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Traditional auscultation is used to determine certain pathological conditions related to 

internal organs utilizing cardiac, pulmonary, and intestinal sounds. However, this method 

relies heavily on the experience of the physician, which leads to non-repeatable subjective 

diagnosis. Automated analysis can be implemented by digitally recording organ sounds to 

address this limitation. The proposed system employs a convolutional neural network 

(CNN) model to determine the auscultated organ and subsequently applies digital filtering 

to the recorded raw signals based on the organ-specific frequency range. Additionally, the 

de-noised signals obtained can be transmitted to other smart devices via Bluetooth for further 

analysis. All the data acquisition, signal processing and learning steps were carried out in an 

embedded system, the Raspberry Pi 4 board. To achieve organ determination, the input of 

CNNs is obtained from the raw digital signals in the form of Mel-Spectrograms using the 

short time Fourier transform (STFT). The obtained time-frequency representations were fed 

into several pre-trained CNN architectures and compared in performance to a new CNN 

model derived from FISC-Net. The concept of tiny machine learning was employed in 

learning to enable real-time, low-power auscultation analysis on a portable and cost-efficient 

device, ensuring immediate feedback and enhanced patient privacy. The results showed that 

FISC-Netv1 surpassed other pretrained models by achieving a 90% accuracy rate 

demonstrating the effectiveness of the proposed system. Furthermore, the application of 

quantization awareness training reduced the learning model size by 4x without significantly 

compromising its performance. 

Keywords: 

digital stethoscope, heart sounds, lung 

sounds, bowel sounds, convolutional neural 

network, tiny machine learning 

1. INTRODUCTION

Conventional auscultation is the process of listening to the 

sounds originating from the organs of the body by means of an 

analog stethoscope [1]. The stethoscope is an acoustic medical 

device designed for the purpose of auscultation. It is typically 

utilized to listen to pulmonary and cardiac sounds, as well as 

to examine the intestines and blood flow in arteries and veins. 

Cardiac, pulmonary, and intestinal sounds serve to provide 

valuable information to medical practitioners, and thus assist 

in the diagnosis of various pathological conditions [2, 3]. 

The human body organs produce sounds at different 

intensities and frequency ranges. The heart mainly produces 

two sounds termed S1 and S2 in addition to S3 and S4 which 

tend to be less audible. The heart sounds occur within the 

frequency range 50-600 Hz [4]. They are produced by the 

opening and closing of the Atrioventricular and Semilunar 

valves which serve to regulate the direction of blood flow. The 

appearance of heart sound signals, visualized through 

Phonocardiograms, assist physicians in the diagnosis of 

certain diseases such as Aortic Stenosis, Mitral Stenosis, and 

Mitral Regurgitation [5]. The respiratory system produces 

three types of sounds: breath sound, voice sound, and 

adventitious sounds, each of which corresponds to a different 

frequency range. However, the overall frequency range in 

which pulmonary sound occurs is 50-2500 Hz [6]. 

Adventitious sounds, including crackles and wheezes, are 

considered abnormal and are a major indicator of pulmonary 

pathological conditions [7]. Intestinal sounds are produced by 

the movement of liquids and gases as a result of the contraction 

of muscles that comprise the walls of the gastrointestinal tract. 

These sounds occur in the range 100-200 Hz [8]. During the 

process of auscultation, medical practitioners rely on 

characteristics such as the duration, pitch, and frequency of 

bowel sounds in order to gather diagnostic information 

regarding the presence or absence of gastrointestinal diseases. 

Although there is no consensus on what constitutes abnormal 

bowel sounds, as a convention, the absence of bowel sound is 

considered to be abnormal [9]. 

The great interest in the evaluation of bodily sounds goes 

back to the times of Hippocrates and even to the seventeenth 

century B. C. in ancient Egypt. Back then, auscultation was 

done by placing one’s ear on the patient’s chest. This was the 

case till Laennec invented the stethoscope in 1817 which was 

quite different from the currently used conventional 

stethoscope. Laennec’s stethoscope was a rather simple 

apparat consisting of two hollow tubes connected together. 

The currently used analog stethoscope is composed of a 
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binaural earpiece and a chest piece. The latter contains a 

diaphragm that is mostly used for cardiac auscultation and a 

bell that is mostly used for pulmonary auscultation [10]. 

Conventional analog stethoscopes attenuate sound signals at 

higher frequencies portraying lowpass filtering characteristics 

and thus causing loss of valuable information [11]. 

Additionally, such stethoscopes only allow for instant analysis 

of sound signals making the diagnosis process dependent on 

the experience of the medical practitioner [1]. Electronic 

stethoscopes surpass their analog counterparts in providing the 

ability to amplify and bandpass-filter the analog sound signals 

while converting them to digital ones. Digital stethoscopes, on 

the other hand, differ in the sense of being “smarter” providing 

visualization capabilities and the option of telecommunicating 

with other devices [12]. Additionally, they provide more 

complex signal processing techniques such as signal extraction 

and segmentation in addition to diagnosis algorithms [13].  

