multimodal correlation engine for 

the IoMT that combines data from mammography, ultrasound, 

optical imaging, and thermal imaging is introduced. To 

maximize the potential of the data each modality provides, 

cutting-edge machine learning techniques are used to process 

the data samples. The ultrasonic scans are examined using 

Frequency and iVector Analysis, the optical and thermal 

images are segregated using Saliency Maps, and the 

mammograms are processed using an ensemble learning 

classifier combined with VGGNet 19 architecture. These 

segmented images are then identified using RBFNs. 

Across a number of criteria, the suggested model performs 

better than the alternatives. When compared to the Breast 

Ultrasound Image (BUSI) dataset, Breast Thermal Image 

(THERMO) dataset, and Digital Database for Screening 

Mammography (DDSM) Dataset Samples, this includes a 

12.5% increase in precision, 14.9% higher accuracy, 12.9% 

increased recall, 8.5% higher Area Under the Curve (AUC), 

9.4% improved sensitivity, and 10.5% better specificity. This 

suggests that the system offers an improved performance over 

current methods in addition to a novel approach to breast 

cancer diagnosis. 

 

1.1 Key contributions 

 

The research study makes several notable contributions to 

the field of breast cancer diagnosis and analysis. Firstly, it 

introduces a novel multimodal correlation engine designed 

specifically for proactive breast cancer analysis within the 

Internet of Medical Things (IoMT) framework. This 

innovative approach leverages the complementary strengths of 

various imaging modalities to enhance diagnostic accuracy 

and early detection capabilities. 

Secondly, the study proposes an integrated machine 

learning framework that combines advanced algorithms with 

multimodal analysis techniques. By incorporating ensemble 

learning classifiers, deep neural networks, and non-linear 

classification methods, the proposed framework offers a 

robust and versatile approach to breast cancer diagnosis, 

capable of handling complex and heterogeneous data. 

Thirdly, the research highlights the potential impact of the 

proposed model on clinical practice and patient outcomes. 

Through rigorous validation and evaluation, the study 

demonstrates the superior performance of the multimodal 

correlation engine compared to existing methods, offering 

tangible improvements in precision, accuracy, sensitivity, and 

specificity across multiple datasets. 

 

1.2 Major objectives 

 

The primary objective of the research is to develop and 

validate a comprehensive multimodal correlation engine for 

proactive breast cancer analysis. This entails integrating data 

from diverse imaging modalities, including mammography, 

ultrasound, optical imaging, and thermal imaging, to provide 

a holistic assessment of breast cancer characteristics and 

stages. 

Another key objective is to employ advanced machine 

learning techniques to process and analyze the multimodal 

data effectively. By utilizing ensemble learning classifiers, 

deep neural networks, and non-linear classification methods, 

the study aims to extract meaningful insights from complex 

imaging datasets and improve diagnostic accuracy. 

Furthermore, the research seeks to evaluate the performance 

of the proposed multimodal correlation engine through 

rigorous validation and comparison with existing methods. By 

conducting extensive experiments on real-world datasets, the 

study aims to demonstrate the superiority of the proposed 

model in terms of diagnostic precision, accuracy, and overall 

efficacy. 

The research aims to address the critical need for accurate 

and proactive breast cancer analysis by developing a novel 

multimodal correlation engine within the IoMT framework. 

Through its contributions and objectives, the study endeavors 

to advance the field of breast cancer diagnosis and pave the 

way for improved patient outcomes and clinical practice. 

The rest of this essay is organized as follows: The proposed 
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multimodal correlation engine is thoroughly described in 

Section 3, the evaluation results and comparisons with existing 

techniques are presented in Section 4, and the paper is 

concluded with future scopes and potential improvements. 

 

 

2. MOTIVATION AND OBJECTIVES 

 

The need to investigate an integrated, multimodal approach 

for early detection and diagnosis is driven by the rising 

incidence of breast cancer as well as the unsatisfactory 

performance of individual diagnostic modalities and their 

inherent constraints. Even though they are all extremely 

helpful, the current imaging techniques for finding breast 

cancer, including mammography, ultrasound, optical imaging, 

and thermal imaging, each have unique difficulties. High 

prices, radiation exposure danger, and a variable level of 

sensitivity and specificity, which can result in false-positive or 

false-negative results, are just a few of the downsides. 

Additionally, in environments with low resources, access to a 

variety of imaging modalities may be restricted, which can 

result in missing or late-stage diagnosis [5, 6]. 

An opportune chance to address these issues has arisen with 

the introduction of the Internet of Medical Things (IoMT). We 

may take advantage of each imaging modality's advantages 

while making up for its deficiencies by combining numerous 

imaging modalities into a single correlation engine for clinical 

scenarios [7-9]. By enhancing precision, accuracy, and overall 

diagnostic power, this fusion can aid in the early and precise 

diagnosis of breast cancer. Due to the large complexity and 

variety of the data, however, the efficient and effective 

integration of these various modalities into an IoMT system 

continues to be a challenging issue. 

Our goal is to create a multimodal correlation engine that is 

effective at combining the data from these various imaging 

modalities. For each modality, the system employs cutting-

edge machine learning techniques. We suggest utilizing an 

ensemble learning classifier integrated with the VGGNet 19 

architecture for mammography. While optical and thermal 

images are segmented using Saliency Maps, followed by 

classification using RBFN, respectively, ultrasound scans are 

processed using Frequency and iVector Analysis. 

By utilizing machine learning's capabilities for high-

dimensional data analysis and categorization, this system 

seeks to give a thorough and reliable analysis. By contrasting 

the performance of our system against that of other approaches 

using important measures including precision, accuracy, recall, 

Area Under the Curve (AUC), sensitivity, and specificity, we 

also want to demonstrate the superiority of this strategy for 

different scenarios. 

By meeting these goals, we anticipate making progress in 

the early diagnosis and treatment of breast cancer, which will 

enhance prognosis and perhaps save lives. By demonstrating 

the viability and effectiveness of employing multimodal 

imaging data inside an IoMT framework, we also want to 

contribute to the larger fields of medical imaging and artificial 

intelligence processes. 

 

 

3. REVIEW OF MODELS USED FOR PRE-EMPTION 

OF BREAST ANCER TYPES  

 

Over the past decade, there has been significant growth in 

the literature on the diagnosis and classification of breast 

cancer, with a significant emphasis on the use of cutting-edge 

machine learning and artificial intelligence algorithms. The 

varied character of breast cancer and the inherent limits of 

different imaging modalities have been highlighted through 

the exploration of a variety of analytical models and imaging 

modalities [10-12]. 

Mammography, which continues to be the gold standard in 

early detection, was one of the first methods for finding breast 

cancer types. Mammography has traditionally used CAD 

(Computer-Aided Detection) systems extensively, frequently 

employing fundamental machine learning classifiers like 

Support Vector Machines (SVMs) and k-Nearest Neighbors 

(kNN) [13-15]. Convolutional Neural Networks (CNNs) have 

been brought to mammography interpretation with the advent 

of deep learning techniques, showing promising outcomes. 

For instance, work in studies [16-18] showed improved 

sensitivity when they utilized a CNN model called AlexNet to 

find microcalcifications in mammograms. 

Another important method for finding breast cancer is 

ultrasound, particularly in cases where the breasts are thick. It 

can be time-consuming and very operator-dependent to 

manually analyze ultrasound images. Models like Frequency 

and iVector Analysis have been used to extract characteristics 

and provide a more objective analysis to address these issues 

[19, 20]. These models still need to be improved because they 

are prone to false positives. 

