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The idea of "stress stacking" is that the psychological stress many people face in modern 

society can lead to depression, heart disease, and cancer, among other long-term illnesses. 

Thus, managing and tracking a person's stress is crucial. This paper proposes that a modified 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) model can 

extract features from Electroencephalogram (EEG), Electrocardiogram (ECG), and 

Accelerometer (ACC) data. A lengthy feature vector combines relevant features from the 

various modalities. Combining all of the features could improve classification performance, 

but it could also increase the number of dimensions and lead to bad performance because of 

redundant information and inefficiency. This paper uses Kruskal-Wallis analysis to suggest 

a new way to deal with the high-dimensionality problem by automatically finding the best 

subset of features. To categorize the stress based on the feature vector, we utilized a K-

Nearest Neighborhood (KNN), a Random Forest (RF), a Support Vector Machine (SVM), 

and a Decision Tree Classifier (DT). SVM outperformed the other three classifiers with a 

performance accuracy of 94.58%, which is 3.72% Superior to cutting-edge techniques. 
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1. INTRODUCTION

The nervous system's response to a threat or directive is 

called stress [1]. Stress has received substantial attention 

recently because it affects so many people. This propensity 

might result from shifting work practices, cultural 

expectations, lifestyles, etc. [2]. In some situations, such as 

high-stress ones at work, during exams, and the like, tension 

can be advantageous up to a point. Once it reaches a certain 

point, stress is no longer suitable. Additionally, it harms one's 

productivity, the value of life, health, and mental condition [3]. 

If a person experiences recurring trials and feels intense 

anxiety, their body will be under prolonged strain [4]. 

Consequently, the importance of stress detection systems has 

grown in comparison to ten years ago. It is imperative to 

safeguard people against the escalating impacts of stress, 

particularly since it cannot be prevented. Therefore, prompt 

identification and management of stress are essential for 

enhancing mental health and general well-being [5]. 

Psychological, physiological, and behavioral primary 

modalities are used most frequently in automatic stress 

detection [6]. The Hypothalamic Pituitary Adrenal axis and 

the Autonomic Nervous System are the two primary processes 

that work to try to restore physiologic stability in response to 

stress [7]. Variations in heart rate variability, sweat gland 

activities, skin temperature, etc., bring this on. Thus, 

physiological signals can offer details on ANS function as 

reliable stress markers. Additionally, ECG and EDA, among 

physiological features, provide an accurate picture of a 

person's state of stress [8]. 

Several psychological instruments commonly used in 

research and clinical settings to assess stress levels include the 

Perceived Stress Scale [9], the Stress Response Inventory [10], 

the Holmes-Rahe Stress Inventory [11], and the Hamilton 

Rating Scale for Depression [12]. The evaluations include self-

reports or professional ratings based on arbitrary judgments 

and estimations to get exact data on cognitive, emotional, or 

behavioral stress reactions. Nevertheless, due to their 

subjective nature, these methods are deficient in their ability 

to discern nuanced patterns of mental state. In machine 

learning, feature selection, particularly infinite latent feature 

selection, is crucial (ILFS). The method uses all possible 

feature subsets to produce ranking [13, 14]. 

When an employee's capacity to complete a task falls short 

of the assignment's difficulty, work-related stress develops 

[15], which harms people's health and society. Persistent 

mental stress can lead to psychological and physical ailments 

like headaches, depression, anxiety, and sleeplessness [16-20], 

raising healthcare expenditures and lowering the quality of 

life. These conditions can also lead to cancer, diabetes, 

hypertension, cardiovascular diseases, and more. Chronic 

stress may also reduce performance, increase absenteeism, and 

ultimately result in job loss, which raises expenses [21, 22]. 

Stress-oriented costs were calculated to be $30 billion and 

$100 billion in nations like the US and Australia. Acute stress 

left untreated for a prolonged period can lead to chronic stress, 

which can have detrimental long-term effects. As a result, it's 

crucial to keep a close eye on employees' mental health. 
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According to recent studies, physical and mental health are 

intimately intertwined [23-25]. As a result, more people are 

turning to technology to identify people’s mental states. Stress 

and pressure are significant and integral parts of daily living 

for humans. Global stress is a concern. One in three people 

[26] has severe anxiety or stress that manifests in 

psychological and physical symptoms. Numerous stressful 

circumstances, such as long-term higher stress levels on 

socioeconomic characteristics and interpersonal interaction 

problems, excite the human autonomous nervous system. A 

rise in heart rate, perspiration, and muscular contraction is 

brought on by releasing chemicals like adrenaline or cortisol 

during this period [27]. These reactions enhance one's ability 

to react correctly under pressure. Stress may prevent fatalities 

in an emergency by, for example, prompting someone to use 

the brakes to avoid a car collision. Human health is 

jeopardized when the body fails to revert to its normal state, 

and the mind as well as the body endure persistent and 

prolonged stress. 

