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Vision plays a pivotal role in how humans interact with and understand their surroundings. 

Despite significant advancements in assistive technology, the specific challenges of indoor 

navigation for the visually impaired and blind (VIP) community remain inadequately 

addressed. Recognizing and locating objects within indoor environments is crucial for 

enhancing the independence and safety of VIP individuals. This paper introduces an 

innovative deep-learning framework designed for superior object detection in indoor 

settings, alongside a comprehensive new dataset tailored for this purpose. At the heart of the 

proposed system is an optimized version of the YOLOv3 architecture, re-engineered to 

significantly reduce computational demands while maintaining high accuracy. The newly 

developed indoor dataset encompasses over 11,000 images featuring 25 essential object 

categories, curated to represent a variety of lighting conditions and complex indoor scenarios 

that pose navigational hazards. This dataset not only challenges the model with real-world 

complexities but also facilitates the training of more robust, efficient neural networks. 

Experimental results underscore the proposed model's exceptional performance, 

demonstrating marked improvements in detection precision and system efficiency, thereby 

offering a promising new direction for assistive technologies in indoor navigation. The 

obtained results of the proposed indoor objects detection system are highly promising, 

showcasing a mean average precision (mAP) of 89.78% across all 25 object classes. This 

impressive performance indicates the system's robust capability in accurately detecting a 

diverse range of objects commonly found in indoor environments. 
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1. INTRODUCTION

Blindness and other visual impairments constitute a 

significant challenge that is experienced by a large number of 

people all across the nation and the world. There are 

approximately 1.3 billion people who are affected by vision 

impairments, of which 36 million are completely blind, 

according to estimates provided by the World Health 

Organization (WHO) [1] in the year 2018. 

A challenge that is significant in the fields of computer 

vision and artificial intelligence is the identification and 

recognition of objects that are found within buildings. A 

human being is more dependent on their sight sense than any 

of their other senses in order to move around and investigate 

their surroundings. This is because the sight sense offers exact 

information about the size, texture, form, color, and distance 

to the item. The construction of new indoor object 

identification systems is attracting a growing amount of 

interest for the time being. Individuals who are blind or 

visually impaired (VIP) require a set of talents in order to 

travel and engage with the world that surround them. 

One may argue that vision is the most important sense that 

humans possess in order to move around and interact with the 

environment in a secure manner. The problem of object 

detection is a particularly essential one since it may be used to 

a broad variety of situations. One of the most difficult jobs in 

computer vision is object identification and recognition in 

real-world scenes. This is because it involves dealing with a 

wide range of challenges, including variations in lighting and 

occlusion, changes in viewpoint, and more complicated 

backgrounds, among other things. 

The elderly population all around the world faces the 

challenge of living with a vision impairment on a seemingly 

daily basis. Individuals who have high visual abilities have an 

easier time walking and exploring in private, locating items 

inside the building, and avoiding obstructions and challenges. 

This job, on the other hand, poses a particularly difficult 

challenge for those who are blind or have other impairments. 

This task becomes more difficult to do, particularly in 

congested indoor scenes, because these kinds of surroundings 

provide a high level of occlusion and variable lighting 

conditions. 
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In order to get a comprehensive understanding of the input 

image, we need not only focus on categorizing the things that 

are presented in the photographs, but we should also make an 

effort to find objects that are located inside the image. This 

particular work is a part of the object detection task [2], which 

has the potential to make contributions to a wide variety of 

other domains, including face identification [3], pedestrian 

detection [4], skeleton detection [5], road sign detection [6], 

indoor item detection [7-9], and indoor scene recognition [10]. 

As a result of the fact that it offers blind and visually impaired 

individuals extremely helpful information about their 

surroundings, the topic of computer vision that deals with 

indoor object recognition is a particularly attractive one. In the 

context of human-robot interaction, augmented reality, and 

root manipulation activities, object detection and recognition 

constitute an essential component. On the other hand, 

occlusion and deformable indoor objects continue to make the 

problem an even more difficult one to solve in inside 

congested situations. Furthermore, depending on the angle and 

calibration of the camera, the same interior item may look in a 

variety of various shapes, textures, and sizes. In light of this, 

the development of an accurate indoor object identification 

system has the potential to assist blind and sighted individuals 

in avoiding obstacles and risks and improving their ability to 

navigate inside environments efficiently. 