There are many commercial digital stethoscopes that 

incorporate different mechanisms for noise cancellation in 

addition to the ability to select between different modes of 

frequency response. A good example is the Thinklabs One 

Digital Stethoscope which provides five different frequency 

ranges for filtering. It can also amplify organ sounds by a 

factor of 100 by virtue of capacitive transduction [14]. 

Similarly, 3M Littmann® Range can amplify organ sounds by 

a factor of 24 by virtue of adaptive noise cancellation [15]. 

Another example is the Welch-Allyn® Elite Electronic 

Stethoscope which provides a bell mode with a frequency 

range of 20 to 420 Hz and a diaphragm mode with frequency 

range of 350 to 1900 Hz [16]. The majority of commercial 

digital stethoscopes allow for the transmission of sound 

signals to other devices such as smartphones or personal 

computers thus allowing for further processing and analysis. 

The use of digital stethoscopes was reported to improve the 

diagnostic capabilities of auscultation compared to it done 

using analog stethoscopes [17, 18]. 

Machine learning techniques have recently been 

incorporated into applications related to embedded edge 

devices paving the way to the rise of the Internet of Things 

(IoT) technology. This concept is referred to as TinyML (Tiny 

Machine Learning). It unleashes the ability for implementing 

machine learning algorithms on hardware components with 

low processing power and memory. It also results in 

consuming less energy and preventing data security issues, 

thus averting the drawbacks of cloud-based computations [19]. 

Microcontroller units are a good example of hardware with 

low computational power that can be used for running machine 

learning algorithms. This is achieved by means of manual 

optimizations. Such optimizations are necessary since 

different hardware vendors have different architectures and 

use various frameworks limiting the portability of machine 

learning models. One way of tackling this problem is through 

TensorFlow Lite, a library that serves to deploy portable 

optimized machine learning models on edge devices [20].  

The experience of the physician has a major effect on the 

success of traditional auscultation. This may result in non-

reproducible diagnoses. Therefore, recording of organ sound 

signals for further analysis would be of major benefit. The 

system proposed in this article satisfies the aforementioned 

advantage. It is intended to record sound signals, classify them 

to the organ classes they correspond to, apply digital filtering, 

and transmit the signals to other devices. Thus, the system 

eliminates the need for servers by analyzing the signals on the 

edge device in real-time. Furthermore, the system will identify 

the auscultated organ by means of TinyML. Consequently, the 

system will allow for filtering sound signals according to 

frequency ranges that correspond to the targeted organ. Thus, 

the proposed system will be effective in noisy hospital 

environments. 

This paper introduces a novel methodology that integrates 

traditional auscultation techniques with TinyML for analysis 

of organ sounds. The proposed convolutional neural network 

(CNN), named FISC-Netv1, demonstrates advancements by 

effectively classifying sounds originating from three distinct 

organs with exceptional precision and efficiency. Also, the 

proposed system stands out for its capability to classify sounds 

from three different organs, namely the heart, lungs, and bowel, 

while executing all processing tasks entirely on an embedded 

system, thus demonstrating a comprehensive integration of 

traditional auscultation methods with cutting-edge TinyML 

technology. 

In this article, first a literature review on the use of machine 

learning based stethoscopes in the classification of 

physiological sound signals is given in Section 2. Then, an 

overview of the used materials and methods are included in 

Section 3. After that, the obtained results are shown in Section 

4. Finally, conclusion and future studies are included in 

Section 5. 

 

 

2. RELATED WORK 

 

Numerous studies have investigated the use of machine 

learning techniques in digital stethoscopes for the purpose of 

diagnosing potential pathological conditions from bodily 

sound signals. Among these studies, some were focused on 

heart sounds. In a study by Fattah et al. [21], a smart phone 

based digital stethoscope was developed. The proposed system 

was intended to automatically analyze phonocardiograms, and 

to facilitate follow-ups by providing accessibility to doctors 

from remote areas. The design included a conventional chest 

piece with a piezoelectric sensor. Two probabilistic models, 

namely Markov model and k-nearest neighbor, were applied to 

classify phonocardiograms into healthy/unhealthy [21]. In a 

study by Chowdhury et al. [22], a system consisting of two 

units communicating through Bluetooth Low Energy (BLE) 

was developed. One unit is a digital stethoscope that performs 

sound acquisition, filtering, and transmission of signals to the 

other unit. The other is a personal computer that extracts 

features and classifies signals into normal/abnormal. It uses 

ensemble learning fed by Mel frequency cepstral coefficients 

(MFCC) in addition to time and frequency domain features 

[22]. The advantage of the system proposed in our study over 

the systems in the aforementioned studies is that it does not 

require an additional processing unit. That is, signal 

acquisition, filtering, and inference are performed on the same 

embedded system. In a study by Alqudah et al. [23], four 

different classes of heart disease were classified using a 

convolutional neural network (CNN) architecture, namely 

AOCTNet, fed by bispectrum images. The model in question 

achieved accuracy and F1-score of 99.47% and 99.48%, 

respectively. This result showcases the potential of CNNs for 

audio classification [23].  

Similar to heart sound signals, respiratory sounds were 

investigated by many studies for their diagnostic potential. 