The autonomic nervous system did poorly in distinguishing 

between sensitive and physical risks. For instance, the body 

responds to a disagreement with a friend like in a real-life-or-

death situation. Physical pain, mental sickness, digestive 

problems, sadness, and reduced productivity may all be 

brought on by stress. According to the data from the American 

Psychological Association, work-related stress has a financial 

impact of $200 billion each year on the US economy [28]. The 

probability of accidents is also increased by drivers' tension 

and exhaustion [29]. Stress should be identified and addressed 

as soon as it manifests to avoid chronic stress and its ensuing 

issues and costs. Wearable sensors have shown the ability to 

assess mental stress and anxiety levels [30]. Stress diagnosis 

has become more accurate when using sensor fusion 

techniques, which collect data from multiple sensors. Too far, 

there needs to be a complete, widely-accepted standard for 

how to combine different signal kinds. In this study, we create 

a brand-new stress detection system that uses machine 

learning algorithms and a sensor board. 

Because they provide researchers and inventors with the 

resources they need to gather and interpret data, sensor-based 

knowledge is crucial for e-Health. According to conventional 

definitions, a wireless sensor network (WSN) may connect 

with nearby devices to exchange or collect data, interact with 

the atmosphere through its sensors, analyze data nearby, or 

link with other wireless communication technologies [31]. 

Since the vast majority of contemporary devices used in 

people's everyday lives come with various sensors/sensor-

oriented applications, they have been broadly utilized in 

healthcare and are only continuing to gain popularity. WSNs, 

ML, or DL influence how advanced healthcare apps are 

developed [32]. Modern e-Health applications may 

considerably benefit from the burgeoning fields of ML and DL 

since they need sophisticated techniques for exploration and 

analysis. 

By analysing the patterns and variations in physiological 

signals such as EEG (Electroencephalography), ACC 

(Accelerometry), and ECG (Electrocardiography), mental 

stress may be categorised into three degrees. Each signal can 

contribute to the categorization of stress levels in the following 

manner: 

EEG is a technique employed to identify and examine the 

electrical impulses in the brain. This enables us to comprehend 

the distinct brainwave patterns associated with different 

mental states. Specific cognitive and emotional states are 

linked to distinct frequency bands in EEG data, including 

alpha, beta, theta, and delta waves. During periods of mental 

stress, there may be alterations in EEG signals, characterised 

by heightened beta activity and reduced alpha activity. 

Researchers can detect different degrees of mental stress by 

examining the power spectral density or coherence of EEG 

data across various frequency bands. 

ACC is commonly used wearable devices that monitor the 

acceleration and movement patterns of the body. Stress can 

lead to alterations in movement patterns, such as heightened 

physical activity or posture modifications. Researchers can 

deduce the degree of physiological arousal and agitation 

linked to mental stress by examining factors like activity level, 

gait dynamics, and postural alterations obtained from ACC 

signals. Elevated levels of physical activity or agitated 

movements may indicate heightened stress levels.  

ECG is a technique employed to evaluate the electrical 

signals produced by the heart, enabling the measurement of 

heart rate, heart rate variability (HRV), and other pertinent 

cardiac parameters. During periods of psychological stress, the 

body's autonomic nervous system may exhibit alterations in 

heart rate and heart rate variability. Heightened sympathetic 

nervous system activity can result in a raised heart rate and 

decreased heart rate variability, whereas parasympathetic 

activation can have the opposite impact. Examining 

characteristics such as heart rate variability, heart rate 

dynamics, and heart rate recovery from ECG data might aid in 

classifying degrees of stress. For instance, a reduction in HRV 

and an extended period of recovery following the removal of 

a stressor may suggest elevated levels of stress. Researchers 

may employ multimodal techniques to correctly measure an 

individual's stress response by integrating data from EEG, 

ACC, and ECG signals and analysing their temporal 

dynamics. This enables the categorization of mental stress into 

three degrees or more. Machine learning methods, such as 

classification models or pattern recognition approaches, can 

assist in accurately detecting significant characteristics and 

patterns within these signals to efficiently categorise stress 

levels. 

