
Classification of Satellite Images Using a Deep Learning-Inspired Hybrid Novel Approach

Bihari Nandan Pandey* , Mahima Shanker Pandey

Department of Computer Science & Engineering, Sunrise University, Alwar 301028, India

Corresponding Author Email: bnpanday@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410526 ABSTRACT

Received: 2 October 2023

Revised: 5 March 2024

Accepted: 20 August 2024

Available online: 31 October 2024

Satellite imagery is crucial for disaster assistance, law enforcement, and environmental

monitoring. Some users need to identify facilities and items in photographs manually.

Automation becomes essential when there are large areas to search and few available

analysts. However, the problem can only be fixed by increasing the precision of existing

object identification and categorization methods. The "deep learning" subfield of machine

learning has demonstrated promising results for automating specific tasks. Using

convolutional neural networks, it was able to understand images successfully. In this work,

we use high-resolution, multi-spectral satellite photos to solve the problem of identifying

objects and infrastructure. In this paper, we describe a deep-learning system for labeling

objects. In this research, we make use of the Satellite Image Classification Dataset-RSI-

CB256. This dataset uses Google Maps images and sensors to create four distinct categories.

In this study, a hybrid model is proposed, which achieves an accuracy of 98.96%.

Keywords:

satellite images, hybrid techniques,

artificial intelligence, machine learning,

CNN, SVM

1. INTRODUCTION

In machine learning, deep learning refers to models that use

numerous processing layers to create progressively more

abstract input representations. Combining massive neural

network models, convolutional neural networks (CNNs), with

robust graphics processing units has shown astounding

success in object identification and categorization (GPUs).

The annual ImageNet Large Scale Visual Recognition

Competition [1] for object detection and classification in

pictures has been dominated by CNN-based algorithms since

2012. As a result of this breakthrough, several big IT firms

have already implemented CNN-based products and services

[2], including industry heavyweights like Google, Microsoft,

and Facebook.

Layers of processing code make up a convolutional neural

network. The picture characteristics are detected via

convolution filters, one for each layer. Feature detectors in the

first layers resemble Gabor-like and color-blob filters, while

those in the latter layers take the shape of convolutional neural

networks. In contrast to earlier techniques such as SIFT [3] and

HOG [4], the algorithm designer is not required to develop

feature detectors when using CNNs. Over time, the network

trains itself to recognize specific traits and improves its ability.

Successful CNNs from the beginning had less than ten

layers and were intended for tasks like reading handwritten

postal codes. There were five levels in LeNet [5], whereas

AlexNet had eight [6]. Since then, complexity has gradually

increased. VGG emerged in 2015 with 16 layers [7]; in 2016,

Google released Inception with 22 layers [8]. Newer iterations

of Inception, such as ResNet (152 levels) and DenseNet (161

layers), add even more layers.

CNNs need tiny, fixed-size pictures to maintain a tolerable

processing time. In contrast to Inception [8, 9], ResNet [10]

and DenseNet [11], can handle photographs as large as

299×299. Advanced GPUs offer the processing power needed

for such massive CNNs. Further progress in deep learning has

been fueled in part by open-source deep learning software

frameworks like TensorFlow [12] and Keras [13], as well as

powerful GPUs.

Deep learning often involves cropping and warping pictures

to fit [14]. These processes preserve important visual details

for typical images. On the other hand, objects and facilities in

satellite photos may be considerably bigger than they seem in

regular photographs. Places like airports and dockyards may

span tens of thousands of pixels. More details are needed when

these vast photos are downsized to 224×224 or 299×299 pixels.

Aeroplanes on a runway or container cranes at a shipyard are

two examples of such distinctive elements. Even if you tried

to crop the image down to size to preserve detail, you'd lose

too much of the picture.

2. LITERATURE REVIEW

Several picture datasets containing annotations, as well as

related detection and classification efforts, have recently

emerged. Land cover categorization and structure recognition

have dominated deep learning's applications to remotely

sensed images. For instance, the UC Merced Land Use Dataset

has 2100 photographs of the United States taken from the air.

Cartography of the Earth [15, 16]. The ground sample distance

per pixel in these 256×256 photos is 0.3 metres. Among the 21

categories are storage tanks, tennis courts, and more typical

land uses like agriculture, roads, and water. One study found a

98.5 percent accuracy rate in classifying UC Merced photos

Traitement du Signal
Vol. 41, No. 5, October, 2024, pp. 2529-2538

Journal homepage: http://iieta.org/journals/ts

2529

https://orcid.org/0000-0002-1152-2977
https://orcid.org/0000-0002-8075-5854
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410526&domain=pdf

into land cover categories using the VGG, ResNet, and

Inception CNNs [17-19]. Nevertheless, this dataset has severe

limitations in terms of scope, classification depth, and

geographic coverage.