This was done by means of incorporating classification 

algorithms with feature extraction techniques. In a study 

carried out by Bahoura [24], pulmonary sounds were classified 
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into normal and wheezes. Various feature extraction 

techniques were used in combination with different machine 

learning methods. The best performance was obtained using 

MFCC with Gaussian Mixture Models (GMM), achieving an 

F1-score of 92.92% [24]. A snore detection system was 

developed in a study by Azarbarzin et al. [25] using K-means 

clustering. The algorithm was fed using a 2-D feature space 

obtained by applying principal component analysis (PCA) to 

10-dimensional energy features. The algorithm achieved an 

accuracy of 98.2% and an F1-score of 96.67%. In a study by 

Sankur et al. [26], lung sounds were classified into 

healthy/pathological using Autoregressive (AR) models for 

feature extraction. Two classifiers, namely k-nearest neighbor 

(k-NN) with Itakura distance measure and quadratic classifier, 

were compared for different orders for both of them. K-NN 

performed better with an accuracy of 93.75% and an F1-score 

of 83.31%.  

Gastrointestinal sound signals were also investigated for 

digital auscultation applications. In a study by Ficek et al. [27], 

a deep learning model that can classify sound into 

intestinal/non-intestinal was developed. Bowel sounds were 

collected using a contact piezoelectric microphone. Subjects 

were asked to follow a procedure before data acquisition like 

not eating a large meal after 18:00 or answering a clinical 

questionnaire. The model consisted of a combination of CNN 

and RNN (Recurrent Neural Network) also known as CRNN. 

It achieved an accuracy of 98.10% and an F1-score of 91.57% 

[27]. In a study conducted by Burne et al. [28], a method was 

developed to detect peristalsis from neonatal bowel sound 

signals. Bilinear feature fusion was used to incorporate 1-D 

and 2-D MFCC features in an ensemble of CNNs. The model 

yielded an accuracy of 95.1% and an F1-score of 97.3%. 

Also, the classification of heart, bowel and lung sounds 

were achieved on an edge device in a previous research of ours 

[29]. In this study, three datasets were used namely ICBHI 

2017 [30], Gastrointestinal Acoustic Activity [27] and 

PhysioNet/Computing in Cardiology (CinC) Challenge 2016 

[31]. These datasets were picked for solving the new 

classification problem as classifying three organ sounds. 

Signals in these datasets are gathered and resampled to 41 kHz 

and Mel-Spectroms were extracted to be used as features. Then, 

FISC-Net, a 2-D CNN was proposed for the classification task 

and it had achieved 99% accuracy at the Raspberry Pi 4 with a 

0.05 seconds to predict. 

 

 

3. MATERIAL AND METHODS 

 

3.1 Materials 

 

3.1.1 MAX9814 Electret microphone 

The MAX9814 is a microphone amplifier that is both 

affordable and high-quality. Figure 1 shows a block diagram 

corresponding to its constituents whereas the physical 

appearance of the microphone is depicted in Figure 2. It 

contains circuitry for automatic gain control (AGC), a low-

noise preamplifier with a gain of 12 dB. Additionally, it 

contains a variable gain amplifier (VGA) which can be 

adjusted to 20 dB or 0 dB. The Microphone also contains an 

output amplifier that can provide gains of 8 dB, 18 dB, or 28 

dB. Consequently, the component can amplify sound with a 

gain between 40 dB and 60 dB. Trilevel digital input can be 

used for programming the gain of the output amplifier in 

addition to the ratio of attack-to-release time whereas the hold 

time of the AGC is fixed at 30 ms. MAX9814 comes in a 

compact 14-pin TDFN package and is rated for the extended 

temperature range of -40℃ to +85℃ [32]. 

 

3.1.2 Analog to digital convertor (MCP3008) 

The MCP3008 ADC employed in this study is a 10-bit 

successive approximation ADC that includes a built-in 

sample-and-hold circuit. It can be programmed to function in 

differential or single ended mode providing four or eight 

inputs, respectively. The device communicates through a 

straightforward serial peripheral interface (SPI) protocol. The 

device can provide variable conversion rate that can reach up 

to 200 kilo samples per second (ksps). Furthermore, the 

MCP3008 operates effectively within a wide voltage range 

spanning from 2.7 V to 5.5 V [33]. The pinout of the ADC is 

shown in Figure 3. 

 

 
 

Figure 1. Simplified block diagram of the MAX9814 electret microphone [32] 
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Figure 2. Schematic of electronic components of the 

proposed system 

 

 
 

Figure 3. MCP3008 pinout [34] 

 

3.1.3 Raspberry Pi 4 

The Raspberry Pi 4 board was connected to the ADC 

converter by virtue of the SPI 0 interface. As shown in Figure 

2, SPI_MOSI, SPI_MISO, SPI_CLK, and SPI_CE0 were 

connected to MCP3008 pins 11, 12, 13, and 10, respectively. 

Furthermore, pins 9 and 15 of the ADC were connected to 

ground, whereas pins 15 and 16 were fed by 3.3 V and 5 V, 

respectively. The ADC was adjusted to receive input from the 

MAX9814 microphone via channel 0. The ADC was soldered 

to a prototyping plate that maintained firm connections with 

the raspberry pi via female header pins. This was done in order 

to ensure firm connections between components which is 

crucial for avoiding signal artifacts. Lastly, the physical 

appearance of the digital stethoscope is shown in Figure 4. 