Although optical imaging offers a non-invasive and non-

ionizing method for detecting cancer, it has historically been 

constrained by a lack of specificity levels [21-24]. However, 

these restrictions are gradually being overcome with the 

development of deep learning algorithms. Recurrent neural 

networks (RNNs) based on Long Short-Term Memory (LSTM) 

have been presented for optical image analysis, providing 

enhanced temporal sequence analysis via use of Deep CNN 

(DCNN) operations [25-28]. 

Utilizing the increased metabolic activity and vascularity of 

cancer cells, thermal imaging or thermography has been 

utilized as an additional technique in the identification of 

breast cancer types [29-32]. It provides real-time monitoring 

and is non-intrusive. High false-positive rates have plagued 

conventional thermal imaging, but recent models utilizing 

Generative Adversarial Networks (GANs) have showed 

encouraging results in enhancing specificity levels [33-36] via 

use of ResNet and other model processes. 

The accuracy of mammographic interpretations is 

constrained by elements including breast density and image 

quality levels [37-40]. Several machine learning models have 

been created to enhance detection in order to overcome these 

constraints. For instance, work in studies [41-44] developed a 

Computer-Aided Diagnosis (CAD) system that increased 

sensitivity by employing several SVM classifiers. However, 

because indolent lesions are sometimes seen through 

mammography, this can result in overdiagnosis and 

overtreatment. Deep learning techniques have been developed 

to counteract this, and CNNs like AlexNet, VGGNet, and 

ResNet [45-48] have been successful in lowering false-

positive rates. 

Several deep learning approaches have showed promise for 

ultrasonic imaging. A fully automated CAD system for 

ultrasound images was proposed in studies [49, 50], which 

used a very accurate CNN model for feature extraction. 

Nevertheless, despite these developments, the considerable 

variability in image quality and the complex structures shown 

in the images make it difficult to apply deep learning to 
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ultrasonic imaging scenarios. 

Recent developments in machine learning have expanded 

the potential uses for optical imaging. Optical Coherence 

Tomography (OCT) and deep learning algorithms were 

combined in studies [15, 16, 24, 25] to distinguish between 

benign and malignant breast tumors. By offering context-

aware analysis, LSTM-based RNNs, which are well renowned 

for their capacity to handle sequential data, have shown 

effective in managing optical imaging data samples. 

The adoption of sophisticated machine learning methods 

has improved thermal imaging as well for different scenarios. 

In addition to increasing the detection accuracy of thermal 

imaging, Work in studies [26, 28, 45, 46] method employing 

GANs also assisted in creating synthetic but realistic thermal 

images for better model training process. 

Combining these modalities is a promising strategy for 

overcoming individual limitations and offering an augmented 

& thorough set of diagnostic tools. Due to the great 

dimensionality and heterogeneity of the data, the fusion 

process still presents various issue sets. Incorporating 

multimodal imaging data in breast cancer diagnosis has not 

been attempted very often. Using an augmented set of hybrid 

models, work in studies [29, 30, 48, 50] proposal of merging 

MRI and mammographic images showed enhanced 

performance. 

The field of multimodal fusion in breast cancer diagnosis is 

still in its infancy, despite these attempts being promising 

when used in clinical scenarios. The merging of several 

imaging modalities utilizing machine learning models gives an 

exciting and promising route for future research as the 

technology and analytical skills continue to advance for 

different use cases. 

Breast cancer diagnosis and prognosis have been areas of 

extensive research, driving the exploration of various 

methodologies and techniques. This literature review aims to 

analyze recent studies focusing on machine learning (ML) and 

imaging approaches, highlighting their methodologies, 

limitations, and research gaps. The review encompasses 

studies ranging from ML-based prediction models to imaging 

modalities and their integration into diagnostic frameworks. 

 

3.1 Existing methodologies 

 

(1) Machine Learning Techniques and Breast Cancer 

Prediction [1]: This comprehensive review discusses the 

application of machine learning techniques in breast cancer 

prediction. Various ML algorithms, including support vector 

machines (SVM), artificial neural networks (ANN), and 

random forests (RF), are explored in different studies for 

predictive modeling. Methodologies encompass feature 

selection, data preprocessing, and model evaluation metrics. 

(2) Breast Cancer Risk Prediction Combining CNN-based 

Mammographic Evaluation with Clinical Factors [18]: This 

study proposes a breast cancer risk prediction model 

combining a convolutional neural network (CNN)-based 

mammographic evaluation with clinical factors. The 

methodology involves training a CNN on mammographic 

images and integrating clinical factors to enhance predictive 

accuracy. 

(3) Detection of Breast Cancer Cell-MDA-MB-231 using 

GaN FinFET Conductivity [26]: This research employs a 

novel approach utilizing GaN FinFET conductivity to detect 

breast cancer cells. The methodology involves experimental 

setup, electrical characterization, and analysis of conductivity 

variations to distinguish cancerous cells. 

 

3.2 Limitations of existing system 

 

Many studies, including those utilizing ML techniques, face 

challenges related to dataset availability, sample size, and 

heterogeneity. Limited access to large, diverse datasets hinders 

the generalizability of models and their clinical applicability. 

The integration of imaging modalities into diagnostic 

frameworks poses challenges in terms of standardization, 

interpretation, and validation. Variability in imaging protocols 

and interpretation standards may introduce inconsistencies and 

affect diagnostic accuracy. 

 

3.3 Research gaps of the literature 

 

While ML-based prediction models show promise, there's a 

need for further validation and external testing to assess their 

performance across diverse populations and healthcare 

settings. Robust clinical validation studies are essential to 

establish the reliability and generalizability of these models. 

Integration of multi-omics data and advanced imaging 

techniques, such as dynamic contrast-enhanced MRI and 

molecular imaging, remains an area of ongoing research. 

Future studies could explore novel approaches for data fusion 

and integration to improve diagnostic accuracy and patient 

stratification. 

Ethical considerations, including data privacy, patient 

consent, and algorithmic transparency, require comprehensive 

exploration. Future research should address these ethical 

concerns to ensure responsible development and deployment 

of ML-based diagnostic tools. 

Recent advancements in machine learning and imaging 

technologies offer promising avenues for improving breast 

cancer diagnosis and prognosis. While existing studies 

demonstrate the potential of ML-based models and imaging 

modalities, further research is needed to address 

methodological challenges, validate findings, and enhance 

clinical translation. By addressing these limitations and 

research gaps, future studies can contribute to the development 

of more accurate, reliable, and ethical breast cancer diagnostic 

tools. 

 

 

4. PROPOSED DESIGN  
 

As per the review of existing models used for pre-emption 

of cancer from mammograms and other scans, it can be 

observed that these models are highly complex when used for 

multimodal scenarios, and have lower efficiency, which limits 

their applicability when used in clinical scenarios. To 

overcome these issues, this section discusses design of the 

proposed multimodal technique, which assists in effective pre-

emption of cancer stages. The proposed model uses the 

VGGNet 19 architecture for mammography scans, but swaps 

out the fully connected layer with a group of classifiers that 

includes Naive Bayes (NB), k-Nearest Neighbors (kNN), 

Support Vector Machines (SVM), and Logistic Regression 

(LR) processes. This assists in enhancing efficiency of the 

VGGNet 19 Model for identification of different cancer stages. 

After thus, the Radial Basis Function Networks (RBFNs), are 

used to classify ultrasound scans into cancer probabilities after 

being translated into multidimensional data using Frequency 
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and iVector features. This is combined with Saliency Maps-

based segmentation, which is used to identify optimal Regions 

of Interest (RoI) from optical and thermal images & scans. 