High-resolution Digital Globe satellite photos of five cities

and building footprints make up the SpaceNet dataset [20].

Convolutional neural networks (CNNs) have been taught to

extract building footprints from photos [21]. In terms of

training a classifier, this dataset has several severe limitations.

Further remote sensing data sets are included in the previous

study [22]. They need the global corpus of hundreds of

thousands of photos to train a robust image classification

algorithm.

Satellite image classification organises pictures by an object

or semantic meaning into three primary categories: techniques

based on standard features, methods based on high-scene

features, and hybrid approaches [23]. Mid-features-based

methods work well for complex images [24]. Plans with many

qualities best handle complex visuals. CNN is a popular deep-

learning image-processing method [25].

"Deep Belief Network for classification" utilizing

Convolutional Neural Networks achieves 97.946 SAT4 and

93.916 SAT6 accuracy [26]. Ju et al. [27] investigated image

classification and identification ensemble techniques using

deep convolutional neural networks. Saikat Basu, Sangram

Ganguly, and others developed "DeepSat," a satellite image

learning system. The super learner, majority voting, and Bayes

Optimal Classifier are examples. Albert et al. [28] use deep

CNN-based computer vision and large-scale satellite imagery

to examine urban land use. A deep neural network does this

with data. To find ground truth land, they carefully use open-

source survey class designations. The Urban Atlas land

categorization dataset comprises 300 European cities and 20

land use types. They also show that deep representations using

satellite pictures of urban landscapes can compare cities'

communities. Metropolitan satellite photographs proved this.

Robinson et al. [29] created high-resolution population

estimates using satellite data and a deep-learning

convolutional neural network model. CNN algorithm trained

on one year of composite Landsat pictures predicts the US

population on a 0.01 by 0.01 grid. CNN model validation used

quantitative and qualitative methodologies. The quantitative

validation compared the proposed model's grid cell estimates

to many US Census county-level population estimations.

Qualitative validation directly evaluated model predictions for

satellite image inputs. The model illustrates how machine

learning algorithms can tackle social issues using unstructured

and remotely sensed data. The literature review is described in

Table 1.

Table 1. Summarized results of literature review

Reference Model Limitations Results

[30]
Adaboost, XGBoost, GBDT, LR,

DT, RF, SVM, NB, LR
The dataset is restricted

Recall=0.9699 and F1-score =0.9582, algorithm

shows the highest performance.

[31]
Neural Networks, NB, k-NN, DT,

and SVM

Control and sample coming close to

discovery cannot be told apart

Both kNN and SVM algorithms worked 95.56%

of the time.

[32] Boost XG
XGBoost cannot find antibiotic-resistant

k-mers
The model has a 95% accuracy rate.

[33] SVM, ANN, and kNN influencing how well algorithms perform
k-NN performed better, achieving an accuracy of

77.15%.

[34] ANN, NB, SVM, RF, and k-NN issue with overfitting RF fared better, with 97.57% accuracy.

[35]
GBDT, RF, DT, and adaptive

boosting methods

There wasn't much data gathered from

the surveillance system
The GBDT model's accuracy was 69%.

[36] NN, LB, RF, SVM, and GBM
Dose-response mechanisms limit risk

assessment methods
SVM fared better, achieving 89% accuracy.

3. DATASET USED AND PERFORMANCE MEASURE

The Satellite Image Classification (RSI-CB256) dataset

(https://www.kaggle.com/datasets/mahmoudreda55/satellite-

image-classification) combines Sensor data with a Google

Maps picture to form four distinct categories as: Cloudy;

Desert; Green; Water.

A collection of 5631 JPEG photos is used as training data.

Figure 1 shows the sample images of all four types of images.

The exam uses 80:20 images. Model performance is

measured by accuracy, precision, recall, and F1-score.