Object identification algorithms have reached a level of 

maturity in today's applications that allows them to address a 

wide variety of real-world computer vision problems. The 

issue of object detection is a well-known topic that is 

recognized to be particularly difficult since it requires a huge 

number of labeled datasets in order to train models and to 

generalize the performances of these detection models. 

Utilizing deep learning strategies for the purpose of 

detecting objects inside of buildings is a well-known and 

effective approach to solving this challenge. However, in order 

to get satisfactory outcomes through the use of algorithms that 

are based on deep learning, it is essential to train these models 

by making use of an enormous quantity of data. The 

performance of object identification tasks in a considerable 

variety of domains has been significantly improved by deep 

learning models in recent times. This improvement is 

particularly noticeable for interior navigating aids for vision 

impaired individuals and for bling. 

Object localization and object classification are two aspects 

of the issue of indoor object detection that we address in this 

study. Object localization involves locating objects in the input 

photos, while object classification involves identifying the 

type of the item. In this work, we offer a novel indoor object 

detection system that can efficiently handle the detection of 

particular interior items that are essential for everyday 

navigation. This system will accommodate the varied demands 

of those who are blind and those who are sighted. Throughout 

the course of this study, an attempt is made to gather and 

annotate eleven thousand interior photographs that contain 

twenty-four indoor landmark icons. During the training phase, 

we ensured that a variety of tough situations were used, which 

allowed us to demonstrate our strong detection method. 

Additionally, it is important to highlight that the suggested 

indoor object identification system was constructed by us on 

the basis of a modified version of YOLOv3, which employs 

MobileNet v1 as the backbone of the features extractor 

algorithm. Using MobileNet V1 as the network backbone for 

YOLOv3 rather than Darknet-53 has substantial benefits, 

particularly in terms of efficiency and speed. MobileNet V1, 

built for mobile and embedded applications, uses depthwise 

separable convolutions, which significantly lower the amount 

of parameters and computational load when compared to the 

classic convolutions used in Darknet-53. This makes 

MobileNet V1 significantly more suitable for real-time object 

identification on resource-constrained devices like 

smartphones and embedded systems, while maintaining high 

accuracy. The lower power consumption and faster inference 

times achieved by MobileNet V1 increase the feasibility of 

deploying YOLOv3 in practical, real-world applications 

requiring timely and reliable detection, such as assisting 

visually impaired individuals with indoor navigation and 

object recognition. 

Existing indoor object identification systems usually face 

substantial hurdles, such as poor performance in changing 

illumination conditions and difficulty distinguishing closely 

spaced or overlapping objects. These constraints are 

frequently caused by standard machine learning approaches 

that struggle to generalize across varied interior contexts, 

yielding inconsistent results. Furthermore, many current 

systems lack the ability to recognize a broad range of object 

classes, limiting their practical utility. The suggested approach 

tackles these concerns by employing a Feature Pyramid 

Network (FPN)-style structure. This method improves multi-

scale feature representation, allowing the system to effectively 

detect objects of varying sizes and resolutions. The FPN-like 

structure enables consistent performance in a variety of 

illumination settings and enhances the system's capacity to 

distinguish between closely positioned or overlapping objects. 

What follows is a summary of the remaining sections of this 

paper: Section 2 presents related works about indoor object 

detection systems. Section 3 introduces the dataset that was 

suggested for usage. The suggested architecture for indoor 

object detection is described in section 4. Experiments and 

findings are described in Section 5, and the study is concluded 

in Section 6. 

 

 

2. RELATED WORKS 

 

In the realms of computer vision and artificial intelligence, 

indoor item detection and identification constitute a 

formidable axis. Indoor spaces, with their crowded décor and 

severe lighting conditions, make this work even more complex. 

Building a novel deep learning-based indoor object 

identification system is the primary goal of this effort. We 

need to make sure that our planned work can withstand a lot 

of different kinds of extremes, such complete darkness, 

different lighting, different decorations, and fluctuation both 

within and across classes. 

A lot of research has gone into finding solutions to the 

challenges of indoor object detection and recognition. Using 

machine learning approaches to solve this challenge is 

especially important for classical works [11, 12]. To get the 

most out of the network inputs, though, algorithms of this kind 

need intricate pipeline architecture. In order to provide a 

thorough understanding of the interior geometry, some efforts 

depend on creating statically models [13, 14]. Many works 

have been suggested based on RGB-D sensors since their 

emergence, such as Kinect cameras, which offer depth 

information in addition to color information about their 

surroundings. Indoor robot navigation makes extensive use of 

these cameras [15]. An indoor objects detection for indoor 

robots navigation-based method was proposed in the study by 
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Jia et al. [16]. 