 

 
 

Figure 4. Digital stethoscope 

3.1.4 Dataset 

The collected dataset consists of three types of organ sounds 

which are heart, lungs, and intestines. It included 242 sound 

records pertaining to 22 adult and healthy subjects equally 

distributed among different genders. 11 records of analog 

signals (3 heart, 4 lungs, and 4 bowel) were obtained from each 

subject by virtue of the designed stethoscope. There was no 

exceptional procedure as in the bowel sounds research [27]. 

Upon aural inspection, it seemed that in some sound records 

cardiac, pulmonary, or intestinal sounds were either muffled, 

indistinguishable, or completely absent. The reason for this 

can be attributed to the limited experience of the staff 

conducting the recording process in addition to the mediocre 

quality of the hardware used. Therefore, only the samples in 

which clear cardiac, pulmonary, or intestinal sound is present 

were selected to be used for training the model. Consequently, 

the total number of records dropped to 146. For conducting 

this study which includes experimentation with subjects, an 

ethics allowance was acquired from the Academic Ethics 

Committee of Yildiz Technical University. The subjects have 

been informed about the objective of this study and their 

personal information will be kept anonymous. Information 

regarding the subjects included in the study is given in Table 

1. Ranges for both age [35] and body-mass index (BMI) [36] 

were determined according to the literature.  

To enhance the model's generalizability and robustness, 

various data augmentation techniques can be employed. These 

techniques included time stretching and adding background 

noise to augment the dataset, ensuring exposure to a wide 

range of acoustic variations commonly encountered in clinical 

settings. Additionally, variations in recording conditions, 

patient demographics such as age, sex and body-mass index 

(BMI) incorporated to enrich the dataset's diversity, thereby 

bolstering the CNN's ability to accurately classify organ 

sounds across diverse scenarios. 

 

Table 1. Dataset description 

 
Gender Age BMI 

Female 10 Young-Adult 13 Healthy 13 

Male 12 Middle-aged 7 Overweight 5 

 Old Adults 2 Obesity 4 
Young-Adult: 18-35, Middle-aged Adult: 36-55, Old Adults: 55+; 

Healthy: 18.5-25, Overweight: 25-30, Obesity: 30+ 

 

3.2 Methods 

 

3.2.1 Organ sound acquisition via digital stethoscope 

The applied approach is to place the microphone inside a 

ready-made stethoscope head. Electret microphones to be used 

are widely utilized in medical applications, such as fetal 

phonocardiography, due to their compact size, low power 

consumption and high efficiency [37]. The preferred model in 

this study is the Max9814 which has a wide frequency range 

(20 Hz – 20 kHz) and is, therefore, quite sufficient for this 

application.  

 

3.2.2 Tiny machine learning 

The preferred embedded system for this study was 

determined by considering factors such as processing power 

and sampling frequency. Additionally, the compatibility with 

the TensorFlow Lite library and the Python language were also 

considered. The latter supports a library widely used for music 

and audio analysis known as Librosa. Accordingly, Raspberry 

Pi 4 was chosen due to its high computing capabilities (Quad-
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core Cortex A72 (ARM v8) 64-bit. SoC 1.5 GHz processor). 

The Raspberry Pi board does not contain analog input pins, so 

an additional integrated circuit is needed to perform Analog-

to-Digital conversion. 

Feature extraction. The feature set was extracted from the 

audio signals as a time-frequency representation known as 

Mel-Spectrograms. The latter term refers to a type of 

spectrogram that utilizes a nonlinear frequency scale 

consistent with human perception of sound. It is represented 

as Mel bands on the frequency axis and the energy within each 

band calculated using Fast Fourier Transform (FFT) or other 

spectral analysis techniques [38]. The Mel-Spectrograms were 

computed by first applying the short-time Fourier transform 

(STFT). Then, Mel filter-bank was applied to the absolute 

value of the obtained complex STFT coefficients. Thus, Mel-

Spectrograms were calculated and saved as RGB images to be 

fed to the classification model. This was carried out by virtue 

of the Python Librosa library. 

Classification model. Mobile-Net and Efficient-Net are well 

known pre-trained networks that are created exactly for edge 

device applications, and they are used for this reason in this 

study. The selection of pre-trained CNN architectures, 

including Mobile-Net and Efficient-Net, was based on their 

suitability for edge device applications. These models are 

recognized for their efficiency in terms of both computational 

requirements and memory usage. Also, FISC-Net was 

deployed as it was created with a relevant dataset and achieved 

an accuracy of 99%. 

CNN architecture. The proposed 2-D CNN architecture 

called FISC-Netv1 is a conventional CNN architecture and 

derived from FISC-Net [29] with determined hyperparameters 

shown in Table 2. FISC-Net is a CNN that was designed for 

classification of auscultation sounds for edge device 

applications. Since it has achieved higher accuracy than 

Mobile-Net and Efficient-Net, FISC-Net was chosen for 

existing classification task. Then to improve the classification 

performance, existing architecture was altered for 

optimization. The new architecture of the proposed CNN is 

illustrated in Figure 5, whereas the parameters pertaining to 

the classification model are shown in Table 2. 