 

1.1 Research contribution 

 

We made numerous contributions to constructing a stress 

categorization system in this study. One must use an 

integrative strategy to improve considerably because all these 

processes are interconnected. Figure 1 displays an overview of 

the contributions made to this work. Their contributions are 

presented in this study in the following ways: 

 

Feature extraction 

Feature extraction automatically identifies pertinent and 

significant characteristics using unprocessed EEG, ECG, and 

ACC input data. Reduced dimensions of the data input while 

retaining the essential information is the aim of feature 

extraction. 

Feature fusion 

In feature fusion, several features retrieved from various 

layers or modalities of neural networks are fused to create a 

single feature representation. This may be done by 

concatenating the feature representations along the feature 

dimension during a process known as concatenation. 

Feature selection 

Feature selection is the process of choosing useful features 

from input features. 
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Classification 

In several applications, including machine learning, data 

analysis, and computer vision, feature categorization may 

assist in making sense of and organizing incoming data. 

 

 
 

Figure 1. Proposed system architecture 

 

1.2 Overview 

 

An outline of this study is given in this section. Section 2 

presents the Related Work. This is an overview of previous 

studies that used physiological signs to categorize stress. The 

novel framework for automatically identifying the key EEG, 

ACC, and ECG attributes is proposed in Section 3.4. A 

framework for fusing the information obtained from EEG, 

ACC, and ECG physiological data is also presented in Section 

3.4. The Kruskal-Wallis method's new foundation for 

choosing the ideal feature set is presented in Section 3.5. 

Information on the various classifiers used for the 

classification stress is detailed in Section 3.6.  

The specifics of the suggested approach are as follows: 

Once pre-processing is complete, pertinent characteristics 

are derived from the K-EmoCon dataset. Conduct the Kruskal-

Wallis test on each feature to ascertain whether there are 

substantial variations in feature values across different stress 

levels. The Kruskal-Wallis test is a non-parametric statistical 

technique employed to compare three or more groups and 

ascertain the presence of statistically significant disparities 

among them. 

Features are chosen based on their distributions across stress 

levels, as determined by the Kruskal-Wallis test, if there are 

significant differences. The SVM classifier is trained using the 

chosen characteristics. SVM is a supervised learning 

technique that is specifically developed for completing 

classification tasks. It operates by identifying the hyperplane 

that most effectively divides the classes in the feature space. 

The purpose of cross-validation is to assess the efficacy of the 

SVM classifier. This aids in evaluating the model's ability to 

generalise to unfamiliar data and prevents overfitting. The 

final classifier model based on SVM is evaluated using 

appropriate metrics such as accuracy, F1-score, and area under 

the receiver operating characteristic curve (AUC-ROC). 

The novelty of this paper is given as follows: By measuring 

the stress and dividing it into three degrees, we want to create 

a framework for categorizing mental stress. To extract 

features, the modified CNN-LSTM model receives the pre-

processed EEG, ACC, and ECG signals from the K-EmoCon 

database. Via feature-level fusion, the retrieved features are 

combined. The fused features are improved using feature 

selection and the Kruskal-Wallis statistical analysis. The 

optimized feature set is then subjected to an SVM-based 

classifier model employing the poly kernel. 

 

 

2. RELATED WORK 

 

Researchers propose a CNN structure for recognizing 

activities in a dataset collected from gyroscope and 

accelerometer sensors. The technique of windowing is 

employed, utilizing a duration of 2.56 seconds with a 50% 

overlap. Instead than emphasizing the intricate nature of the 

network using 1D kernels for convolution and max-pooling in 

the CNN network, the research investigation centers its 

attention on multiple feature mappings. The study [33] 

examines three distinct datasets utilizing Deep Networks 

(DNNs), CNN, and a modified version of LSTMs. The 

windowing technique is used with a 50% overlap and 1-second 

length. Similar to the research [34] uses one-second 

windowing to test multiple CNN architectures on three 

different datasets. The report, however, makes no mention of 

a particular overlap ratio. 

The Discrete Fourier Transform (DFT) combines sensory 

information into a signal and creates an activity picture. Two 

convolutional layered models have accuracy scores ranging 

from 97.6 to 99.9%. Lupien et al. [35] displays the sensory 

input from a second CNN-based model as frequency pictures 

with a 1s window length and 60% overlap. The holdout 

validation procedure results in an average F1 score of 0.68. 