The area of indoor navigation has attracted a large number 

of academic scholars. Researchers employ SLAM method for 

localization approaches since it is a powerful component [17]. 

Researchers have tackled the difficult task of developing 

reliable indoor object recognition systems for both visually 

impaired and sighted people's navigation needs. Because of 

factors such as elaborate décor, varying lighting conditions, 

and significant occlusion, object detection problems become 

more problematic in interior contexts. 

The challenge of indoor object detection lies not only in 

properly localizing items but also in categorizing them from 

input photos or videos. This is a particularly difficult topic for 

us to solve since our work is tailored to a certain group of 

people: those who are blind, partially blind, or seeing. To aid 

these people in exploring their interior environments, we need 

to create an application that can recognize objects extremely 

well. 

The navigation of mobile robots relies heavily on the 

development of a reliable object detecting system. The authors 

[18] provide a multi-model place classification system that 

mobile robots may employ to correctly detect interior 

locations and determine semantic class categories. 

Deep learning algorithms have been the focus of a lot of 

attention from computer vision experts as of late. Many 

proposals utilizing deep learning and DCNN architectures 

have been made in light of this reality. The authors [19] put 

forward a convolutional neural network (CNN)–based system 

for indoor item identification. The Fragments of Videos (Fov) 

dataset and the public indoor dataset were utilized to train the 

model. To aid the visually handicapped, Bhandari et al. 

presented an object identification and detection system in 

study by Bhandari et al. [20]. Deep learning methods were 

utilized in the development of this application. 

One of the most difficult and complex issues in the world of 

artificial intelligence is object detection and recognition. 

Indoor mobile robot navigation finds this job highly handy. 

The authors [21] suggest a method for classifying three-

dimensional objects using a hybrid of convolutional and 

recursive neural networks. Learned features and 3D RGB-D 

picture classification are the system's strong suits. 

There are two main types of DCNNs used for object 

detection tasks: one-stage and two-stage. Two-stage detectors, 

like Faster-RCNN [22] and Mask-RCNN [23], have two stages. 

In the first stage, they use region proposal networks (RPN) to 

extract ROIs from input images. Then, in the second stage, 

they classify objects and locate their positions using bounding 

box regression. Results from object detection exercises 

showed that this sort of detector performed very well and 

efficiently. Having said that, two-stage detectors are tedious 

and resource-intensive. 

The one-stage object detectors, such as SSD [24], YOLO 

family [25-27], and RetinaNet [28], handle the detection issue 

as a simple regression problem and only conduct detection on 

one stage. 

Comparing the suggested indoor object detection 

technology to current best practices yields promising results. 

In addition to the proposed detection method, we include a 

new indoor object dataset in this study for training and testing 

purposes. This dataset includes new indoor landmark items 

that are highly recommended for navigation by both sighted 

and blind people, and it also includes a variety of demanding 

settings. We address hazardous circumstances so that people 

who are blind or have other mobility impairments may 

navigate more safely as part of our job. 

Various works have been proposed in the literature that 

address the problem of indoor objects detection but almost 

none of them can detect a set of 25 indoor objects highly 

valuable for blinds and visually impaired mobility. 

The proposed modification of the YOLOv3 architecture by 

replacing the Darknet-53 backbone with MobileNet V1 

represents a significant advancement in the field of object 

detection. Traditional state-of-the-art methods, such as those 

using the original YOLOv3 with Darknet-53, excel in 

accuracy but often fall short in terms of computational 

efficiency and real-time applicability, particularly on 

resource-constrained devices. In contrast, MobileNet V1, 

designed for lightweight applications, reduces the 

computational burden through depthwise separable 

convolutions while maintaining competitive accuracy. This 

modification results in a faster and more efficient object 

detection system that is well-suited for real-time applications, 

including those assisting visually impaired users in navigating 

indoor environments. 

 

 

3. DATASET COLLECTION 

 

Accurate and robust item detection and identification 

systems rely on data collecting and labeling. In addition, there 

is a labor-intensive challenge in annotating a large amount of 

data. 