Model’s Accuracy (𝐴𝐶𝐶) =
𝑇𝑝+𝑇𝑓

𝑇𝑝+𝑇𝑓+𝐹𝑝+𝐹𝑛
 (1)

Model’s Precision (𝑃𝑟𝑒) =
Tp

Tp+Fp
 (2)

Model’s Recall (𝑅𝑒) =
Tp

Tp+F𝑛
 (3)

Model’s 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒×𝑅𝑒

𝑃𝑟𝑒+𝑅𝑒
 (4)

where, true positive, true negative, false positive, and false

negative, are represented by 𝑇𝑝, 𝑇𝑓 , 𝐹𝑝 and 𝐹𝑛 respectively.

Figure 1. Sample images

2530

4. ENSEMBLE DEEP NEURAL NETWORK FOR

SATELLITE IMAGE CLASSIFICATION

The suggested ensemble model combines layered

Convolutional Neural Network and SVM algorithm [30-34].

Figure 2 depicts the whole model.

Convolutional Neural Network (CNN) is used for

classification, one of the most popular technologies, as shown

in Figure 3. Each layer of CNN contains the following sub-

layers:

(1). Convolutional Layer (2). Completely Networked Layer

(3). The Pooling Layer (4). The Drop-out Layer (5). Linked

Dataset Classification Layer.

• Convolutional Layer

The convolution procedure is crucial to the convolutional

layer, which maps the input picture with a filter of size mm to

produce feature maps for the output. In equation form, the

result of the convolutional layer may be represented as

𝐴𝑛
𝑚 = 𝑓 (∑ 𝐴𝑘𝑛

𝑚−1

𝑘∈𝐿𝑛

∗ 𝑀𝑘𝑛
𝑚 + 𝐶𝑛

𝑚) (5)

where,

Results-based feature maps;

Cn: Bias term;

Ln: Input maps;

Mkn: Convolution kernel.

The final feature map's sophistication may be described as:

𝑁 =
(X − M − 2Y)

T
 (6)

Calculating Output Height/Length (N).

Height/Length Input X.

Filter size (M), padding (Y), and stride length (T).

The data may be saved via padding in this case. Eq. (7)

describes the padding:

𝑌 =
(𝑀 − 1)

2
 (7)

where, M is the size of the filter.

• The ReLU Layer

The convolutional process becomes more linear due to this

layer's contributions. Hence, a ReLU layer is connected to

each convolutional layer in the network. The most important

thing that needs to be done in this layer is to ensure that all

negative activations are set to zero and that the thresholding is

set to maximum (0, p).

Figure 2. Ensemble deep neural network

Figure 3. CNN architecture

2531

• The Max-Pooling Layer

This layer is responsible for producing the output in a

smaller size after the components of each block have been

maximized.

• Dropout Layer

During the training phase, this layer is used to remove input

components whose probability is less than a predetermined

threshold.

• The Batch Normalization Layer

To standardize the value of the activation layer, this layer

does a variety of mathematical operations, including

subtraction, division, shifting, and scaling. The Eqs. (8)-(11)

may be used to represent the batch normalized result, also

known as Bk:

𝐵𝑘 = D𝑂𝜃𝛼
× (𝐴𝑘)

≡ θ𝐴�̂� + 𝐷
(8)

where, �̂�k is the settling down of activation Ak.

�̂�𝑘 =
𝐴𝑘 + 𝑈𝐷

(𝜎𝐷
2 + 𝜀)1/2

 (9)

where,

ε: constant in nature;

UD: Mini-batch average;

σD
2: Minimal batch variance given by:

𝑈𝐷 =
1

𝑑
∑ 𝐴𝑘

𝑑

𝑘=1

 (10)

𝜎𝐷
2 =

1

d
∑ (Ak − UD)2

d

k=1
 (11)

• Completely Connected Layer

This layer links the neurons of the next layer to those of the

layer below it, creating a vector. The vector's dimensions

indicate class numbers.

• The Output Layer

At this layer, the softmax algorithm is used. The equation

that defines the softmax is as follows:

𝑃(𝑣𝑟|𝐴, 𝜃) =
𝑃(𝐴, 𝜃|𝑣𝑟) 𝑃(𝑣𝑟)

∑ 𝑃(𝐴, 𝜃|𝑣𝑟)𝑃(𝑣𝑟)𝑀
𝑛=1

 (12)

where, 0≤ 𝑃(𝑣𝑟 |A 𝜃)≤ 1 and ∑ 𝑃(𝑣𝑟|𝐴, 𝜃) = 𝑃(𝐴,𝑀
𝑛=1 𝜃|𝑣𝑟)

are the conditional and class prior probabilities. Eq. (13) may

also be:

𝑃(𝑣𝑟|𝐴, 𝜃) =
exp [dr(A, θ)]

∑ exp [𝑑𝑛(𝐴, 𝜃)]𝑀
𝑛=1

 (13)

written as follows:

𝑑𝑟 = ln(𝑃(𝐴, 𝜃|𝑣𝑟) 𝑃(𝑣𝑟)) (14)

The output of the layered CNN is used as inputs for the

regression model in the following way: The logistic regression

model is described as follows: In this section of the model, the

feature vector is represented by the letter x, and the outputs are

probabilities:

�̂� = 𝑃(𝑦 = 1|𝑥) (15)

The feature vector denotes each instance of an item that

belongs to the class, and each model is represented by one of

the RGB channels outlined in Eq. (16):

𝑛𝑥 = 𝑛ℎ + 𝑛𝑤 + 3 (16)

�̂� = 𝜎(𝑧) (17)

where,

𝜎(𝑧) =
1

1 + 𝑒𝑧
 (18)

The logistic function is expressed as z:

𝑧 = 𝑤𝑇𝑥 + 𝑏 (19)

Eqs. (20) and (21) express the loss and cost functions,

respectively:

𝐿(𝑦 ̂(𝑖), 𝑦(𝑖))) = −[𝑦(𝑖)𝑙𝑜𝑔𝑦 ̂(𝑖) + (1
− 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝑦 ̂(𝑖))]

(20)

𝐽(𝑤, 𝑏) =
1

𝑚
∑(

𝑚

𝑖=1

𝐿(�̂�(𝑖), 𝑦(𝑖))) (21)

where, m represents training examples.

The classification is provided by:

𝛿𝐿

𝛿𝑤
= (�̂�(𝑖) − 𝑦(𝑖))𝑥𝑗(𝑖)𝑎𝑛𝑑

𝛿𝐿

𝛿𝑏
= �̂�(𝑖) − 𝑦(𝑖) (22)

The feature vector is represented by j =1, 2, ..., nx.

The size of each picture is first normalized here in Figure 4

preprocessing so that it conforms to the criterion of 256 pixels

by 256 pixels. Python libraries are used to carry out identical

operations with the highest possible degree of precision. When

the data have been preprocessed, the appropriate acronyms are

affixed. Then the data are separated into the various classes

that will be utilized for testing afterwards.

Figure 4. Segmentation and classification

2532

The input layer depicts the picture fed into the CNN at the

beginning of the process. The image loaded into the computer

is denoted by the formula [height * width * many color

channels]. The value of the color channel indicates the kind of

picture; for example, the value channel=3 indicates an RGB

image. The same input is then run through a data

argumentation before being sent to the CNN for processing.

The argumentation is carried out using various procedures,

including cropping, rotation, and so on. Since the CNN model

requires a substantial quantity of data to provide accurate

results, the input data are augmented using some process that

generates more data to meet its requirements.

5. PROPOSED ENSEMBLE ALGORITHM

The algorithm is summarised in several steps:

Step 1. Define a function named def

generate_classification(data).

Step 2. Take Convolutional Size as cnn_svm = Conv3D (4,

32, 5, 1).

Step 3. Set parameter as cnn_svm.set_parameters.

Step 4. Take Input Size as input_shape = (batch_size,

data_length, input_dim).

Step 5. Output Shape as output_shape = (batch_size,

classification_dim).

Step 6. Set Output Type as output_type = 'linear').

Step 7. Set CNN_SVM to fit data cnn_svm.fit(data, True).

Step 8. Set Classification as classification =

cnn_svm.output.

Step 9. Return classification.

Table 2. SVM and CNN tuning parameter

SVM

Kernel RBF

Regularization (C) 1

Gamma (for RBF) 0.1

Class Weights 'balanced'

CNN

Architecture
Convolutional layers: 3, Dense

layers: 2

Activation ReLU

Dropout Rate 0.25

Batch Size 32

Learning Rate 0.001

Optimizer Adam

Input Image Size (256, 256, 3)

Ensemble

Combining Method Weighting Averaging

SVM Weight 0.4

CNN Weight 0.6

Training

Training/Validation

Split
80% training, 20% validation

Training Duration 100 Epoch

Validation Strategy K-Fold (5,10,20)

Evaluation

Metrics
Accuracy, precision, recall, F1-

score

Hyperparameter

Tuning

Grid search for SVM

parameters, random search for

CNN parameters

The ensemble of CNN and SVM models may be motivated

by the desire to combine the strengths of both approaches.