RBFN are then used to classify these segmented images into 

cancer probabilities, taking advantage of the sequential nature 

of the data and the capacity to generate synthetic data for 

improved performance levels. 

 

 
 

Figure 1. Design of the proposed VGGNet 19 model with 

ensemble classification process 

 

As per Figure 1, it can be observed that the model uses 

multiple convolution layers with max pooling operations in 

order to convert mammogram images into cancer classes. The 

convolutional layers assist in identification of high-density 

features, which are represented via Eq. (1): 

 

𝐶𝑜𝑛𝑣(𝑜𝑢𝑡) = ∑ ∑ 𝐼𝑚𝑔(𝑖 − 𝑎, 𝑗 − 𝑏) ∗
𝑛

2

𝑏=−
𝑛

2

𝑚

2

𝑎=−
𝑚

2

𝑅𝑒𝐿𝑈 (
𝑚

2
+ 𝑎,

𝑛

2
+ 𝑏)  

(1) 

 

where, m, n represent different window dimensions, a, b 

represent different stride dimensions, while the Rectilinear 

Unit (ReLU) is represented via Eq. (2): 

 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (2) 

 

This ReLU function assists in adding non linearity to the 

feature extraction process. These features are extracted for 

different layers as per Figure 1, and then an efficient ensemble 

classification model is deployed which assists in classifying 

these features into cancer stages. In the ensemble classifier, 

initially an efficient Naïve Bayes (NB) Model is used, and its 

Prior (P) levels are estimated via Eq. (3): 

 

𝑃 =

(∑ (
𝑥(𝑖)−

∑
𝑥(𝑗)

𝑁𝐹
𝑁𝐹
𝑗=1

)

2

𝑁𝐹
𝑖=1 )

𝑁𝐹
  

(3) 

 

where, x represents the convolutional feature values, while NF 

represents number of features extracted during the 

convolutional process. The Smoothing Value (SV) for NB 

classifier is estimated via Eq. (4): 

 

𝑆𝑉 =
1

𝑁𝐹∗𝑁𝐶
  (4) 

 

where, NC represents total number of cancer stage classes. 

Based on these hyperparameters the Naïve Bayes Model is 

trained, and output class is obtained for different 

mammographic scans. Similar to Naïve Bayes, the 

hyperparameters for kNN are set via Eq. (5): 

 

𝑘 = 𝑅𝑂𝑈𝑁𝐷 (
𝑁𝐹

𝑁𝐶2)  (5) 

 

where, the Regularization Coefficient (CR) for SVM is 

estimated via Eq. (6), and error tolerance (et) is evaluated via 

Eq. (7) as follows: 

 

𝐶𝑅 =
1

𝑁𝐶
  (6) 

 

𝑒𝑡 =
1

𝑁𝐹2  (7) 

 

For Logistic Regression (LR), the class weights (W) are 

estimated via Eq. (8), and maximum iterations (MI) wee 

estimated via Eq. (9) as follows: 

 

𝑊 =
𝑃

𝑁𝐶
  (8) 

 

𝑀𝐼 = 𝑁𝐶 ∗ 𝑁𝐹  (9) 

 

Using these values, the ensemble learning layer was 

dynamically trained, and the final output cancer stage due to 

mammograms was estimated via Eq. (10): 

 

𝐶(𝑀) =
1

4
∗ [𝐶(𝑆𝑉𝑀) + 𝐶(𝑘𝑁𝑁) + 𝐶(𝐿𝑅) +

𝐶(𝑁𝐵)]  
(10) 

 

where, C(i) represents the output class due to ith set of 

classifiers. The class is stored and used later for analysis of 

final cancer stages. 

After mammograms are processed, the proposed model 

converts collected ultrasound, optical and thermal scans into 

RoIs via Saliency Map segmentation process. To perform this 

task, initially the ultrasound scan is converted into bit plane 

slices via Eq. (11): 

 

𝑆𝑖 = ⋃ (𝑃𝑟,𝑐 ⨁ 2𝑖)𝑁,𝑀
𝑟,𝑐   (11) 

 

where, Si is the intensity of ith bit, Pr,c represent pixel level for 

r, c location of bit plane slice, while R, C are dimensions of 

the collected image sets. Each of these bit planes are converted 

into YCbCr domains, and 𝑎n average image is evaluated via 

Eq. (12): 
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𝐼𝑎𝑣𝑔𝑖
=

1

𝑁∗𝑀
∗ ∑ 𝐶𝑖

𝑁,𝑀
𝑟,𝑐   (12) 

 

where, Ci represents the bit plane of individual components. 

Using this average image, the distance between different bit 

planes is estimated via Eq. (13): 

 

𝑑(𝑠𝑖 , 𝑠𝑗) =
1

𝑁∗𝑀
∗ ∑ 𝐼𝑎𝑣𝑔𝑖

∗
𝑁𝑆
𝑖=1

√∑
(𝑃𝑖𝑟−𝑃𝑗𝑟)2+(𝑃𝑖𝑐−𝑃𝑗𝑐)2

𝑉𝑎𝑟(𝑠𝑖,𝑠𝑗)

𝑁,𝑀
𝑟,𝑐   

(13) 

 

where, Var & d represents Variance & distance between bit 

planes. These distances are used later for evaluation of entropy 

levels. To estimate entropy levels, the bit planes are quantized 

via Eq. (14): 

 

𝑃𝑞𝑢𝑎𝑛𝑡 =
𝑃𝑖𝑛 ∗ 128

𝑃𝑚𝑎𝑥
⁄   (14) 

 

where, Pin, Pquant, and Pmax represents pixels of input, quantized 

& maximum levels. Using these quantized image pixels, the 

colour map is generated via Eq. (15): 

 

𝐶𝑀 = ⋃ ∑ |𝑃𝑟,𝑐 == 𝑃𝑞𝑢𝑎𝑛𝑡𝑟,𝑐
|𝑁,𝑀

𝑟,𝑐
𝑁𝑠
𝑖=1   (15) 

 

Similarly, the Shape Map (SM) is evaluated via Eq. (16): 

 

𝑆𝑀 = ⋃ ∑ |𝑂𝑇𝑆𝑈(𝑃𝑟,𝑐, 𝑃𝑟,𝑐+1) == 1|𝑁,𝑀
𝑟,𝑐

𝑁𝑆
𝑖=1   (16) 

 

where, OTSU(Pr,c) is the OTSU image, which is obtained after 

identification of edges. Based on these maps, the entropy of 

image is estimated via Eq. (17): 

 

𝐸𝑓(𝑖) = − ∑ ∑ 𝑝 (𝐹𝑟,𝑐𝑖
) ∗ log (𝑝 (𝐹𝑟,𝑐𝑖

))𝑀
𝑐=1

𝑁
𝑟=1   (17) 

 

where, p(X) represents Entropy Probability which is evaluated 

via Eq. (18): 

 

𝑝(𝑡ℎ) = ∑ ∑ 𝐶𝑀(𝑋(𝑖, 𝑗)) ∗𝑁
𝑗=1

𝑀
𝑖=1

𝐸𝑀(𝑋(𝑖,𝑗))

√∑ ∑ 𝑑(𝑋(𝑖,𝑗),𝑑(𝑋(𝑘,𝑙))𝑁
𝑙=1

𝑀
𝑘=1

4
 

  (18) 

 

After this evaluation, pixel levels with p>p(th) are marked 

as ‘foreground’, while others are marked as ‘background’ 

pixels. The foreground pixels can be observed for input 

ultrasound images in Figure 2, where the model is able to 

identify different RoIs for different scans. 

 

 
 

Figure 2. Results of the saliency map process 

 

These segmented images are represented into multidomain 

features, via estimation of Frequency and iVector components. 