Heavy occlusions, variable lighting conditions, complicated 

backgrounds, multiple points of view, etc. are just a few of the 

hard aspects that the suggested dataset takes into consideration 

in order to create extremely robust detection algorithms, in 

contrast to the existent indoor datasets. We also want to 

mention that the suggested dataset has a lot of variances both 

between classes and within them, which is great for 

developing new accurate detectors. One example of inter-class 

variance is shown in Figure 1. 

The most novel aspect of the proposed dataset is its 

treatment of previously unrecognized landmark indoor objects 

and extremely risky scenarios; these are addressed in an effort 

to develop safer detection systems that can assist the visually 

impaired and the blind with indoor navigation. 

The various items and decorations that make up indoor 

scenery (such as doors, signs, stairs, elevators, hallways, etc.) 

make it very different from outside landscape. 

In the accompanying picture, we can see that the suggested 

indoor dataset records a large amount of intra-class variance 

among the doors. A wide variety of door styles, sizes, colors, 

and textures are available. Additionally, the doors included in 

the proposed project come in a variety of materials, including 

wood, iron, and glass. Additionally, doors are photographed 

from various angles and with various attitudes, with some 

doors open and others closed. Our suggested indoor object 

dataset is well-suited for training and testing new indoor object 

detectors due to all these questions. 

 

 
 

Figure 1. Inter-class variation 
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What makes the suggested indoor dataset unique is its focus 

on: 

- Invariance with Light Intensity: this foundation offers a 

wider range of photos captured in varying lighting conditions. 

The items in this base are captured from diverse angles, thus 

they remain invariant to strict geometric change. 

- The occlusion effect, in which some or all of an object's 

surface is obscured. 

- The accessibility of necessary items for individuals with 

vision impairments and other disabilities. To make sure the 

visually impaired can safely go downstairs, we've highlighted 

potentially hazardous circumstances. 

- The ability to make decisions is given to the sight 

challenged by seeing visuals of crossings and corral 

intersections. 

- Problems with safety caused by the presence of 

impediments in the hallways. 

- 11000 photos taken at various spots around the structure 

in August 2019. There are twenty-five different types of 

internal items. In order to create new indoor object 

identification systems, convolutional neural networks will be 

trained using this database. 

- A With a resolution of 4032×3024 pixels, the suggested 

database displays pictures. 

Two additional facts are considered in this database, which 

gives it its uniqueness: first, the spatial relations between the 

items in the scene, and second, the various actions that may be 

done to these things, such as the relationships between objects 

and VIPs. 

Gathering data in a variety of lighting circumstances and 

against a complicated image background, this collection of 

acquired photographs includes several characteristics and 

strengths, guaranteeing higher resilience when recognizing 

these items using a detection system. 

The significant level of inter-class variety provided by our 

picture library is one of its strengths. For example, standard 

doors and elevator doors are examples of extremely similar 

classes. Figure 2 below illustrates the intra-class variance with 

an example. 

When visually impaired people are walking within 

buildings, there are 25 crucial classes that must be identified. 

These classes include fire extinguishers, doors, stairs (both up 

and down), signs, windows, and more. All of the item types 

stored in our database are summarized in Table 1. 

 

 
 

Figure 2. Intra-class variation example 

 

 

Table 1. Classes names 

 

Light Switch 

fire extinguisher trash bin 

door printer 

person heater 

elevator microwave 

showcase Plant 

exhibition table window 

exit disabled exit 

chair water dispenser 

table drink dispenser 

elevator wc 

stairs security button 

confidence zone podotactile tape 

 

The suggested indoor dataset is made up of a variety of 

11,000 photos taken within buildings, each comprising 25 

landmark items that are vital for visually impaired and blind 

people to navigate their way around indoors on a daily basis. 

This dataset is ideal for building effective indoor object 

recognition systems, since it contains fully-labeled data that 

can be used to train and evaluate deep learning models. Both 

visually impaired and sighted people are expected to benefit 

greatly from this resource. 

In order to facilitate their movement within enclosed spaces 

such as medical offices, classrooms, libraries, and hospitals, 

among others. 

Using the acquired information, a brand-new indoor object 

recognition system will be tested to see how well it helps both 

visually impaired and sighted people navigate. With its multi-

level object rightness, the suggested dataset is a step in the 

correct direction toward new applications that can aid a large 

group of people who are blind, partially blind, or sighted. 

 

 

4. PROPOSED APPROACH FOR INDOOR OBJECT 

DETECTION 

 

Accessing new locations presents a number of challenges 

for the visually impaired as they go about their everyday lives. 