CNNs are proficient in feature extraction from images, while

SVMs are known for their strong classification capabilities.

Combining these two models in an ensemble could potentially

leverage the feature extraction power of CNNs and the

discriminative capabilities of SVMs, leading to improved

overall performance in tasks like image classification or object

recognition.

Tunning parameter used in this proposed model is shown in

Table 2.

6. RESULT ANALYSIS AND DISCUSSION

The investigation is done with GPU-based Google Co-Lab

and karas libraries written in Python. Experiments are carried

out within the scope of this study, with the batch size, epoch,

and learning rate all being subjected to change. The

investigation uses two different epoch sizes, 50 and 100, and

three different learning rates, namely 0.1, 0.001, and 0.0001.

Figure 5 shows the training sample images. The comparison

of the training loss to the validation loss, as shown in Figures

6 (a) and 6 (b), and the comparison of the training accuracy to

the validation accuracy, using 50 epochs and 0.0001 as the

learning rate, are shown. Figure 6 (a) shows the error rate

inversely proportional to the amount of model learning. When

there is an increase in model learning, there is a corresponding

drop in the error rate. As shown in Figure 6 (b), the model's

accuracy and the amount of learned information improve. The

accuracy of the model is around 98.97% of the time.

Figure 5. Sample training images

(a)

0

0.2

0.4

0.6

1 21 41 61 81 101

Train loss Vs Val_loss

Train_loss Val_loss

2533

(b)

Figure 6. (a) Loss associated with a learning rate of 0.0001

and 50 epochs; (b) Accuracy with learning rate 0.0001, 50

epochs

(a)

(b)

Figure 7. (a) Loss during 100 epochs at a learning rate of

0.0001; (b) Accuracy with learning rate 0.0001, 100 epochs

Figures 7 (a) and 7 (b) show the difference between the

training loss and the validation loss, as well as the difference

between the training and validation accuracy, with a learning

rate of 0.0001 epochs per second. Figure 7 (a) shows the error

rate inversely proportional to the amount of model learning.

When there is an increase in model learning, there is a

corresponding drop in the error rate. Figure 7 (b) illustrates

that the model's accuracy improves as the amount of learned

information increases. The accuracy of the model is around

98.90% of the time.

(a)

(b)

Figure 8. (a) Loss with learning rate 0.001, 50 epochs;

(b) Accuracy with learning rate 0.001, 50 epochs

These results show that the computing algorithm acts as a

primary role. For example, the weight correction used in the

learning rate is computed using a training parameter. Figures

8 (a) and 8 (b) demonstrate the contrast between training

loss/validation loss and training accuracy/validation accuracy

on 50 epochs and a 0.001 learning rate. Figure 8 (a) depicts the

error rate inverse to the learning of the model. Whenever

model learning increases, the error rate decreases. Figure 8 (b)

illustrates that the model accuracy increases as knowledge

increases. The accuracy of the model reaches 98.98%.

Figures 9 (a) and 9 (b) show the difference between training

loss and validation loss, as well as between training accuracy

and validation accuracy, with a learning rate of 0.001 on 100

iterations. The error rate inversely related to the learning of the

model is shown in Figure 9 (a). When there is an increase in

model learning, there is a corresponding drop in the error rate.

Figure 9 (b) illustrates that the model's accuracy improves as

the amount of learned data increases. The accuracy of the

model is around 98.99% of the time.

Figures 10 (a) and 10 (b) compare training loss/validation

loss and training accuracy/validation accuracy on 50 epochs

and 0.001 learning rate. Figure 10 (a) depicts the error rate

inverse to the learning of the model. Whenever model learning

increases, the error rate decreases. Figure 10 (b) illustrates that

the model accuracy increases as learning rises. The accuracy

of the model reaches 98.98%.

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train loss Vs Val_loss

Train_loss Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51

Train loss Vs Val_loss

Train_loss Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

2534

(a)

(b)

Figure 9. (a) Loss with learning rate 0.001, 100 epochs;

(b) Accuracy with learning rate 0.001, 100 epochs

Figures 11 (a) and 11 (b) show the comparison between

training loss and validation loss at 100 epochs and 0.01

learning rate. Figure 11 (a) shows the error rate as a function

of model learning. Error rates go down as model learning

speeds up. Figure 11 (b) shows that the model becomes more

accurate with more training. The model achieves a 98.99%

degree of accuracy.