Wearable technology and cell phones are considered for 

collecting health-related data in research [36]. According to 

their complexity, activities are further categorized in studies 
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like [12]. While tasks like cooking, cleaning the home, or 

dining, which include several basic motions, are considered 

difficult, standing, sitting, laying down, and other comparable 

acts are considered easy. Cooper and Cartwright [37] provide 

a range of approaches for these sorts of tasks.  

A CNN model is fed by breaking complex behaviors down 

into simpler ones. Immediately after the CNN, the outputs are 

forwarded to a SoftMax unit where an LSTM Network is 

utilized to differentiate between complex and straightforward 

operations. Three independent datasets—MHEALTH, PUC-

Rio [38], and AREM [39] — evaluate an LSTM model. The 

suggested model may get an F1 score of 99%, which is much 

higher. Studies in paper [40] imply an architecture that blends 

CNN and LSTM. Using the input axis, Srivastava and 

Salakhutdinov [41] creates a three-dimensional input vector. 

Combining each vector from a unique sensor produces a 

stacked sensor image. The human visual system encourages 

efficient use of the CNN model and Peek networks. The F1-

score of the system is calculated with the Leave One Subject 

Out validation approach, as described by Miah et al. [42]. This 

approach utilizes a precision metric and incorporates five-fold 

cross-validation. Zhen et al. [43] suggested a CNN-based 

inter-learning system for matching text and images. The 

modalities employed were text and images. Two sub-

networks, namely image CNN and text CNN, were developed 

to establish the cross-modal association between the 

modalities. These sub-networks share weights at the fully 

connected layer, which helps in learning the relationship. Liu 

et al. [44] presented a modality-invariant paradigm for text-

image matching. There is no text provided. The proposed 

approach enhances the uniformity of the distribution of two 

sets of embeddings by refining a pre-trained CNN image 

system and a textual RNN network using an auxiliary 

adversarial loss. Following the implementation of adversarial 

learning, the distributions of images and text were more 

similar, resulting in an improvement in retrieval accuracy. 

Suris et al. [45] presented an inter framework for audio-video 

retrieval. 

Hazarika et al. [46] created representations that are not 

influenced by different modes of expression, for the purpose 

of analyzing sentiments across many modes. The Transformer 

model was utilized to classify text, images, and videos into 

multiple distinct groupings. The encoder was trained by 

providing it with text, picture, and video data, resulting in the 

incorporation of joint modality features. Healey and Picard 

[47] developed a method for evaluating strain in driving 

scenarios by utilizing the ECG, EMG, and RESP. The 

detection technique exhibited exceptional accuracy, above 

90%, across the three stress levels. Furthermore, the 

investigation revealed a robust correlation between the stress 

level of Heart Rate Variability (HRV) and RESP. Wijsman et 

al. [48] created generalized estimating equations as a method 

for evaluating EEG, RESP, and ECG to measure work-related 

stress. 

The approach demonstrated that each signal exhibited a 

stress correlation and achieved an average accuracy of 84.7% 

for two stress levels. By utilizing ECG and GSR, 

Sriramprakash et al. [49] suggested ML models for assessing 

work-related stress. The scientists concluded that the optimum 

feature combination was GSR and ECG, and the model's 

accuracy for two stress levels was 92.75%. Betti et al. [50] 

developed a wearable device that utilizes ECG, EDA, and 

EEG to track occupational stress levels. The technology 

demonstrated an 86% accuracy rate for two stress levels. 

Additionally, it was shown that physiological traits were 

associated with the amount of salivary cortisol, a stress 

indicator. Elzeiny and Qaraqe [51] spoke on the need to 

identify mental stress triggers and use early recognition tactics 

in the workplace. They provided several stress reduction 

strategies for both the business and its workers. Various 

methods used in the cited studies compared in Table 1. 

 

Table 1. Comparision of various studies 

 

Reference 
ML/DL 

Algorithms 
Result Demerits 

[51] VGGNet 69% 
Cross-modal retrieval is a 

very complex process. 

[52] ResNet 88% 
Training data with GRL 

is expensive. 

[53] CNN 72% 
The representation of the 

input data is not accurate. 

[54] 
DL 

Approach 
82% 

Cross modal Transformer 

is applied in fusing of 

multimodal data which 

affect the performance. 

[55] CNN 91% 
The size of the dataset 

was limited. 

[56] SVM 86% 

Limited features were 

extracted for stress 

classification. 