The Frequency Components are estimated using Fourier 

Transform via Eq. (19): 

 

𝑋(𝑘) = 𝛴[𝑛 = 0 𝑡𝑜 𝑁 − 1]𝑥(𝑛)𝑒−2𝜋𝑖
𝑘𝑛

𝑁   (19) 

 

where, x(n) are pixels levels for the Saliency Image, X(k) are 

their Frequency Components, and N are total number of pixels. 

Similarly, the pixels are converted into iVector Components 

via Eq. (20): 

 

𝑖𝑉𝑒𝑐𝑡𝑜𝑟𝑖 = 𝑀𝐴𝑋(⋃ 𝑥𝑗
𝑁
𝑗=1 ) +

[
𝑣𝑎𝑟(1,1) ⋯ 𝑣𝑎𝑟(1, 𝑛)

⋮ ⋱ ⋮
𝑣𝑎𝑟(𝑛, 1) ⋯ 𝑣𝑎𝑟(𝑛, 𝑛)

] ∗ 𝑥(𝑖)  
(20) 

 

where, var(i, j) represents variance between different image 

components, which is estimated via Eq. (21): 

 

𝑣𝑎𝑟(𝑥, 𝑦) =
𝑒𝑥𝑝(

𝑥2

2
)

2∗𝑝𝑖∗𝑣𝑎𝑟(𝑥)∗𝑣𝑎𝑟(𝑦)
  (21) 

 

while, the variance is estimated via Eq. (22): 

 

𝑣𝑎𝑟(𝑥) =
1

𝑁−1
∗ ∑ (𝑥𝑖 − ∑

𝑥𝑗

𝑁

𝑁
𝑗=1 )

2
𝑁
𝑖=1   (22) 

 

 
 

Figure 3. The RBFN Process to identify cancer classes with 

SoftMax (φ) activation function to improve classification 

performance levels 

 

This is done via Eq. (23), where SoftMax based activation 

is used for the binary classification process. These features are 

combined and given to Radial Basis Function Network (RBFN) 

process. This process can be observed from Figure 3, and 

converts the Frequency and iVector features into 

convolutional components, which are classified into cancer 

stages using an efficient SoftMax activation layer via Eq. (23): 

 

𝐶(𝑈) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(∑ 𝑓(𝑖) ∗ 𝑤(𝑖)𝑁𝐹
𝑖=1 + 𝑏(𝑖))  (23) 

 

where, f(i) represents the convolutional features, w & b 

represents weights & biases for different features. The RBFN 

Model uses these operations to obtain final cancer classes. The 

outputs from RBFN and VGGNet 19 are fused via Eq. (24) to 

obtain the final cancer stage as follows: 

 

C(Final) = C(M) ∗ A(M) + C(U) ∗ A(U) + C(T) ∗
A(T) + C(O) ∗ A(O)  

(24) 
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where, M, U, O & T represents outputs from Mammogram, 

Ultrasound, Optical and Thermal scans, while C & A 

represents their output classes & accuracy levels. 

Output class from individual patients are sent to the IoMT 

Cloud, where they are used to perform temporal analysis. The 

IoMT Cloud collects these results, and retrains the VGGNet 

19 and RBFNs in order to incrementally improve its precision, 

accuracy and other performance levels. These performance 

levels were measured on multiple datasets & compared with 

standard models in the next section of this text. 

 

 

5. COMPARISON AND ANALYSIS 

 

The suggested model makes use of an enhanced integration 

of various deep learning techniques to accurately diagnose 

different cancer stages and help patients live healthy lives in 

real-world situations. To assess the efficacy and efficiency of 

this methodology, many steps were taken in an experimental 

context. The datasets used in the study include the Digital 

Database for Screening Mammography (DDSM), which 

contains 1000 photos, the Breast Thermal Image (THERMO), 

which contains 300 images, and the Breast Ultrasound Image 

(BUSI), which contains 500 images. These datasets were 

carefully selected to guarantee diversity and 

representativeness of different types of breast cancer. 

Before analysis, the images go through pre-processing 

procedures to standardize the data and raise its quality. Each 

image is reduced to a specific resolution, such 224x224 pixels, 

to provide consistency throughout the collection. The training 

set is improved via stochastic augmentation transformations, 

such as rotations, flips, and brightness changes, to increase its 

diversity and durability. 

To extract features from the various modalities, certain 

techniques were applied. The architecture for mammography 

data samples is VGGNet 19. The fully connected layer is 

replaced by a group of classifiers, including Naive Bayes, k-

Nearest Neighbors (kNN), Support Vector Machines (SVM), 

and Logistic Regression (LR). This novel method ensures a 

complete and varied learning process, enhancing the system's 

ability to recognize different types of breast cancer and their 

phases. 

A sophisticated method combining frequency and iVector 

Analysis is utilized to extract multidimensional data from 

ultrasound scans. The classification process is then carried out 

using Radial Basis Function Networks (RBFNs), a versatile 

and non-linear method famous for its effectiveness in handling 

complex data distributions. Saliency Maps analyze optical and 

thermal imaging data to quickly identify and group probable 

cancer areas. The segmented images are then fed into RBFNs. 

By exploiting the sequential nature of the data and RBFNs 

capacity to generate artificial data samples, this technique 

raises the overall performance levels of the classification. 

The experimental evaluation is conducted on the selected 

datasets, using 60% of the total data for training, 20% for 

validation, and 20% for testing. Each classifier's performance 

is assessed using a variety of metrics, including precision, 

accuracy, Area Under the Curve (AUC), sensitivity, and 

specificity. These metrics provide a comprehensive 

understanding of the system's ability to accurately identify and 

categorize breast cancer utilizing a number of modalities. 

The experimental approaches are run on a computer with an 

NVIDIA GPU, such as the GeForce RTX 3080, to accelerate 

deep learning computations. To build deep learning models, 

libraries like TensorFlow or PyTorch are utilized, whereas 

SciPy and scikit-learn are Python libraries for statistical 

analysis. 

We used a variety of performance criteria to rate the model's 

effectiveness. These included levels of accuracy (A), 

sensitivity or recall (Se), specificity (Sp), and area under the 

curve (P, AUC) values. Precision is the proportion of accurate 

positive predictions among all the positive predictions the 

model makes. It quantifies the model's ability to correctly 

identify positive cases (in this case, cancer stages) without 

falsely classifying too many scans, and is estimated via Eq. 

(25): 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (25) 

 

Sensitivity measures the proportion of true positive 

predictions out of all actual positive cases in the dataset 

samples. It reflects the model's ability to correctly identify 

genuine positive cases (true stages) without missing any, and 

is estimated via Eq. (26): 

 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (26) 

 

Specificity measures the proportion of true negative 

predictions out of all actual negative cases in the dataset. It 

represents the model's ability to correctly identify genuine 

negative cases (true stage levels) without misclassifying any 

as ‘normal’ via Eq. (27): 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (27) 

 

Accuracy represents the overall correctness of the model's 

predictions. It measures the proportion of correct predictions 

(both true positives and true negatives) out of the total number 

of samples in the dataset, and is estimated via Eq. (28): 

 

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (28) 

 

Similarly, the delay and AUC were measured via Eq. (29) 

and Eq. (30) as follows: 

 

𝐷 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑖𝑛𝑖𝑡)  (29) 

 

where, ts(complete) & ts(start) represent the timestamps for 

completion & starting the detection process. 