One of the main areas of ongoing study in computer vision and 

AI is the detection of interior objects from input videos and 

photos. New deep learning approaches successfully handle the 

demanding problem of indoor object identification and 

recognition, which is one of the most important areas of 

computer vision. 

For the sight impaired, navigating inside spaces, 

particularly unfamiliar ones, may be a daunting endeavor, 

especially without assistance. In order to tackle this problem, 

several different approaches have been suggested. 

Indoor navigation is a delicate and difficult topic for the 

visually handicapped. In this paper, we provide a novel 

method for detecting objects within buildings using robust 

deep learning models to guarantee them a safer and more 

autonomous navigating experience. Many things and barriers 

might pose a threat to the safety of a visually impaired person 

when they navigate interior spaces. A visually impaired person 

may face several perilous scenarios, including the inadequacy 

of a stairway, when exploring unfamiliar interior spaces. We 

suggest building a model of a visual navigational assistance 

for the visually handicapped using deep learning techniques, 

namely convolutional neural networks (CNN), to address 

these risky situations in this course. 
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Figure 3. Depthwise separable convolution block 

 

In the field of artificial intelligence, deep learning 

techniques have become game-changers. picture and video 

processing, object detection, natural language comprehension, 

speech recognition, and picture classification are just a few of 

the computer visions jobs that heavily utilize it. 

Our suggested architecture is an indoor object detection 

system built on top of a tweaked YOLOv3 [27]. We see that 

Darknet serves as the foundation for feature extraction in the 

original YOLOv3 versions [27]. An end-to-end DCNN forms 

the basis of the suggested indoor object detection system. 

Feature extraction and detection are the two primary 

components of the proposed study. We employed the 

MobileNet v1 architecture [29] as a foundation for feature 

extraction and to guarantee a mobile implementation of the 

suggested method. Due to its smaller size in comparison to 

other DCNN models, the MobileNet [29] architecture is well-

suited for use in mobile applications. Depthwise separable 

convolution is a new feature in MobileNet architecture. Every 

color channel undergoes a singular convolution. Obtaining a 

small, lightweight model is greatly facilitated by using these 

convolution types. An iterative process of 3×3 depthwise 

convolution, batch normalizing, and rectified linear unit 

(RELU) is comprised of the depthwise separable convolution. 

This is followed by 1×1 pointwise convolution, batch 

normalization, and RELU. A depth-wise separable 

convolution block is shown in Figure 3. 

The number of parameters in the model is drastically 

reduced using depthwise separable convolution. As opposed 

to the 1x1 convolution used by pointwise convolution, each 

input channel in depthwise convolution is subjected to a 

separate filter. Combining the values of the input channels is 

the fundamental distinction between normal convolution and 

depthwise convolution. As an example, a one-channel output 

feature map is the consequence of applying a depthwise 

convolution across the features map to an input picture with 

three channels. Following a depthwise convolution in 

MobileNet architecture, a custom activation layer called 

RELU 6 is used to mimic an activation value of 6. The 

following equation is used to calculate the activation of RELU 

6. 

y=min(max(0,x),6) 

 

If x is an input, then y is the result. 

Using a 1×1 kernel size for pointwise convolution is the 

second new feature introduced by the MobileNet design. The 

goal of this convolutional layer is to generate new features by 

merging the output feature map. We get the depthwise 

separable convolution block by merging the depthwise and 

pointwise convolutions. Figure 4 shows the distinctions 

between the three convolutional layers utilized by MobileNet. 

 
 

Figure 4. Different types of convolutions used in MobileNet 

architecture 

 

When compared to normal convolution, the depthwise 

separable convolution block is both quicker and uses less 

computing resources while still performing the same purpose. 

The initial hidden layer of a MobileNet architecture, which is 

immediately after the input picture, uses a conventional 

convolution. At the end, it includes an average pooling layer 

and a series of depthwise convolution locks. 

Using an end-to-end DCNN architecture, we introduce a 

novel framework for indoor item detection and recognition. As 

a DCNN, we employed an adaptation of the YOLOv3 

architecture [27]. 

To address object detection challenges, YOLOv3 

introduces a one-stage deep convolutional neural network. 

There are two primary components to the YOLOv3 

architecture: 

1) A component for feature extraction, which is employed 

to extract crucial characteristics from input photos. 