 

 

3. METHODS AND METHODOLOGY 

 

3.1 K-EmoCon 

 

The multimodal database, K-EmoCon [57], has detailed 

annotations of continuous emotions during realistic 

discussions. When examining emotions in social interactions, 

a new dataset must be used. The dataset contains multimodal 

measures from 16 sessions of paired arguments on social 

issues that lasted around 10 minutes each and were captured 

using technology that is readily accessible on the market. 

These measures include EEG signals, audiovisual recordings, 

and peripheral physiological signals. Since it contains 

emotional annotations from all three potential points of view, 

the debater, the debate partner, and the audience, which varies 

from earlier datasets. While viewing the discussion footage 

every five seconds, raters noted emotional manifestations 

regarding arousal/valence and 18 other emotion classes. The 

K-EmoCon, created due to the multi-perspective evaluation of 

emotions experienced during social interactions, is the first 

emotion dataset made accessible to the general public. We 

considered EEG, ECG, and ACC data for our research work.  

 

3.2 Pre-processing  

 

The combination of physiological signals with other sounds, 

such as motion artefacts, baseline wanders, or white noises, 

can result in distorted recorded waveforms and reduced feature 

quality. The EEG data has undergone preprocessing steps, 

which include applying a bandpass filter with a range of 4 Hz 

to 45 Hz, removing artifacts, and downsampling the original 

data to a frequency of 128 Hz. Filters with bandstop and 

bandpass characteristics were utilized to minimize noise from 

the ACC and ECG signals. The bandwidths of the filters were 

set between 58 and 62 Hz and 1.5 and 150 Hz respectively 

[58]. The task was accomplished by employing a low pass 

filter with a cut-off frequency of 0.5 Hz. The signals were 
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partitioned into non-overlapping windows of 10 seconds after 

eliminating the noise. Acute stress can be detected in real-time 

because of the short-term window. Lastly, a scale between 0 

and 1 was applied to the signal values. 

 

3.3 Setup for training  

 

The performance of the proposed DNN model was 

optimized using several hyper-parameters. The network 

treated the amount of 1D convolutional layers, dropout rate, 

and modules in the first and second LSTM as 

hyperparameters. The units in the LSTMs were also 

considered hyperparameters for processing EEG, ECG, and 

ACC data. The knowledge proportion and batch size were 

additional hyperparameters when training with Adam as the 

optimizer. The epoch was set to 50 after the models were 

successfully trained. We used Bayesian improvement of the 

Keras tuner to optimize the hyperparameters for the first 40 

trials of each fusion scenario. 

A progressive three-step strategy was employed, 

incorporating an initial phase to expedite the tuning process. 

The model was subsequently trained to utilize the updated 

hyperparameters without premature halting. The evaluation 

process was then completed using the model with the lowest 

validation loss. There is no text provided. As the number of 

epochs increases, the model exhibits a tendency to overfit the 

training set. The model with the lowest validation loss was 

selected to create an optimized model with robust 

generalization abilities, while avoiding overfitting. The 

calculation of validity failure and modification of hyper-

parameters were performed on the validation set. Then, the 

accuracy, Area Under ROC Curve (AUC), and F1-measure 

were used for evaluation. AUC and the F1 measure were 

macro-averaged using a one-to-one technique in the three-

level stress categorization. 

T-Stochastic Neighbour Embedding (t-SNE) was utilised 

for feature-level fusion to decrease the dimensionality of high-

dimensional features and display them in a two-dimensional 

environment. The purpose of its usage was to exhibit the 

output of the final dense layer subsequent to the ReLU 

activation in the trained model. Clear separation of separate 

classes in the space signifies successful training of the model. 

We developed a machine learning baseline model utilising a 

SVM. Features were derived from EEG, ECG, and ACC data 

in 10-second intervals. The mean and standard deviation of the 

supplied data were calculated. Analyse the attributes of each 

primary frame in the window separately, without merging 

them. The min-max scaling method was used to standardise 

each characteristic. The training, hyper-parameter tuning, and 

validation approaches were implemented using the same 

approach as the deep learning (DL) method. The coding and 

statistical analysis were mostly performed using Python 

(Version 3.6.10). Deep-learning libraries used include 

Tensorflow (Version 2.1), Keras tuner (Version 1.0.1), and 

Keras (Version 2.3.1).  