 

Table 2. FISC-Netv1 architecture details and 

hyperparameters 

 
Convolutional 

Layers 
Pooling Layer Dropout Layer 

16 filters (3×3) 

stride (1×1) 
Max-pooling (2×2) 0.5 rate 

Output Layer Loss Optimizer 

ReLU and Softmax 
Categorical Cross-

Entropy 
Adam 

 

One of the key reasons for the improved performance of 

FISC-Netv1 compared to other pre-trained CNN models in 

this specific application is its streamlined architecture. With 

only five convolutional layers, FISC-Netv1 strikes a balance 

between model complexity and efficiency, allowing it to 

efficiently capture and process relevant features for organ 

sound classification. The simplicity of the architecture ensures 

that the model can focus on extracting optimal feature maps 

specifically tailored to distinguish between different organ 

sounds. This focused approach not only reduces computational 

overhead but also mitigates the risk of overfitting, thereby 

enhancing the model's generalization capabilities. 

 

 
 

Figure 5. FISC-Netv1 architecture 

 

Quantization aware training. For edge device applications, 

the size of the model and its inference time are key factors for 

deploying classification models. With quantization, both 

model size and inference time are reduced without any 

architectural change. Quantization can be done after the 

training phase, which means turning weights to 8-bit integers 

in common [39]. But there is another way to reduce the 

required memory size, that is quantization-aware training. In 

this method, weights of the model are quantized while the 

training process is continued so that layers become quantized 

too. This method is more prone to yield reduced accuracy 

though it shrinks the model by 4x. While quantization reduces 

the model size, it introduces a slight trade-off in accuracy. The 

benefits of reduced model size and faster inference time far 

outweigh the minimal sacrifice in accuracy, making 

quantization-aware training a viable strategy for edge device 

deployment. To compare model size and accuracy results both 

methods were deployed using TensorFlow libraries. 

 

3.2.3 Signal processing 

Since acquired signals were noisy, a clear listening of 

auscultation sounds is needed for assessing organ conditions. 

Classified signals were filtered digitally according to the organ 

specific characteristics. 
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Figure 6. Flowchart of the proposed system
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Heart sound filtering. Raw predicted heart sounds were 

10𝑡ℎ  order Butterworth band-pass filtered to mitigate 

undesired high and low frequency components. Although the 

frequency range corresponding to heart sounds is from 50 to 

600 Hz [4], the range was selected as 20-260 Hz according to 

frequency spectrums of acquired heart sound signals.  

Lung sound filtering. Even though respiratory sounds are 

found between 50-2500 Hz [6], the acquired signals did not 

reach up to 600 Hz. Therefore, the picked range was between 

20-500 Hz of 14𝑡ℎ order Butterworth band-pass filter.  

Bowel sound filtering. Most of the bowel sounds appear in 

the range of 100-200 Hz [8]. 6𝑡ℎ order Butterworth band-pass 

filter with the range of 20-150 Hz was used to reduce noise in 

bowel sound signals.  

 

3.2.4 Intercommunication between devices 

There are two common options for intercommunication 

between devices as Bluetooth and internet. Bluetooth is an 

approach for short-scope and wireless data communication. 

The main reasons for this are low energy consumption, low 

cost, and safety issues [40]. Thanks to the Bluetooth module 

in the selected embedded system, it will be able to provide data 

communication between the patient and the doctor. In order to 

meet the communication requirement, organ-specific clean 

sounds obtained will be made ready for the Bluetooth use on 

the Bluetooth module in Raspberry Pi 4. 

Another option is using Virtual Network Computing (VNC) 

technology embedded in Raspberry Pi 4. With this technology, 

accessing and controlling a device environment over an 

internet connection is possible. So, to compare the speed of file 

transmission between devices, VNC servers were used. 

The proposed design can be summarized as follows. First, 

sound is captured by the stethoscope and digitized for further 

processing. Then, Mel-Spectrogram is extracted as features 

and fed to the classification model. After the classification, the 

raw signal is filtered according to the classified organ with the 

aim of obtaining clean signals without noise components. 

Then, filtered signal is transmitted to the computer both by 

internet and Bluetooth. The flowchart of the design is 

illustrated in Figure 6. 

 

 

4. RESULTS 

 

In the results section, feature extraction, classification, 

filtering, and intercommunication results are given. 

 

4.1 Feature extraction 

 

It is essential to carry out a feature extraction stage while 

preparing input features for our model. The Mel-Spectrogram 

is the method of choice in this situation for extracting relevant 

time-frequency features from the sounds of each organ. Mel-

Spectrogram was chosen because it is well known for being a 

fundamental and popular feature extraction method for 

acoustic signal classification, notably for auscultation sounds. 