(a)

(b)

Figure 10. (a) Loss with learning rate 0.001, 50 epochs;

(b) Accuracy with learning rate 0.01, 50 epochs

(a)

(b)

Figure 11. (a) Loss with learning rate 0.01, 100 epochs;

(b) Accuracy with learning rate 0.01, 100 epochs

Table 3 shows that a dataset and meaningful epoch and

learning rate settings were used to train the model. The dataset

and the relevant epoch value affect the experiment's results.

An exact outcome may be seen in the value of the critical

epoch. Several epochs and learning rates are used in the

investigation. This paper provides results for two different

-0.1

6E-16

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train Loss Vs Val Loss

Train_loss

Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train_loss vs Val_loss

Train_loss Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train loss Vs Val_loss

Train_loss Val_loss

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Train_acc

Val_acc

2535

period lengths and three different learning rate settings. The

experiment results with two epochs and three learning rate

settings are shown in Table 3. The envisioned paradigm

contrasts with the gold standard classification model and CNN

based hybrid model. The results, summarized in Table 4, show

that the suggested model is superior to the alternatives. Table

5 shows the comparison with literature and other state of art

algorithms.

The results show that the suggested neural network

ensemble performs better than competing models. Accuracy,

F1, Recall, and precision value are only a few of the metrics

that have been compared.

Table 3. Tuning parameter values and accuracy

Dataset Size Dimension Epoch LR Accuracy (%)

5631 256×256 px

50 0.0001 98.97%

50 0.001 98.90%

50 0.01 98.98%

100 0.0001 98.99%

100 0.001 98.98%

100 0.01 98.99%

Table 4. Comparative analysis

 Model AUC CA F1 Precision Recall

K FOLD 5

SVM 0.9992 0.9856 0.9856 0.9857 0.9856

CNN 0.9997 0.9895 0.9895 0.9895 0.9895

Logistic Regression 0.9999 0.9929 0.9929 0.9929 0.9929

AdaBoost 0.9469 0.9208 0.9208 0.9208 0.9208

SVCNN (Proposed Model) 0.9997 0.9896 0.9896 0.9896 0.9896

K FOLD 10

SVM 0.9992 0.9856 0.9856 0.9857 0.9856

CNN 0.9997 0.9895 0.9895 0.9895 0.9895

Logistic Regression 0.9999 0.9929 0.9929 0.9929 0.9929

AdaBoost 0.9469 0.9208 0.9208 0.9208 0.9208

SVCNN (Proposed Model) 0.9997 0.9896 0.9892 0.9895 0.9895

K FOLD 20

SVM 0.9990 0.9853 0.9853 0.9853 0.9853

CNN 0.9997 0.9897 0.9897 0.9897 0.9897

Logistic Regression 0.9999 0.9934 0.9934 0.9934 0.9934

AdaBoost 0.9475 0.9217 0.9217 0.9218 0.9217

SVCNN (Proposed Model) 0.9997 0.9897 0.9897 0.9897 0.9897

Table 5. Comparative analysis with literature and other state of art algorithms

Reference Model Results

[30]
Adaboost, XGBoost, GBDT, LR, DT, RF, SVM, NB,

LR

Recall=0.9699 and F1-score =0.9582, algorithm shows the highest

performance.

[31] Neural Networks, NB, k-NN, DT, and SVM Both kNN and SVM algorithms worked 95.56% of the time.

[32] Boost XG The model has a 95% accuracy rate.

[33] SVM, ANN, and kNN k-NN performed better, achieving an accuracy of 77.15%.

[34] ANN, NB, SVM, RF, and k-NN RF fared better, with 97.57% accuracy.

[35] GBDT, RF, DT, and adaptive boosting methods The GBDT model's accuracy was 69%.

[36] NN, LB, RF, SVM, and GBM SVM fared better, achieving 89% accuracy.

 Proposed (CNN+SVM) 98.96%

7. CONCLUSION, LIMITATION AND FUTURE WORK

The discovery of Cloudy area, Desert area, Green area and

Water area is an exciting topic of study that has been

investigated using hybrid approach. This body of work

explores a further method of locating Cloudy area, Desert area,

Green area and Water area by using solid artificial intelligence

model. In this paper, we draw a comparison between various

models for the detection of Cloudy area, Desert area, Green

area and Water area by using the intensity of light (flux) along

with Artificial Intelligence techniques and Machine Learning

algorithms. In addition to that, an Ensemble-CNN model was

presented for the same thing. Our suggested model exceeds all

of them with an accuracy of 98.96%, but most portray good

outcomes. 98.96% and 98.97% in the K fold, correspondingly

5, 10, and 20.