 

3.4 Feature extraction and fusion scenarios 

 

We utilised the enhanced framework from a previous study 

[59] to develop a deep neural network that evaluates 

physiological inputs. The system utilised convolutional layers 

for extracting local information and LSTMs for obtaining 

sequential information. We used the same filter and pooling 

size for ECG as indicated in paper [60], but EEG used a filter 

size of 15 and a pooling size of 20, even though their network 

architecture was similar. The characteristics were sequentially 

inputted into bidirectional LSTMs. In the last LSTMs, an 

attention unit with the same components as the preceding 

LSTM was incorporated, as seen in Figure 2. Feature-level 

data fusion was performed. Feature-level fusion aggregates the 

features obtained from each input and feeds them into a 

classifier to get a final prediction. Decision-level fusion is 

efficient in detecting stress even in cases when certain signals 

are unavailable, while it does not take into account the 

relationship between the features obtained from each input. 

  

 
 

Figure 2. Feature extraction from each input 

 

The fusion situations considered are fECG+fEEG, fEEG+fACC, 

fECG+fACC, and fECG+fEEG+fACC. The features collected from 

each fusion scenario were then concatenated, and the final 

dense unit was in charge of feature fusion, as shown in Figure 

3. The ultimate probability was determined by weighing and 

summing the scores of each model.  

 

 
 

Figure 3. Feature-level fusion 

 

The weights with the highest average AUC score were 

selected in the justification set. A grid search was utilized to 

find the weights. 

 

3.5 Kruskal-Wallis analysis 

 

his section assesses the efficacy of the various methods 

while presenting a supervised detection system. Because 

characteristics are not normally distributed, the Kruskal-

Wallis test [61] compares data from several stages to 
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demonstrate a substantial disagreement. This test allows you 

to statistically assess if samples from different phases come 

from the same group. For this reason, a confidence interval(P-

value), which is a value between 0 and 1, is computed for each 

attribute. The three types of stress have a significant statistical 

difference if the P-value is less than 0.01, else the feature is 

eliminated. Additionally, improving accuracy by developing 

more models were considered as follows. 

1) Samples were categorized into two or more clusters using 

the Fuzzy C-Means (FCM) method [62], based on the 

similarity of their feature sets. 

2) The Kruskal-Wallis test was employed to remove 

inappropriate features, and a distinct model was developed for 

each cluster. 

3) Each model computes and stores the average values of 

each feature. 

4) The dataset was initially divided into two segments, 15% 

and 30% respectively, which were then used to evaluate each 

model through the following two methods: 

a) Features of the test data are retrieved based on the 

characteristics specific to each cluster. 

b) On the second evaluation, the features of a sample are 

compared with the average of the corresponding features in the 

models. The sample is then evaluated using the model that best 

fits its characteristics. 

The outcomes of this approach were contrasted with the 

earlier, more generic outcomes. This technique resolves the 

issue of individuals' varying stress characteristics and 

symptoms. However, there needs to be a discernible increase 

in accuracy in these customized models. Consequently, the 

generic supervised model is ultimately chosen. Customized 

models may sometimes outperform generic ones. The right 

sections extract features, and Kruskal-Wallis analysis is used 

to choose the best feature set. 

 

3.6 Classifier 

 

3.6.1 KNN 

In this study, KNN [63] are employed for the purpose of 

categorization. The k-NN classifier is extensively used for 

classification due to its user-friendly interface and efficient 

processing capabilities. The process involves classifying the 

relevant classes by comparing the extracted features and 

selection technique with the nearby k-learning data. In order 

to reduce the likelihood of specific outcomes for a given set of 

learning data, we utilize k-fold validation to separate the 

testing and training information (where k = 3). 

 

3.6.2 Random forest 

A practical machine-learning approach for classifying stress 

is a random forest. The algorithm builds numerous decision 

trees and aggregates their predictions for final categorization. 

One would need to collect a dataset of stress-related 

characteristics to utilize random forest for stress classification. 

These characteristics could include physiological 

measurements like EEG, ACC, and ECG. Following that, the 

dataset would be split into testing and training sets. Using 

various subsets of the training phase and randomly choosing a 

subset of characteristics for each tree, numerous decision trees 

would be created using the training set to develop the random 

forest model. 

The decision trees for this analysis will be trained using the 

Classification and Regression Trees (CART) or ID3 (Iterative 

Dichotomiser 3) algorithm. Once developed, the random forest 

model will be employed to classify new data instances related 

to stress, determining stress levels as either low or high based 

on stress-related features. The use of random forest for stress 

classification offers significant advantages; it effectively 

handles noisy data and missing values and is resistant to 

overfitting. This resistance is crucial as it prevents the model 

from being overly complex, which can lead to excellent 

performance on training data but poor generalization to new 

data. Consequently, it is imperative to explore the potential of 

the random forest as a robust and versatile algorithm for stress 

classification. 