This preference is attributed to its efficacy in capturing and 

representing the intrinsic spectral content of acoustic signals, 

which is vital for discriminating subtle nuances between 

different organ sounds. The parameters of Mel-Spectrogram 

were determined by calculating the average difference 

between extracted Mel-Spectrograms of heart and lung sounds 

as the distinction between them is more difficult. Among the 

various parameters, only the type of windowing function was 

altered, while other parameters, such as the number of FFT 

points and hop length remain unchanged. The aim of this 

method was to determine which windowing function 

performed best in terms of distinction between heart and lung 

sounds. The unchanged parameters are shown in Table 3 and 

the independent variable with the related results are shown in 

Table 4. 

Figure 7 illustrates examples of the resulting Mel-

Spectrograms generated using the selected Tukey window. 

This windowing technique was chosen based on the 

observation of the highest difference between spectrograms, as 

indicated in Table 4. 

 

Table 3. Unchanged parameters of Mel-Spectrogram 

 
Number of FFT 32800 (sampling rate × 4 seconds) 

Hop Length  64 

 

Table 4. Different windowing in Mel-Spectrogram 

 

Window Type Difference 

Tukey 25 × 106 

Cosine 19 × 106 

Taylor 14 × 106 

Lanczos 13 × 106 

 

4.2 Classification performance 

 

By means of the trained models, sound signals were 

classified into three classes representing the organs heart, lung, 

and bowel. A standard train-test split technique was used to 

train all models, with 80% of the data used for training and 

20% used for testing. 

As shown in Table 5, the models performed well in the 

training phase whereas only FISC-Net performed well in the 

testing phase achieving 88% accuracy. According to these 

results, FISC-Net was chosen to move further with. By 

adjusting parameters of FISC-Net, higher accuracy was 

achieved with both quantization methods as shown in Table 6 

and Table 7. Confusion matrices of two quantization results 

are also depicted in Figure 8 and Figure 9. 

As shown in Figure 8 and Figure 9, the implementation of 

quantization-aware training resulted in a notable enhancement 

in the classification performance of bowel and lung sounds. 

However, it is worth noting that while the F1-scores for bowel 

and lung sounds increased, there was a minor decrease in the 

performance of heart sound prediction. 

 

Table 5. Performance of pre-trained networks 

 
Models Train Accuracy Test Accuracy 

Mobile-Net 96.7% 66.6% 

Efficient-Net 90.3% 66.6% 

FISC-Net 96% 88% 

 

Table 6. Classification results for FISC-Netv1 without 

quantization-aware training 

 
 Precision Recall F1 Score Accuracy 

Heart 1 0.87 0.93 100% 

Lung 0.88 0.77 0.82 88% 

Bowel 0.79 1 0.88 79% 

Average 0.89 0.88 0.88 88% 
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While there are differences for predicting different organs 

in two methods of quantization, in total, F1-score did not 

change and the size of the model was decreased to 4.4 MB 

from 17.5 MB, which indicates a lower computational cost. 
 

Table 7. Classification results for FISC-Netv1 with quantization-aware training 
 

 Precision Recall F1 Score Accuracy 

Heart 0.96 0.83 0.89 96% 

Lung 0.87 0.87 0.87 87% 

Bowel 0.88 1 0.94 88% 

Average 0.9 0.9 0.9 90% 
 

 
 

Figure 7. Mel-Spectrograms of heart (a), lungs (b) and bowel (c) 
 

 
 

Figure 8. Confusion matrix of FISC-Netv1 without 

quantization-aware training 

 
 

Figure 9. Confusion matrix of FISC-Netv1 with 

quantization-aware training 
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4.3 Filtered signals 

 

There are two reasons for filtering the raw signal. First, 

filtering helps isolate and highlight the distinctive traits that 

are unique to each organ. The specific characteristics that can 

help with accurate analysis by carefully keeping frequency 

components relevant to the targeted organ sounds. Second, 

filtering is essential for reducing the impact of noise and 

undesirable artifacts that could exist in the raw data. Reduction 

of the effect of noise by digital filtering, raising the overall 

quality of the acoustic data in the procedure. 

Organ-specific filtering was done according to predicted 

class. Examples of filtered signals are given in Figures 10, 11, 

and 12. Although there is no clear distinction between signal 

and noise in example plots, differences between raw and 

filtered signals were obvious in practical listening. 
 

 
 

Figure 10. Band-pass filtered heart sound & frequency spectrum 
 

 
 

Figure 11. Band-pass filtered lung sound & frequency spectrum 

 

 
 

Figure 12. Band-pass filtered bowel sound & frequency spectrum 
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4.4 Communication 

 

Intercommunication is essential to the proposed concept 

since it enables the transfer of filtered auscultation signals to a 

platform or device intended for further investigation. This 

approach combines both auditory and visual modes of analysis. 

Additionally, it allows for efficient data storage and retrieval 

for archival and reference purposes as well as real-time 

analysis in medical examinations and remote monitoring 

settings. 

In the Raspberry Pi 4, Bluetooth communication was 

supplied by Blueman and Bluez packages. By using GUI, 

filtered signals can be transferred via Bluetooth to any device 

that has a Bluetooth module. 

For comparison, VNC technology was used for 

intercommunication between digital stethoscope and computer. 