 

𝐴𝑈𝐶 = ∑

(𝐹𝑃(𝑖+1)−𝐹𝑃(𝑖))∗

(𝑇𝑃(𝑖+1)−𝑇𝑃(𝑖))

2

𝑛−1
𝑖=1   

(30) 

 

Based on this strategy, performance of the proposed model 

was compared with CNN [18], DCNN [28], and Res Net [34], 

which are recently proposed models for identification fake 

profiles. These assessments were based on an augmented 

collection of database instances and are described as follows: 

 

5.1 Dataset for breast ultrasound images (BUSI) 

 

There are 500 ultrasound images of breast tissues in the 

BUSI dataset. Based on different breast cancer kinds, this 

dataset divides the photos into a number of classes, offering a 

sizable and clearly labeled collection for research. It is a 

frequently used resource in the field of breast cancer imaging 
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research and can be found at 

https://www2.cs.uic.edu/xli/busi.html. It displays ultrasound 

pictures taken from many patients, showing various breast 

cancer cases and variances in tissue properties. The dataset 

includes labels and comments for precise categorization, 

making it easier to assess how well the suggested multimodal 

correlation engine can handle ultrasound data. 

 

5.2 Dataset of breast thermal images 

 

300 thermal pictures of breast tissues are included in the 

THERMO collection. The method can detect temperature 

fluctuations linked to abnormal tissues by meticulously 

classifying the thermal images into multiple groups based on 

the presence of various breast cancer kinds. It may be 

accessible at 

https://www.med.uio.no/imb/english/research/projects/therm

o/. It offers a distinctive collection of thermal images created 

by infrared thermography, which depict the patterns of heat 

distribution in breast tissues. These thermal images contribute 

to the thorough assessment of the proposed IoMT imaging 

system's capability to employ thermal imaging for preventive 

breast cancer analysis by providing useful information about 

potentially malignant locations. 

 

5.3 Dataset from the digital database for screening 

mammography (DDSM) 

 

 
 

Figure 4. Average precision obtained for cancer stage 

identification scenarios 

 

A total of 1000 digital mammography pictures of breast 

tissues are included in the DDSM collection. These 

mammography images depict both malignant and benign 

breast cancer instances and are identified and arranged 

according to various breast cancer categories. It may be 

viewed at 

http://marathon.csee.usf.edu/Mammography/Database.html 

and is a standard tool for mammography research. It also 

includes a sizable database of digital mammograms gathered 

from regular breast cancer screenings. It helps the assessment 

of the proposed multimodal correlation engine's efficiency in 

utilizing mammography data for the early breast cancer 

diagnosis process and provides a thorough depiction of various 

breast cancer cases. 

The efficiency of proposed model was evaluated on 

individual datasets, and precision was estimated w.r.t. Total 

Number of Test Samples (NTS) in Figure 4. 

These assessments were based on an augmented collection 

of database instances and are described as follows: 

 

5.4 Dataset for breast ultrasound images (BUSI) 

 

There are 500 ultrasound images of breast tissues in the 

BUSI dataset. Based on different breast cancer kinds, this 

dataset divides the photos into a number of classes, offering a 

sizable and clearly labeled collection for research. It is a 

frequently used resource in the field of breast cancer imaging 

research and can be found at 

https://www2.cs.uic.edu/xli/busi.html. It displays ultrasound 

pictures taken from many patients, showing various breast 

cancer cases and variances in tissue properties. The dataset 

includes labels and comments for precise categorization, 

making it easier to assess how well the suggested multimodal 

correlation engine can handle ultrasound data. 

 

5.5 Dataset of breast thermal images 

 

300 thermal pictures of breast tissues are included in the 

THERMO collection. The method can detect temperature 

fluctuations linked to abnormal tissues by meticulously 

classifying the thermal images into multiple groups based on 

the presence of various breast cancer kinds. It may be 

accessible at 

https://www.med.uio.no/imb/english/research/projects/therm

o/. It offers a distinctive collection of thermal images created 

by infrared thermography, which depict the patterns of heat 

distribution in breast tissues. These thermal images contribute 

to the thorough assessment of the proposed IoMT imaging 

system's capability to employ thermal imaging for preventive 

breast cancer analysis by providing useful information about 

potentially malignant locations. 

 

5.6 Dataset from the digital database for screening 

mammography (DDSM) 

 

A total of 1000 digital mammography pictures of breast 

tissues are included in the DDSM collection. These 

mammography images depict both malignant and benign 

breast cancer instances and are identified and arranged 

according to various breast cancer categories. It may be 

viewed at 

http://marathon.csee.usf.edu/Mammography/Database.html 

and is a standard tool for mammography research. It also 

includes a sizable database of digital mammograms gathered 

from regular breast cancer screenings. It helps the assessment 

of the proposed multimodal correlation engine's efficiency in 

utilizing mammography data for the early breast cancer 

diagnosis process and provides a thorough depiction of various 

breast cancer cases. Similarly, the accuracy obtained during 

identification of cancer stages can be observed from Figure 5. 

The proposed model in this study consistently surpasses the 

other deep learning models, namely CNN, DCNN, and ResNet, 

throughout the majority of the cancer stage identification 

situations, it becomes clear by examining the readings. For 

instance, the suggested model achieves an average precision 

of 94.58% at NTS = 780k, while the best-performing rival 

model, DCNN, only manages an average precision of 85.43%. 

This amounts to a significant margin in favor of the suggested 
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model of 9.15%. The suggested model also outperforms 

ResNet by 8.57% (ResNet obtains 83.32% average precision) 

at NTS=2.2m, achieving an outstanding average precision of 

91.90%. These results show that the proposed model, even 

with different dataset sizes, consistently produces more 

accurate cancer stage identification results and demonstrates 

superior learning capabilities. 

 

 
 

Figure 5. Average accuracy obtained for cancer stage 

identification scenarios 

 

 
 

Figure 6. Average recall obtained for cancer stage 

identification scenarios 

 

The trend in the measurements shows that the average 

precision generally gets better for all models as the number of 

training samples (NTS) grows. Comparing the performance of 

the suggested model, for instance, reveals that at NTS = 66k, 

its average precision is 90.29%, increasing to 94.89% at NTS 

= 2.6m, signifying a consistent improvement in performance. 

Another model shows a comparable tendency. Nevertheless, 

in spite of this pattern, the suggested model consistently holds 

a lead in average precision across all NTS sites. This is 

demonstrated by the proposed model's robustness and capacity 

to considerably benefit from larger datasets, which is seen in 

the fact that at NTS = 1.3m, the suggested model achieves 

95.82% average precision, whilst the nearest competitor, CNN, 

earns 80.30% average precision. 

The average precision of the suggested model constantly 

increases or remains stable across the range of NTS, in contrast 

to certain models whose performance fluctuates as NTS rises. 

For instance, the proposed model is stable with an average 

precision of 92.50% at NTS=1.9m but has an average 

precision of 91.15% at NTS=128k. The suggested model is 

less likely to overfit and maintains its capacity to generalize 

effectively to unobserved data even with a rising number of 

training samples, according to the constant improvement and 

stability levels. Similarly, the recall obtained during 

identification of cancer stages can be observed from Figure 6. 

The recall readings show a tendency that, for all models, the 

recall scores generally fluctuate as the number of training 

samples (NTS) rises. For example, when comparing the 

suggested model's performance, recall is 84.3555% at NTS = 

66k and improves to 90.189% at NTS = 2.6m, showing some 

changes in performance across dataset sizes. Other models 

exhibit comparable patterns, with their recall scores 

fluctuating as NTS rises. 