 

3.6.3 Decision tree 

Another well-liked machine learning technique that may be 

utilized for stress categorization is the decision tree algorithm 

[64]. It operates by building a tree-like model, where each leaf 

node stands in for a class label, each branch for the trial result, 

and each interior node for a test on an attribute. A database of 

stress-related attributes would need to be acquired to apply a 

decision tree method for stress classification comparable to a 

random forest approach. The decision tree framework would 

then be constructed using the training data set after dividing 

the dataset into testing and training sets. Depending on a 

criterion like knowledge gain or the Gini index, the algorithm 

for decision trees would select the appropriate characteristic to 

divide the information into three groups. Unless a stopping 

requirement is satisfied, such as reaching a specific depth or 

having minimal occurrences in a leaf node, picking the most 

suitable attribute and splitting the data would be performed 

iteratively. The decision tree model may be used to categorize 

fresh instances of stress-related data after it has been 

constructed. The model would use the attributes associated 

with stress as input and proceed through the decision tree until 

it reached a leaf node, which would then get a class label of 

either low, medium, or high stress. 

Decision trees may also cope with missing values and 

numerical and categorical data. The decision tree method is 

vulnerable to overfitting, which happens when the tree is very 

complicated and attempts to match the data noise. Over-

fittings may be avoided using pruning strategies like decreased 

error or cost complexity. Therefore, it is worthwhile to 

investigate the decision tree method's potential in this field 

because it is a straightforward and efficient technique that may 

be utilized for stress categorization. 

 

3.6.4 SVM 

The Support Vector Machine technique and clustering 

models were then used to categorize the stress level. Creating 

an ideal hyperplane that can distinguish between the three 

classes using the gathered data is the underlying notion behind 

an SVM classifier. Selecting the kernel function to be used is 

the first crucial step in SVM. The feature space and mapping 

characteristics, essential to non-linear classification and 

regression in SVM, are determined by choice of the kernel 

function. For example, it was employed in the optimization 

procedure due to the fact that the SVM implementation 

utilizing radial basis functions and polynomial kernels can 

autonomously determine the quantity of centers, their 

positions, and their weights. Multiple studies have shown that 

SVM with a polynomial kernel function performed better than 

the SVM with a radial basis function (RBF) kernel function in 

all aspects and achieved the best accuracy in categorization 

[65]. The poly kernel was chosen for this experiment, and its 

expression is shown in Eq. (1). 
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𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0 (1) 

 

Optimal performance of the kernel function requires fine-

tuning and enhancement of its parameters. In the given 

formula, the parameter d (4) represents the extent to which the 

polynomial kernel influences the adaptability of the classifier.  

The retrograde linear kernel at the lowest degree, d = 1, is 

not the best for a non-linear feature. A hyperplane with a 

dimensionality of 2 is sufficient for effectively differentiating 

between the two classes and creating a decision boundary that 

allows for flexibility. The poly kernel with d = 3 was claimed 

to have the lowermost categorization error and increased 

performance but, without a doubt, substantially more time-

consuming processing. 

All systems are implemented using the Adam optimizer, 

with a mini-batch size of 64 and the default learning rate. The 

loss function employed is Binary Cross-Entropy (BCE) as 

defined in Eq. (2). Here, P(Yi) represents the predicted label 

for all N samples, and Yi denotes the actual label. 

 

𝐵𝐶𝐸(𝑦𝑖 , 𝑝(𝑦𝑖)) =

1

𝑁
∑𝑙𝑜𝑔(𝑝(𝑦𝑖)) ∗ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖)) ∗ (1 − 𝑦𝑖) 

 (2) 

 

An early-stopping technique is employed to control the 

duration of training if the loss function [66] does not decrease 

for a continuous period of 30 epochs. The evaluation of several 

models is conducted based on their accuracy and F1-score. 

 

Algorithm: Minimization of Loss 

 

1: INPUT: UECG_EEG_ACC (concatenated EEG and ECG and 

ACC features) 

2: PARAMETERS: Weights of the hidden units Wh1, Wh2, 

and Wh3 

3: Wh1, Wh2 and Wh3← 0 // Hidden unit initialization  

4: YEEG_ECG_ACC ← null // Recreated input UECG_EEG_ACC 

5: N← Epoch No  

6: for (i=0; i<=N; i++) 

7: Use the encoder function to convert the input 

UEEG_ECG_ACC into a hidden illustration hN. 