VNC is embedded in Raspberry Pi 4 and graphical user 

interface (GUI) was serviced the file transmission. 

Time from the data acquisition to transmission of clean 

signal to the computer was calculated and shown in Table 8. 

 

Table 8. Required time for processes in the design 

 
Communication Method Time (in Seconds) 

Bluetooth  91 

VNC 24 

 

VNC has higher speed due to the nature of internet and 

Bluetooth. Therefore, if communication speed was the primary 

concern, VNC would be picked as an intercommunication 

method between devices. 

 

 

5. DISCUSSION AND CONCLUSION 

 

Existing literature was able to classify pathologies in heart 

and lungs separately or detect gastrointestinal sounds with a 

program that is a must to follow. Compared to the results in 

Table 9, the proposed model performed relatively well 

considering the limitations in the design. In this study, CNN 

was used as a classification model, being the most successful 

method in the literature related to the classification of 

auscultation signals. Similarly, feature extraction via Mel-

frequency cepstral coefficients (MFCCs) yielded the best 

results in the related literature. However, feature extraction via 

Mel-Spectrogram was preferred for this study. The reason is 

that although being quite similar to MFCCs, Mel-

Spectrograms require fewer processing steps which makes 

them more appropriate for embedded applications. In addition, 

the used microphone was of the electret type as it provided 

good quality relative to its price. 

While previous studies were aimed at the classification of 

pathologies, the proposed design differs in the objective of 

classifying the source organ of sound. This will allow for the 

system to identify the targeted range of frequency. The 

proposed system, thus, performs digital filtering specific to the 

auscultated organs and transmits the filtered signals to other 

smart devices for further examination. This is expected to 

contribute to the diagnostic potential of the obtained signals 

and reduce related errors. Also, the proposed system has the 

ability to classify three different organs in the same system and 

all data acquisition is supposed to happen in daily-life 

conditions. Another novel aspect of the proposed system is 

running machine learning algorithms on an edge device. This 

feature makes the digital stethoscope more independent, safe, 

and power-efficient. As a result, the system proposed in this 

study allows healthcare professionals to further listen to, and 

process, sound records, thus yielding more robust and 

objective diagnoses. In addition, such a device can be 

incorporated into clinical workflows. It can be used in cases of 

pandemic outbreaks to limit the contact between medical 

practitioners and patients. For instance, instead of a single 

doctor having to auscultate a single patient, a nurse wearing 

protective shields can record bodily sound from multiple 

patients. The obtained records can be broadcasted to multiple 

devices and assessed later by doctors from different 

departments (e.g., emergency and intensive care unit). Thus, it 

assists in maintaining the safety of medical doctors and 

controlling the outbreak of the disease. This approach can be 

particularly relevant in the last couple of years due to the 

technical challenges that were brought about by the Covid-19 

outbreak. An example of such challenges includes the 

inconvenience of using conventional stethoscopes with 

protective clothing on. In addition, it can be utilized by non-

expert health-care professionals such as emergency crews who 

can use it in the field in remote locations without internet 

access [41, 42]. Also, the proposed project could serve 

telemedicine technology as a continuation of the teleradiology 

system. By integrating Internet of Things (IoT) into the system, 

patients can be followed by the physician. While telemedicine 

increases the service to be provided by the health sector, it can 

also be used to save time and cost. By eliminating the necessity 

of going to metropoles for diagnosis and treatment, delivering 

many health services to people living in areas far from the 

town would be possible via telemedicine technology. Regular 

and continuous follow-up of patients provides taking 

precautions without the need for emergency interventions. 

Also, maintaining the treatment in a planned manner is better 

for the patient, as well as reducing treatment and care costs. At 

the same time, it will be possible to use it in the follow-up after 

the operation and/or treatment. For example, heart sound 

monitoring after heart valve insertion can show the physician 

whether there is an anomaly in the patient's heart function [43]. 

Furthermore, the system can be used for educational purposes 

serving as means for medical students and trainees to listen to 

abnormal bodily sounds that can be associated with different 

medical conditions. 

Despite how useful the proposed system is, certain 

limitations might hinder its utility. Since it imposes a paradigm 

shift in how clinical trials are conducted, it can require 

intensive training that might be costly to some healthcare 

institutions. Also, technical aspects such as the transfer and 

storage of the obtained signals may not be compatible with the 

present clinical data management systems. In addition, as is 

the case with other types of patient data, sound signals might 

be susceptible to malicious attacks and misuse. Therefore, 

some institutions that are not proficient in protecting their 

patient data might be reluctant to incorporate such systems into 

their clinical workflow. Sound acquisition is one of the main 

parts of this study. As the aim of this study is creating an end-

user friendly product, collecting signals in a daily life 

environment is essential. Due to this reason, noise coming 

from many sources, such as talking, should be reduced. The 

effect of such noise is more prominent for bowel sound than it 

is for the other sound signals, due to their relatively low 

amplitudes. The comparatively low accuracy for the Bowel 

class in Table 6 can be attributed to this effect. Also, recall 

pertaining to the Heart class is low compared to accuracy 
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associated with the same class, as evident in Table 7. This 

indicates a high false positive rate caused by non-heart 

samples being classified as heart. Introducing the incoming 

signals to analog filtering can help in resolving the 

shortcoming of the model in certain classes. Another limitation 

is a communication problem, it stems from the fact that 

Bluetooth technology works with close distances. In addition, 

internet connection requires access to Wi-Fi and consumes 

high power. 