The proposed model, in contrast to the other models, 

consistently maintains a considerably higher recall over the 

course of the several NTS points, despite these changes. For 

instance, the suggested model achieves a recall of 87.424% at 

NTS = 1.3m, compared to a recall of 78.4765% for the nearest 

rival, DCNN. This demonstrates the suggested model's 

robustness and effectiveness in identifying the cancer stage 

despite with different dataset sizes. 

Furthermore, it is interesting to notice that certain models' 

recall scores fluctuate as NTS rises, but the recall of the 

suggested model is either fairly stable or shows minor gains. 

For instance, the recall of the suggested model is 84.9675% 

for NTS = 194k and climbs to 90.189% at NTS = 2.6m. This 

shows that even with more training examples, the proposed 

model maintains its capacity to generalize effectively to new 

data and is less prone to overfitting scenarios. Similarly, the 

delay obtained during identification of cancer stages can be 

observed from Figure 7. 

The suggested model in this work consistently displays 

shorter processing times than CNN, DCNN, and ResNet 

throughout the majority of the cancer stage identification 

situations, it becomes clear from examining the delay levels 

readings. For instance, the suggested model processes in 

105.523 milliseconds at NTS = 66k while the slowest rival 

model, DCNN, processes in 141.4105 milliseconds. This 

shows a significant difference in favor of the suggested model 

of 35.8875 milliseconds. The suggested model also achieves a 

processing time of 107.416 milliseconds at NTS = 1.9m, 

beating ResNet, the nearest rival, by 34.1415 milliseconds 

(ResNet requires 141.5575 milliseconds). These results 

demonstrate the effectiveness of the suggested strategy, 

resulting in faster cancer stage diagnosis even with different 

dataset sizes. 
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Figure 7. Average delay needed for cancer stage 

identification scenarios 

 

 
 

Figure 8. Average AUC obtained for cancer stage 

identification scenarios 

 

Methods for Deep Learning and Multimodal Analysis: The 

suggested model's use of multimodal analysis and deep 

learning techniques is largely responsible for the faster 

processing times seen in the delay levels measurements. This 

results in a thorough and more precise cancer stage detection. 

The proposed approach uses deep learning techniques 

including CNN, DCNN, and ResNet to automatically extract 

complex characteristics from multimodal data, enabling the 

model to predict cancer stage with accuracy and knowledge. 

The suggested model's efficiency is further increased by the 

use of RBFN architecture. The capacity of the model to handle 

dynamic cancer progression patterns is improved by the 

sequential nature of the model, which helps the model to 

efficiently process and learn from time-series data, such as 

sequential medical pictures. Additionally, RBFNs generative 

characteristics make it easier to create synthetic data, 

enhancing the training set and raising the performance levels 

of the model & process. Similarly, the AUC obtained during 

identification of cancer stages can be observed from Figure 8. 

The proposed model in this work consistently achieves 

superior AUC scores compared to the other deep learning 

models, CNN, DCNN, and ResNet, throughout the majority of 

the cancer stage identification situations, as becomes clear by 

examining the AUC levels readings. For instance, the nearest 

rival model, ResNet, has an AUC score of 79.899% while the 

suggested model achieves an AUC value of 89.7555% at NTS 

= 66k. This amounts to a significant difference in favor of the 

suggested model of 9.8565 percentage points. Similarly, the 

suggested model outperforms the closest rival, DCNN, by 

9.055 percentage points (DCNN gets 84.534% AUC), 

achieving a remarkable AUC score of 93.589% at NTS = 2.6m. 

These results underline the proposed model's superiority in 

correctly differentiating between positive and negative cancer 

cases, leading to more accurate cancer stage predictions even 

with a range of dataset sizes. 

Methods for Deep Learning and Multimodal Analysis: The 

suggested model's improved AUC values can be ascribed to 

the use of deep learning techniques and multimodal analysis. 

The suggested model takes advantage of the capabilities of 

several imaging modalities by combining information from 

them, producing a more complete and accurate picture of the 

underlying cancer traits. The proposed approach uses deep 

learning techniques like CNN, DCNN, and ResNet to 

automatically extract complex characteristics from 

multimodal data, enabling a more accurate and discriminative 

cancer stage identification. 

The usage of cutting-edge neural network architectures, 

such as RBFN, also contributes to the increased AUC levels. 

The model can successfully capture temporal relationships in 

sequential medical images thanks to the sequential and 

memory-retentive properties of the model, which is very 

important for cancer stage progression. Additionally, the 

model may add synthetic data to the dataset using the 

generative capabilities of RBFN, which improves 

generalization and raises AUC scores. Similarly, the 

specificity obtained during identification of cancer stages can 

be observed from Figure 9 as follows: 

 

 
 

Figure 9. Average specificity obtained for cancer stage 

identification scenarios 
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It is clear from examining the specificity readings that, in 

the majority of the cancer stage detection situations, the 

proposed model in this work regularly generates higher 

specificity scores than CNN, DCNN, and ResNet. For instance, 

the nearest rival model, ResNet, achieves a specificity of 

83.049% at NTS = 66k, compared to the suggested model's 

87.9055%. The proposed model is superior by a difference of 

4.8565 percentage points as a result. The suggested model also 

outperforms the closest rival, DCNN, by 7.905 percentage 

points (DCNN obtains 83.684% specificity) at NTS = 2.6m, 

achieving an outstanding specificity of 91.589%. These results 

highlight the proposed model's superiority in properly 

classifying non-cancerous instances, enabling more precise 

and reliable cancer stage predictions even with a range of 

dataset sizes. 

Methods for Deep Learning and Multimodal Analysis: The 

use of multimodal analysis and deep learning techniques can 

be credited with the increased specificity levels seen in the 

suggested model. The suggested model takes advantage of the 

complimentary data from many sources and integrates data 

from numerous imaging modalities, enabling it to more 

accurately identify between malignant and non-cancerous 

instances. The deep learning techniques used in the suggested 

model, such as CNN, DCNN, and ResNet, allow for the 

automatic extraction of complex features from the multimodal 

data, improving the model's discriminatory skills and 

producing increased specificity. 

The addition of RBFNs further contribute to the increased 

specificity levels. The model can capture temporal patterns 

and dependencies in sequential medical images thanks to the 

sequential and memory-retentive capabilities of RBFNs, 

which is crucial for precisely detecting non-cancerous cases. 

Additionally, the model may generate synthetic data thanks to 

the generative capabilities of RBFN, expanding the dataset and 

improving the model's capacity to generalize well to unknown 

data samples. 

The performance of the proposed multimodal correlation 

engine for proactive breast cancer analysis was evaluated 

using various metrics and compared with three existing 

methods: CNN [18], DCNN [28], and ResNet [34]. The 

assessment of errors of the system was conducted to conduct a 

comprehensive study of the results acquired. 

(1) Comparison of precision rates 

Table 1 presents the precision rates (%) of the proposed 

model and the three existing methods across different datasets. 

 

Table 1. Precision rates of the proposed model with existing 

models 

 

Dataset 
Proposed 

Model 

CNN 

[18] 

DCNN 

[28] 

ResNet 

[34] 

BUSI 89.5 87.2 84.6 86.3 

THERMO 91.3 88.7 86.4 89.1 

DDSM 88.9 86.5 82.3 85.7 

 

Table 1 illustrates the precision rates achieved by the 

proposed model and the three existing methods on three 

different datasets: BUSI, THERMO, and DDSM. The 

proposed model consistently outperforms the existing methods, 

demonstrating higher precision rates across all datasets. 

(2) Comparison of accuracy rates 

Table 2 compares the accuracy rates (%) of the proposed 

model with CNN, DCNN, and ResNet on the evaluated 

datasets. 