This model classifies only four types of data only if there

will change in dataset, this model will not work properly.

In the future, one of our goals is to research additional

machine learning models and artificial intelligence methods to

locate Cloudy area, Desert area, Green area and Water area.

REFERENCES

[1] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521(7553): 436-444.
https://doi.org/10.1038/nature14539

[2] ImageNet, I.L.S.V.R.C. (2010). Large scale visual

recognition challenge (ILSVRC). http://www.image-

net.org/challenges/LSVRC.

[3] Lowe, D.G. (2004). Distinctive image features from

scale-invariant keypoints. International Journal of

Computer Vision, 60: 91-110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[4] Dalal, N., Triggs, B. (2005). Histograms of oriented

gradients for human detection. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR'05), San Diego, CA, USA, 1: 886-

893. https://doi.org/10.1109/CVPR.2005.177

[5] LeCun, Y., Boser, B., Denker, J.S., Henderson, D.,

Howard, R.E., Hubbard, W., Jackel, L.D. (1989).

Backpropagation applied to handwritten zip code

recognition. Neural Computation, MIT Press, 1(4): 541-

2536

551. https://doi.org/10.1162/neco.1989.1.4.541

[6] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

Imagenet classification with deep convolutional neural

networks. Advances in Neural Information Processing

Systems, Lake Tahoe, Nevada, 25.

[7] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv Preprint arXiv, 1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

[8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, USA, pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[9] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna,

Z. (2016). Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Las Vegas,

NV, USA, pp. 2818-2826.

https://doi.org/10.1109/CVPR.2016.308

[10] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, NV, USA, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

[11] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger,

K.Q. (2017). Dense connected convolutional neural

networks. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Honolulu, HI, USA, pp.

2261-2269. https://doi.org/10.1109/CVPR.2017.243

[12] Tensorflow: An open-source software library for

machine intelligence. https://www.tensorflow.org/,

accessed on Jan. 21, 2017.

[13] Keras, GitHub. https://github.com/fchollet/keras,

accessed on June 25, 2023.

[14] He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial

pyramid pooling in deep convolutional networks for

visual recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(9): 1904-1916.

https://doi.org/10.1109/TPAMI.2015.2389824

[15] “UC Merced Land Use Dataset,” University of California,

Merced.

http://weegee.vision.ucmerced.edu/datasets/landuse.htm

l.

[16] Yang, Y., Newsam, S. (2010). Bag-of-visual-words and

spatial extensions for land-use classification. In

Proceedings of the 18th SIGSPATIAL International

Conference on Advances in Geographic Information

Systems, pp. 270-279.

https://doi.org/10.1145/1869790.1869829

[17] Liang, Y., Monteiro, S.T., Saber, E.S. (2016). Transfer

learning for high resolution aerial image classification. In

2016 IEEE Applied Imagery Pattern Recognition

Workshop (AIPR), Washington, DC, USA, pp. 1-8.

https://doi.org/10.1109/AIPR.2016.8010600

[18] Saini, D., Garg, R., Malik, R., Prashar, D., Faheem, M.

(2024). HFRAS: Design of a high-density feature

representation model for effective augmentation of

satellite images. Signal, Image and Video Processing,

18(2): 1393-1404. https://doi.org/10.1007/s11760-023-

02859-7

[19] Pérez, A.F., Maghoul, P., Ashraf, A. (2024). A deep

learning approach to satellite image time series

coregistration through alignment of road networks.

Neural Computing and Applications, 36(7): 3583-3593.

https://doi.org/10.1007/s00521-023-09242-0

[20] SpaceNet on AWS. https://aws.amazon.com/public-

datasets/spacenet/, accessed on June. 25, 2023.

[21] Chartock, E., LaRow, W., Singh, V. (2017). Extraction

of building footprints from satellite imagery. Stanford

University Report.

[22] Cheng, G., Han, J., Lu, X. (2017). Remote sensing image

scene classification: Benchmark and state of the art.

Proceedings of the IEEE, 105(10): 1865-1883.

https://doi.org/10.1109/JPROC.2017.2675998

[23] Ciecholewski, M. (2024). Review of segmentation

methods for coastline detection in SAR Images. Archives

of Computational Methods in Engineering, 31(2): 839-

869. https://doi.org/10.1007/s11831-023-10000-7

[24] Zhang, F., Du, B., Zhang, L. (2014). Saliency-guided

unsupervised feature learning for scene classification.