2) Detection component: the section that uses bounding 

boxes to forecast class categories and their positions in the 

input pictures. 

One advantage of YOLOv3 over competing models is that 

it can forecast both the position and class of an item at the same 

time. It creates bounding boxes with dimensional clusters as 

the "anchors" so it can make predictions about what items are 

in the input photos. The hole identification problem is thus 

treated as a regression problem by YOLOv3. The input picture 

is partitioned into cells that are S×S grids. In YOLOv3, each 

cell is limited to testing a specific number of anchors and 

making one object prediction. The YOLOv3 algorithm can 

forecast the bounding box of each grid cell. In which the 

objectness (confidence) of each bounding box is linked to it. 

Whether or whether the bounding box contains an item is 

determined by this word. With its YOLOv3 design, you may 

additionally anticipate C class probabilities, or one for every 

possible class. Each category's probability can take on a value 

between zero and one. In addition, while making a forecast, 

the total of all the probabilities for the C classes is 1. A 1×1 

convolution layer (an independent logistic classifier) is used to 

predict the localization of each item, including its bounding 

box and class probability. The YOLOv3 architecture produces 

an output shape that looks like this: 1×1(B×(4+1+C)), where 

1×1 is the convolution layer, B is the number of bounding 

boxes that can be detected by each grid cell, '4' is the 

coordinates of the bounding boxes (tx, ty, tw, th), 1 is the 

object score for each grid cell, and C is the number of classes. 

Three-dimensional item sizes (small, medium, and large) are 

anticipated by the YOLOv3 design. Our proposed method 

made use of a total of 25 class numbers and 2 boxes each scale, 

for a total of 6 boxes. To that end, we suggest an output shape 

of 1×1(2×(4+1+25)). The objectness score is assigned by the 

YOLOv3 architecture for every bounding box that is extracted. 

The objectness score is a measure of the likelihood that an 

object is included inside the grid. Objectness score in 
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YOLOv3 architecture is computed not with a softmax layer 

but with an independent logistic classifier. Decrease the 

computational complexity of the detection procedure 

significantly by utilizing the independent logistic classifier. 

Indoor object detection's full workflow is shown in Figure 5. 

When compared to previous models of neural networks, 

YOLOv3 demonstrates superior capability in identifying 

objects of many sizes. Figure 6 shows that YOLOv3 uses an 

FPN structural adaptation to guarantee detection on small, 

medium, and large sizes. A bottom-moving FPN-like structure 

down-samples the picture by 2. It improves accuracy as well. 

In order to upsample the picture, a structure similar to an FPN 

also uses the top-down movement. Because of this change, the 

localization precision is improved. 

The following stages are used to achieve the detection at 

three scales: 

- First step: (large object detection) Making an object 

presence prediction using the feature extraction backbone's 

final feature map. 

- The second step, "medium object detection," entails 

combining two feature maps that display things of a similar 

size and then using a convolution to forecast the existence of 

objects of a medium size. 

 

 
 

Figure 5. Overall pipeline of the indoor object detection 

method 

 

 
 

Figure 6. FPN-like structure used in YOLOv3 architecture 

 

 
 

Figure 7. Bounding box technique used in YOLOv3 

 
 

Figure 8. Output shape of the proposed indoor object 

detection system 

 

- Third Step: Detecting Small Objects. 

Taking the feature map from the convolution layer in step 2 

and upsampling it by 2; then, merging the two feature maps, 

one acquired via a bottom-up approach and the other from a 

top-down one. Predicting the whereabouts of tiny items by 

using a convolution on the generated feature map. 

The coordinates (tx, ty, tw, th) of each boundary box are 

given by itself. The center's coordinates, tx and ty, make up 

the bounding box (bbox). The width offset from the bbox 

center is denoted by tw, while the height offset is th. Given 

that cx and cy represent the coordinates of a grid cell in the 

top-left corner of the feature map, the projected parameters at 

the end are bx, by, bw, and bh. The following equations are 

used to generate these parameters: 

 

bx=σ(tx)+cx 

by=σ(ty)+cy 

bw=pwet
w 

bh=phet
h 

 

where, 

- σ is the sigmoid function σ(x)=1/(1 + 𝑒−𝑥). 
- the top-left corner of the bbox has an anchor 

coordinates pw and ph. 

 

Figure 7 provides how the bounding box coordinates can be 

calculated according to the YOLOv3 architecture. 