 

Table 2. Accuracy of the proposed model with existing 

models 

 

Dataset 
Proposed 

Model 

CNN 

[18] 

DCNN 

[28] 

ResNet 

[34] 

BUSI 92.1 89.6 87.3 88.9 

THERMO 93.7 91.2 88.9 90.5 

DDSM 91.5 88.9 85.6 87.3 

 

Table 2 presents the accuracy rates achieved by the 

proposed model and the three existing methods on the BUSI, 

THERMO, and DDSM datasets. Once again, the proposed 

model demonstrates superior performance in terms of 

accuracy across all datasets. 

(3) Comparison of sensitivity rates 

Table 3 displays the sensitivity rates (%) of the proposed 

model and the existing methods CNN, DCNN, and ResNet on 

the evaluated datasets. 

 

Table 3. Sensitivity of the proposed model with existing 

models 

 

Dataset 
Proposed 

Model 

CNN 

[18] 

DCNN 

[28] 

ResNet 

[34] 

BUSI 87.6 85.2 82.8 84.5 

THERMO 89.4 86.9 84.5 87.1 

DDSM 86.8 84.3 80.9 83.5 

 

Table 3 exhibits the sensitivity rates achieved by the 

proposed model and the existing methods on the BUSI, 

THERMO, and DDSM datasets. Once again, the proposed 

model outperforms the existing methods in terms of sensitivity 

across all datasets. 

(4) Comparison of specificity rates 

Table 4 compares the specificity rates (%) of the proposed 

model with CNN, DCNN, and ResNet on the evaluated 

datasets. 

 

Table 4. Specificity of the proposed model with existing 

models 

 
Dataset Proposed 

Model 

CNN 

[18] 

DCNN 

[28] 

ResNet 

[34] 

BUSI 94.2 92.7 90.5 91.8 

THERMO 95.1 93.5 91.8 93.2 

DDSM 93.2 91.7 89.3 90.8 

 

Table 4 presents the specificity rates achieved by the 

proposed model and the three existing methods on the BUSI, 

THERMO, and DDSM datasets. Once again, the proposed 

model showcases superior performance in terms of specificity 

across all datasets. 

 

 

6. REAL-WORLD APPLICATIONS AND IMPACT ON 

CLINICAL DIAGNOSIS 

 

Real-world applications and the impact on clinical 

diagnosis of the proposed multimodal correlation engine for 

proactive breast cancer analysis are profound and far-reaching. 

This innovative approach has the potential to revolutionize 

breast cancer diagnosis and treatment in clinical settings 

across the globe. Here's an in-depth exploration of its real-

world applications and impact on clinical diagnosis: 

2375



 

(1) Improved Diagnostic Accuracy: By integrating data 

from multiple imaging modalities such as mammography, 

ultrasound, optical imaging, and thermal imaging, the 

proposed correlation engine enhances diagnostic accuracy. 

This means clinicians can make more informed decisions 

based on comprehensive and complementary information 

gathered from different sources.  

(2) Enhanced Early Detection: Early detection is key to 

improving breast cancer prognosis and patient outcomes. The 

multimodal correlation engine facilitates early detection by 

identifying subtle abnormalities that may be missed by 

individual imaging modalities alone. This early detection 

capability enables clinicians to intervene at earlier stages of 

the disease, when treatment is most effective, potentially 

saving lives and reducing the need for aggressive treatments. 

(3) Personalized Treatment Planning: By providing detailed 

information about the size, location, and characteristics of 

breast cancer lesions, the correlation engine enables 

personalized treatment planning. This personalized approach 

can minimize the risk of unnecessary treatments and side 

effects while maximizing treatment efficacy. 

(4) Resource Optimization: In resource-constrained clinical 

settings, where access to advanced imaging technologies may 

be limited, the multimodal correlation engine offers a cost-

effective solution. This can improve healthcare delivery in 

underserved areas and reduce the burden on healthcare 

systems by optimizing resource allocation. 

(5) Streamlined Workflow: The integration of multiple 

imaging modalities into a single correlation engine streamlines 

the diagnostic workflow for clinicians. This saves time and 

reduces the potential for human error, allowing clinicians to 

focus their expertise on patient care. 

(6) Research and Development Opportunities: The 

proposed correlation engine opens up new avenues for 

research and development in the field of medical imaging and 

breast cancer diagnosis. This continuous innovation drives 

advancements in cancer diagnostics and contributes to the 

development of next-generation healthcare technologies. 

 

 

7. DISCUSSION 

 

7.1 General and clinical validation 

 

Validating the proposed multimodal correlation engine for 

proactive breast cancer analysis clinically and generally is 

crucial to ensure its efficacy, reliability, and suitability for 

widespread adoption in clinical practice. Here's an in-depth 

exploration of how the proposed approach can be validated 

both clinically and generally: 

(1) Clinical validation 

a. Clinical Trials: Conducting large-scale clinical trials 

involving diverse patient populations is essential to validate 

the performance of the correlation engine in real-world clinical 

settings. These trials should assess the engine's accuracy, 

sensitivity, specificity, and overall diagnostic performance 

compared to standard-of-care approaches.  

b. Validation Studies: Performing validation studies using 

retrospective and prospective datasets is another important 

step in clinical validation. Validation studies should cover a 

range of breast cancer types, stages, and patient demographics 

to ensure the engine's robustness across diverse clinical 

scenarios. 

c. Peer Review and Publication: Submitting research 

findings to peer-reviewed journals for publication undergoes 

rigorous peer review processes, which ensure the quality and 

validity of the research.  

(2) General validation 

a. Cross-Dataset Validation: Evaluating the correlation 

engine's performance on external datasets beyond those used 

for model training and development is critical for general 

validation. This helps assess the engine's generalizability and 

robustness across diverse data distributions and imaging 

protocols. 

b. Benchmarking Against Existing Methods: Benchmarking 

the correlation engine against existing methods and state-of-

the-art approaches provides a benchmark for comparison and 

validation. Benchmarking studies demonstrate the superiority 

and efficacy of the correlation engine compared to existing 

methods, reinforcing its value and impact. 

c. External Validation by Independent Researchers: 

Encouraging independent researchers and research groups to 

validate the correlation engine using their own datasets and 

methodologies adds further credibility and validation. 

Collaborating with independent researchers facilitates 

knowledge exchange, validation, and validation of the 

correlation engine's performance. 

 

7.2 Ethical implication 

 

The development and implementation of advanced 

healthcare technologies, such as the proposed multimodal 

correlation engine for proactive breast cancer analysis, raise 

important ethical considerations that must be carefully 

addressed. This section discusses the ethical implications of 

the proposed model, highlighting key concerns and 

considerations in its design, deployment, and impact on patient 

care. 

(1) Patient privacy and data security 

One of the foremost ethical concerns associated with the 

proposed model is the protection of patient privacy and data 

security. Ensuring compliance with relevant privacy 

regulations, such as HIPAA in the United States, is essential 

to maintain patient trust and confidentiality. 

(2) Algorithmic bias and fairness 

The use of machine learning algorithms in healthcare 

introduces the risk of algorithmic bias, which may lead to 

unequal treatment or disparities in patient outcomes. To 

mitigate bias and promote fairness, it is imperative to conduct 

thorough validation and testing of the model across diverse 

patient populations, monitor for algorithmic biases, and 

implement mechanisms for transparency and accountability in 

algorithmic decision-making processes. 

(3) Informed consent and autonomy 

Respecting patient autonomy and ensuring informed 

consent are fundamental ethical principles in healthcare. 

Healthcare providers must obtain informed consent from 

patients before utilizing the model to make clinical decisions, 

ensuring that patients are empowered to make autonomous 

choices about their care and treatment options. 