As the current design does not make pathological detection, 

working with patient data that can be obtained following the 

similar principles can improve the detection of pathological 

conditions such as interstitial lung diseases, asthma, COPD 

and heart failure. After that, different designs and 

communication with the internet instead of Bluetooth can be 

considered in order to disseminate and facilitate the procedure 

like point-of-care designs. Another point of advancement is 

relating to additive manufacturing. Stethoscopes can be 

designed and printed via 3-D printing which makes the design 

cheaper. Moreover, the entire system should be designed or 

manufactured to transform to a product from scientific 

research. 

Bodily sound signals have different characteristics. Namely, 

heart sounds being more transient whereas lung sounds have 

more eminent oscillatory behavior. While spectrograms are 

well-suited for oscillatory signals, scalograms are suited for 

both types of characteristics [44]. For this reason, and in order 

to enhance the performance of the current model, Wavelet 

Transform can be considered in future studies as a feature 

extraction technique while taking computational complexity 

into consideration. Also, in order to yield a more robust model, 

data augmentation methods can also be considered. Basic 

time-domain augmentation techniques such as Time 

Stretching, Noise Addition, and Pitch Shifting, seem to offer 

laudable results [45]. In addition, Horizontal Flipping, 

Principal Component Analysis (PCA) Color Augmentation, 

Saturation-Value (SV) Perturbations, and Spectrum 

Correction are among the most promising techniques when 

augmenting data in the form of Mel-Spectrogram as seen in 

related studies [46, 47].  

 

Table 9. Summary of related work 

 

Reference 
Analysed 

Sound 
Classes Sensor Type 

# of 

Subjects 
Feature Extraction 

Classification 

Method 
Performance 

[21] 
Heart 

sounds 

Healthy & 

Unhealthy 

Piezo disc 

vibration 

sensor 

100 

Homomorphic 

Envelogram, Hilbert 

Envelope, Discrete 

Wavelet Transform 

Envelope, Power Spectral 

Density Envelope. 

PCG signal segmentation 

with Hidden Semi Markov 

Model and annotated as 

S1, Systole, S2 and 

Diastole. 

k-NN 

Accuracy = 

82% 

F1-score = 

83.57% 

[22] 
Heart 

sounds 

Normal & 

Abnormal 

Custom made 

sensor 

3126 

sample 

t-domain, f-domain, and 

Mel frequency cepstral 

coefficients (MFCC). 

Ensemble 

Learning 

Accuracy = 

97% and 88%  

[23] 
Heart 

sounds 

Normal & 

Abnormal 

Electret 

microphone 

1000 

sample 

High order spectral 

features. 

Bispectrum 

images with 

CNN 

Accuracy = 

99.47% 

F1-score = 

99.48% 

[24] 
Lung 

sounds 

normal & 

wheeze sounds 

Electret 

microphone 
24 

Fourier Transform (STFT), 

Linear Predictive Coding, 

Wavelet Transform, 

Cepstral Analysis (MFCC). 

Vector 

Quantization, 

GMM, and 

ANN 

F1-score = 

92.92% 

[25] 
Lung 

sounds 

Snore & No-

snore 

2 ECM-77B 

Electret 

microphone 

20 

0-5000 Hz frequency 

range-500Hz subbands. 

Short-time Fourier 

transform (STFT) of each 

episode was calculated 

using 50ms windows with 

50% overlap. 

k-means 

clustering 

Accuracy = 

98.2% 

F1-score = 

96.67%  

[26] 
Lung 

sounds 

Healthy & 

Pathological 

Electret 

microphone 

(ECM44, 

Sony) 

69 Autoregressive Model. 
k-NN classifier 

 

Accuracy = 

93.75% 

F1-score = 

83.31% 

[27] 
Bowel 

sounds 

Intestinal & 

Non-intestinal 

Sound 

contact 

microphone 
19 

Spectrogram { 

frame length = 441 

frame step = 110 

freq. range = 0-1500 Hz 

Smoothing = Hann 

window}. 

CRNN 

Accuracy = 

98.10% 

F1-score = 

91.57% 

[28] 
Bowel 

sounds 

Peristaltic & 

Non- 

Peristaltic 

Sound 

-- 49 
1-D and 2-D MFCC 

features. 
CNN 

Accuracy = 

95.1% 

F1-score = 

97.3% 
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Furthermore, running the same or a similar model on edge 

devices other than Raspberry Pi 4 can also be considered in 

future studies. By doing so, notable performance can be 

acquired using devices with lower computational power. Also, 

to make our design more extensive and less power-consuming, 

other means of communication, such as the Long Range Wide 

Area Network (LoRaWAN), can be considered. Additionally, 

the performance of the model can be enhanced further by 

including a greater amount of data. Moreover, including real-

time disease diagnosis in the proposed system can be 

considered in further research. 
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