Take the following input image: 

((52×52)+(26×26)+(13×13))×2=6838 bboxes. This is an 

example of how the suggested detection method predicts 

boxes at three scales. To lessen it, the objectness ratings are 

used to filter the bboxes using a predefined threshold. As a 

second point, non-maximum statistics are delayed (NMS) 

when compared to the ground truth. Figure 8 present the output 

shape of the proposed system. 

We consider these factors in order to design a strong and 

efficient indoor object detecting system: 

(1) Different kinds of illumination. 

(2) There is a lot of variance both inside and between classes. 

(3) Stay away from dangerous circumstances. 

(4) Look for new signs indoors. 

(5) Be careful with occlusion, forms, and textures. 

(6) An alternative vantage point of the interior sign. 

Both visually impaired and sighted people rely on indoor 

items as markers while navigating and finding their way 

around within buildings. Consequently, a crucial part of 

navigation assistance is accurate and fast interior item 

identification. 

 

 

5. EXPERIMENTS AND RESULTS 

 

A combination of high detection accuracies and real-time 

processing is necessary to construct a reliable indoor object 

2716



 

detection system. We present a novel indoor object 

identification system that is based on deep learning *. We're 

going above and beyond to create an indoor object detection 

system that both visually impaired and sighted people can use 

to better explore their immediate environs and take part in 

everyday activities. Researchers ran tests on the new indoor 

object dataset, both for training and for testing purposes. We 

highlight that the suggested dataset is ideal for interior 

navigation aid, as it comprises 11,000 photos taken indoors 

and include 25 indoor landmark items. Also, previous datasets 

didn't take the additional interior landmark items that the 

suggested dataset offers into account. There are a number of 

challenging situations presented by the suggested dataset, 

including occlusion, considerable intra-and inter-class 

variance, varying lighting conditions, many perspectives, and 

so on. 

We split the suggested dataset in half, using half for training 

and half for testing the network, so that we could carry out the 

experiments as planned. In addition to using ADAM [30] to 

tune the network, we trained with 7300 photos and tested with 

3700 images. 

We used a batch normalization size of 16 and trained the 

DCNN models for 30 epochs, each of which included 476 

iterations. The suggested dataset contains photos with a 

resolution of 4032 by 3024 pixels. The suggested indoor object 

identification program uses a 224×224 picture resizing during 

training. The suggested trials are executed on an HP desktop 

computer that has a 12-gigabyte graphics processing unit, an 

Intel Xeon E5-2683 v4 central processing unit, and a Tesla 

K40C graphics card. The Keras framework, which provides a 

high-level interface for programming neural networks, was 

used to implement the whole work. Mean average precision 

(mAP) was the metric used to evaluate the suggested indoor 

object identification system. The code for the system was 

developed using the following tools: python 3.6 setup, 

TensorFlow [31] 1.13, NVIDIA CUDA toolkit 10.0, and the 

deep learning library CUDNN 7.0. 

This study tackles the issue of blind and disabled people 

navigating interior spaces securely, avoiding hazards and 

impediments on the way to their goals. We put the suggested 

detection method through its paces using our multi-object 

dataset. We suggested this dataset to address extremely 

difficult and risky circumstances that can be avoided by both 

visually impaired and sighted people when navigating. Our 

findings lead us to conclude that the suggested interior object 

detection system significantly improves the safety of indoor 

navigation for visually impaired and those without sight. 

Table 2 indicated that promising results were obtained for 

every category of suggested interior goods. Notably, we 

address novel indoor classes that have not been investigated 

using state-of-the-art methods, but which are highly regarded 

for interior navigation support for the visually impaired and 

the blind. Our detection precisions were good across the board 

for indoor class categories. The overall mean average accuracy 

(mAP) for the test dataset was 89.78%, which is worth noting. 

In order to study the efficiency of the proposed system 

results and performances, various evaluation metrics have 

been adopted in this study. The following equations details the 

different evaluation metrics used. 

 

TP TN/ FP FN TP TNAccuracy = + + + +  (1) 

 

Precision =TP / FP+TP  (2) 

 

TP / FN TPRecall = +  (3) 

 

Both visually impaired and sighted people will find the 

proposed study particularly useful in expanding their 

exploration of their interior environments. Both visually 

impaired and sighted people can use our proposed work to 

identify items within buildings at a rate of up to 59 frames per 

second (FPS). 