IEEE Transactions on Geoscience and Remote Sensing,

53(4): 2175-2184.

https://doi.org/10.1109/TGRS.2014.2357078

[25] Zou, Q., Ni, L., Zhang, T., Wang, Q. (2015). Deep

learning based feature selection for remote sensing scene

classification. IEEE Geoscience and Remote Sensing

Letters, 12(11): 2321-2325.

https://doi.org/10.1109/LGRS.2015.2475299

[26] Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R.,

Karki, M., Nemani, R. (2015). Deepsat: A learning

framework for satellite imagery. In Proceedings of the

23rd SIGSPATIAL International Conference on

Advances in Geographic Information Systems Bellevue,

WA, USA, pp. 1-10.

https://doi.org/10.1145/2820783.2820816

[27] Ju, C., Bibaut, A., van der Laan, M. (2018). The relative

performance of ensemble methods with deep

convolutional neural networks for image classification.

Journal of Applied Statistics, 45(15): 2800-2818.

https://doi.org/10.1080/02664763.2018.1441383

[28] Albert, A., Kaur, J., Gonzalez, M.C. (2017). Using

convolutional networks and satellite imagery to identify

patterns in urban environments at a large scale. In

Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Halifax NS Canada, pp. 1357-1366.

https://doi.org/10.1145/3097983.3098070

[29] Robinson, C., Hohman, F., Dilkina, B. (2017). A deep

learning approach for population estimation from

satellite imagery. In Proceedings of the 1st ACM

SIGSPATIAL Workshop on Geospatial Humanities,

Beach CA USA, pp. 47-54.

https://doi.org/10.1145/3149858.3149863

[30] Zhang, P., Cui, W., Wang, H., Du, Y., Zhou, Y. (2021).

High-efficiency machine learning method for identifying

foodborne disease outbreaks and confounding factors.

Foodborne Pathogens and Disease, 18(8): 590-598.

https://doi.org/10.1089/fpd.2020.2913

[31] Min, H.J., Mina, H.A., Deering, A.J., Bae, E. (2021).

Development of a smartphone-based lateral-flow

imaging system using machine-learning classifiers for

detection of Salmonella spp. Journal of Microbiological

Methods, 188: 106288.

https://doi.org/10.1016/j.mimet.2021.106288

[32] Nguyen, M., Long, S.W., McDermott, P.F., Olsen, R.J.,

Olson, R., Stevens, R.L., Tyson, G.H., Zhao, S., Davis,

2537

J.J. (2018). Using machine learning to predict

antimicrobial minimum inhibitory concentrations and

associated genomic features for nontyphoidal Salmonella.

BioRxiv, 380782. https://doi.org/10.1101/380782

[33] Polat, H., Topalcengiz, Z., Danyluk, M.D. (2020).

Prediction of Salmonella presence and absence in

agricultural surface waters by artificial intelligence

approaches. Journal of Food Safety, 40(1): e12733.

https://doi.org/10.1111/jfs.12733

[34] Amado, T.M., Bunuan, M.R., Chicote, R.F., Espenida,

S.M.C., Masangcay, H.L., Ventura, C.H., Tolentino,

L.K.S., Padilla, M.V.C., Madrigal, G.A.M., Enriquez,

L.A.C. (2019). Development of predictive models using

machine learning algorithms for food adulterants bacteria

detection. In 2019 IEEE 11th International Conference

on Humanoid, Nanotechnology, Information

Technology, Communication and Control, Environment,

and Management (HNICEM), Laoag, Philippines, pp. 1-

6.

https://doi.org/10.1109/HNICEM48295.2019.9072907

[35] Wang, H., Cui, W., Guo, Y., Du, Y., Zhou, Y. (2021).

Machine learning prediction of foodborne disease

pathogens: Algorithm development and validation study.

JMIR Medical Informatics, 9(1): e24924.

https://doi.org/10.2196/24924

[36] Njage, P.M.K., Henri, C., Leekitcharoenphon, P., Mistou,

M.Y., Hendriksen, R.S., Hald, T. (2019). Machine

learning methods as a tool for predicting risk of illness

applying next‐generation sequencing data. Risk Analysis,

39(6): 1397-1413. https://doi.org/10.1111/risa.13239

2538