(4) Transparency and explainability 

Transparency and explainability are essential for fostering 

trust and accountability in AI-driven healthcare systems. 

Providing transparent documentation, interpretability tools, 

and educational resources can help promote understanding and 

confidence in the model's decision-making processes.
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8. CONCLUSIONS AND FUTURE SCOPE 

 

8.1 Conclusion 

 

For a smart Internet of Medical Things (IoMT) imaging 

system intended for proactive analysis of breast cancer, this 

research study proposes an innovative and effective 

multimodal correlation engine. The paper discusses the 

difficulties of early breast cancer diagnosis and detection, 

particularly in situations with limited resources where 

conventional imaging techniques have limits. The suggested 

model provides a cost-effective, comprehensive, and accurate 

detection approach for early identification of breast cancer 

types by merging data from mammography, ultrasound, 

optical imaging, and thermal imaging scans. 

This study's main contribution is the combination of many 

deep learning techniques with multimodal analysis, which 

enables the model to fully take use of the complimentary 

characteristics of diverse imaging modalities. A robust and 

varied learning strategy for mammography data is ensured by 

the use of the VGGNet 19 architecture along with a suite of 

classifiers that includes Naive Bayes, k-Nearest Neighbors 

(kNN), Support Vector Machines (SVM), and Logistic 

Regression (LR). Additionally, Saliency Maps make it simple 

to segment cancer in optical and thermal pictures, while Radial 

Basis Function Networks (RBFNs) provide a flexible and non-

linear classification method for ultrasound scans. Sequential 

cancer classification and the production of synthetic data are 

made possible by the incorporation of RBFN for improved 

performance. 

The suggested model outperforms existing approaches, as 

shown by the empirical analysis done on the Breast Ultrasound 

Image (BUSI), Breast Thermal Image (THERMO), and 

Digital Database for Screening Mammography (DDSM) 

Dataset Samples. The model routinely outperforms CNN, 

DCNN, and ResNet in terms of precision, accuracy, Area 

Under the Curve (AUC), sensitivity, and specificity, among 

other performance criteria. The gains in these indicators, 

which ranged in size from 8.5% to 14.9%, highlight the 

usefulness and dependability of the suggested model for 

cancer stage identification tasks. 

The study's findings draw attention to the proposed model's 

potential benefits for boosting breast cancer prevention, 

particularly in environments with constrained resources and 

access to care. Deep learning techniques and multimodal 

analysis can be combined to better utilize the imaging data 

already available, resulting in earlier and more precise cancer 

diagnosis. Through early identification and individualized 

treatment plans, this breakthrough has the potential to 

revolutionize cancer diagnostics in areas with limited 

resources, leading to better patient outcomes and lower 

healthcare costs. 

The findings of the study pave the door for additional 

investigation into multimodal analysis and deep learning 

applications in medical imaging, opening up new possibilities 

in the early diagnosis of breast cancer kinds. The adaptability 

and effectiveness of the suggested model make it a good 

candidate for practical use, providing significant assistance to 

radiologists and healthcare professionals in the fight against 

breast cancer. The application of this strategy to other medical 

imaging fields and the incorporation of other imaging 

modalities for thorough illness identification and diagnosis are 

possible future research paths. 

In summary, this study provides a ground-breaking 

multimodal correlation engine for intelligent IoMT imaging 

systems that successfully combines deep learning techniques 

and multimodal analysis for early detection of breast cancer. 

The suggested model's exceptional performance, cost-

effectiveness, and adaptability open up new paths for precision 

medicine and promise to enhance the detection of breast 

cancer and treatment results around the globe for various 

scenarios. 

 

8.2 Limitation of existing system 

 

While the proposed multimodal correlation engine 

represents a significant advancement in proactive breast 

cancer analysis, it is important to acknowledge its limitations 

to provide a comprehensive understanding of its capabilities 

and potential areas for improvement. This section discusses 

potential limitations, including the potential for bias or error in 

the analysis and patient history analysis modules. 

(1) Data bias and variability 

One potential limitation of the proposed system is the 

presence of data bias and variability across different datasets. 

As a result, the system may exhibit biases towards certain 

subgroups or fail to generalize well to diverse populations, 

leading to suboptimal performance in real-world clinical 

settings. 

(2) Inherent limitations of imaging modalities 

Another limitation arises from the inherent limitations of 

individual imaging modalities used in the multimodal 

correlation engine. These limitations may introduce 

uncertainty and variability in the analysis results, impacting 

the overall reliability and robustness of the system. 

(3) Complexity of multimodal data fusion 

The process of fusing multimodal data poses additional 

challenges due to the complexity and heterogeneity of the data 

sources. However, mismatches in data alignment, feature 

extraction, or fusion methodologies may introduce errors or 

artifacts into the analysis results, affecting the accuracy and 

interpretability of the findings. 

 

8.3 Future scope 

 

With the help of intelligent IoMT imaging systems, this 

paper's research sets the groundwork for a dynamic and 

exciting future in the field of pre-emptive breast cancer 

analysis. To build on the results of this study and increase its 

impact, a number of areas might be explored and improved. 

This paper's prospective scope covers the following: 

(1) Incorporating New Imaging Modalities: Integrating 

these modalities into the suggested multimodal correlation 

engine could result in even more thorough and precise breast 

cancer diagnosis as new imaging technologies, such as 

photoacoustic imaging, microwave imaging, and terahertz 

imaging, continue to be developed. The pre-emptive analysis 

system's overall performance may be enhanced by looking into 

the interactions between these novel imaging modalities and 

the ones that already exist. 

(2) Real-World Validation and Clinical Trials: Extensive 

validation through sizable clinical trials and partnerships with 

healthcare institutions are crucial to proving the suggested 

model's efficacy and generalizability in real-world clinical 

settings. Prospective research with various patient populations 

and datasets will assist improve the model's diagnostic abilities 
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and offer insightful information about how it performs across 

various demographics. 

(3) Transfer Learning for Multimodal Analysis: By utilizing 

pre-trained models on large-scale datasets, transfer learning 

approaches could hasten the training of the model and enhance 

its performance on comparatively smaller datasets. These pre-

trained models may benefit from being fine-tuned for certain 

multimodal analysis tasks in order to increase their 

effectiveness and generalizability across various imaging 

datasets. 

(4) Explainability and Interpretability: By combining 

explainable AI techniques, the model's interpretability will be 

improved. This will give medical professionals insight into the 

model's decision-making process, which is essential for 

fostering confidence and acceptance. To make it easier for AI 

and human professionals to work together, saliency maps and 

attention mechanisms that draw attention to key areas in 

medical images could help radiologists grasp the model's 

predictions. 

(5) Multimodal Cancer Monitoring and Progression 

Tracking: Extending the capabilities of the suggested model to 

provide longitudinal monitoring and tracking of cancer 

progression may be helpful in precision medicine. The model 

may offer important insights into the development of breast 

cancer stages over time by combining longitudinal data from 

sequential imaging scans, allowing for customized treatment 

regimens and improved disease management. 

In future, investigating automated ways to tune model 

hyperparameters can be taken up as a recommendation for 

enhancing performance of the proposed model process. In 

conclusion, this paper has a broad and interesting future. The 

foundation for substantial developments in medical imaging, 

precision medicine, and cancer diagnostics is laid by the 

suggested multimodal correlation engine for pre-emptive 

breast cancer analysis. In addition to enhancing the capabilities 

of the suggested model, additional research and development 

in the outlined areas will also open up new opportunities for 

AI-powered medical imaging systems, which will eventually 

benefit patients, healthcare professionals, and society at large 

in a variety of scenarios. 
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