 

Table 2. Per-class detection obtained results 
 

Class Window Door Person Light Switch Showcase Exhibition Table Exit Stairs Chair 

AP (%) 87.52 89.96 91.56 84.67 88.63 89.31 88.96 90.16 93.65 

Class table 
Confidence 

zone 
Security button Podotactile tape Trash bin Water dispenser Heater sofa  

AP (%) 86.32 89.63 87.59 86.54 87.68 93.65 94.36 89.21  

Class microwave plant 
Fire 

extinguisher 
Printer Disabled exit wc Elevator 

Drink 

dispenser 
 

AP (%) 88.34 89.96 91.38 92.36 89.36 89.65 89.69 94.38  
 

Table 3. Per-class detection accuracies compared to our previous work [7] 
 

Class Name Window Elevator Door Trash Bin Stairs Security Button Table Heater Chair Light Switch 

Previous work [7] 59.83 77.58 96.94 80.83 69.63 60.47 81.17 76.63 77.73 44.97 

Proposed 87.52 77.58 89.96 87.68 90.16 87.59 86.32 94.36 93.65 84.67 
 

Table 4. Evaluation metrics results comparison between the baseline version and the proposed improved version of YOLOv3 
 

Method Accuracy Precision Recall 

Baseline 85.23 84.45 82.96 

Proposed 89.78 90.32 87.97 
 

Table 5. Per-class detection results comparison with results obtained in the previous study [19] 
 

Indoor Object Name Method [19] (Indoor AP %) Ours (Proposed Dataset AP %) 

door 42.9 89.96 

chair 72.6 93.65 

table 46.2 86.32 
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The findings from our prior work [7] according to Table 3 

and the results from the previous study [19] are compared with 

the per-class detection accuracies in Tables 3 and 4. Mean 

average accuracy (mAP) was the statistic we settled on for 

evaluation. As a measure of detection accuracy, average 

precision (AP) shows how well each class scored. Table 4 

provides a comparison between the obtained results of the 

baseline architecture of YOLOv3 and the proposed improved 

version. 

As presented in Table 4, the proposed improved version 

demonstrates better evaluation metrics performances 

compared to the baseline version of YOLOv3 network. This 

result empowers the use of MobileNet v1 as a network 

backbone instead of using darknet 53. 

Importantly, the proposed indoor object identification 

system was trained on tough pictures and novel classes of 

things that are important for both blind and sighted people's 

indoor navigation, but which were not included in the state-of-

the-art datasets. Despite this, we achieved quite encouraging 

detection results. In comparison to other studies, our suggested 

approach achieves better identification accuracies across the 

board for most class items. Table 5 presents a comparison 

between the obtained results for 3 main indoor classes and the 

state-of-the-art works. 

 

 

6. CONCLUSION 

 

The proposed system utilizes deep learning techniques to 

identify objects inside a building with multiple labels. While 

navigating indoor spaces, the suggested indoor object 

detection system alerts both visually impaired and sighted 

users to a variety of potential hazards. An updated indoor 

object dataset with 11,000 photos of 24 indoor landmark items 

was generated for the purpose of training and testing the 

suggested work. A robust and accurate detector must be built 

to handle the several demanding situations presented by the 

images in the dataset. Visually impaired and visually impaired 

people alike will find a wealth of useful information in the 

specified dataset. According to the outcomes, our suggested 

approach for detecting objects within buildings is quite 

efficient and accurate. In order to enhance the quality of life 

for those who are blind, visually impaired, or partly impaired, 

the proposed study employs deep learning techniques to help 

them avoid hazards and get a full understanding of items and 

their surroundings. The performance of the object detection 

system may be influenced by the bias present in the dataset 

used for training. Addressing dataset bias and ensuring diverse 

representation of indoor environments and objects is essential 

for improving the robustness and generalization capabilities of 

the model. As future works, it was suggested to develop 

mechanisms for the system to adapt and learn from user 

feedback over time can improve its performance and usability. 

However, a critical analysis of the results reveals some 

limitations. The dataset, while extensive with 11,000 photos of 

24 indoor landmark items, may harbor biases that could impact 

the model's performance across diverse environments. This 

bias could lead to reduced robustness and generalization 

capabilities, especially in varying indoor settings. Additionally, 

the static nature of the current model does not account for 

dynamic changes in the environment or user-specific 

variations. To address these limitations, future work should 

focus on expanding the dataset to include a broader range of 

objects and environments, thus minimizing bias. 
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