8: Yh1 = f h1 (UEEG_ECG_ACC, Wh1)  

9: Yh2 = fh2(UEEG_ECG_ACC, Wh2)  

10: Yh3 = fh1(UEEG_ECG_ACC, Wh3)  

11: The decoder function yields Y from a hidden 

representation of hN. 

12: YEEG_ECG_ACC = fY (Yh3, WY)  

13: Loss θ = L (UECG_EEG_ACC, Yjoint)  

14: end for 

15: return θ  

 

In 10-fold cross-validation, the dataset is partitioned into 10 

equivalent segments, known as folds. The overall protocol is 

as follows:  

1. The dataset is divided into 10 subgroups of around the 

same size using a random process.  

2. In each cycle, a single subset is selected as the validation 

set, while the other 9 subsets are utilised as the training set.  

3. The model undergoes training using the training set. 

4. Subsequently, the proficient model is assessed using the 

validation set, and performance measures are computed.  

5. The process of steps 2-4 is iterated 10 times, with each of 

the 10 subsets being utilised precisely once as the validation 

set.  

6. Following all iterations, the performance measures, such 

as accuracy and error, from each fold are averaged to provide 

a singular assessment of the model's performance.  

It is crucial to acknowledge that throughout each iteration, 

the hyperparameters of the model are often adjusted by 

utilising a distinct validation set that is part of the training set. 

Furthermore, once the cross-validation process is complete, 

the ultimate model may be trained using the complete dataset, 

which includes the validation set. This trained model can then 

be used for deployment or for additional assessment using a 

separate test set, which constitutes 30% of the data.  

 

3.7 Hyperparameter optimization 

 

The primary goal is to enhance the hyperparameters of the 

LSTM classifier using the advanced WOA algorithm to 

increase performance in stress classification. This study [67] 

focuses on the parameters inside the framework, namely the 

batch size and the quantity of hidden neurons. The enhanced 

WOA method begins by initialising the hyperparameters using 

randomly generated initial solutions. It then iteratively works 

to enhance the accuracy of the stress classification model until 

the stopping requirements are satisfied. The fitness function in 

LSTM networks evaluates and provides the accuracy of stress 

categorization.  

 

Algorithm: Enhanced Whale Optimization Algorithm          

 

Input ← number of whales (N), maximum iterations 

(T_max), 

Max episodes (E_max ),Max_steps(T) 

Output ← optimized set of (α actor, α critic, γ, batch size, 

τ) hyperparameters. 

Begin 

set number of whales (N) 

Initialize whales' positions( 𝛼𝑎𝑐𝑡𝑜𝑟 , 𝛼𝑐𝑟𝑖𝑡𝑖𝑐 ,  batch size, r) 

randomly 

while (t <T_max ) 

For (i=1 to N) 

Randomly initialize main critic network Q(s,a) and main 

actor-network μ(s) with weights ω and θ 

Initialize target critic network ϕ(s,a) and target actor-

network μ'(s) with weights ω and θ 

Initialize replay buffer R 

Set hyperparameters (a_"acton" α_"critic" Y, batch size, r) 

as in position vector of the current whale 

For (i=1 to E_max ) do 

Initialize action exploration process N 

Receive initial state s1 from environment 

For j=1 to T do 

Execute action a_t=μ(st∣θ)+N 

Observe reward rt a and successor state s_(t+1) 

Store experience (st, at, rt,st+1) in R 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝜙(𝑠𝑖+1, 𝜇(𝑠𝑖+1 ∣ �̇�) ∣ �̇�) 

Update the critic by minimizing the loss in Eq 𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖 ∣ 𝜔))

2
 

Update the target network weight according to Eq. �̇� ←
𝜏𝜔 + (1 − 𝜏)�̇� 

End for 

End for  

Set the fitness of each whale to the accumulated train 

rewards value 

Find the best whale X* with the highest fitness  
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Update parameters (a, A,c,and p)  

Update whales’ positions  

End for  

Update the current best whale X*  

t = t+1 

End while  

Return X* 

End 

 

 

4. RESULTS AND DISCUSSION 

 

By combining several characteristics, the categorization 

system may utilise a wide range of information sources to 

make more knowledgeable selections. Feature fusion 

approaches amalgamate characteristics in a manner that 

amplifies their ability to differentiate between stress and non-

stress conditions. This can result in a more efficient 

differentiation of stress-induced patterns. Human stress is a 

multifaceted occurrence that is affected by a range of 

elements, such as individual variations, situational 

circumstances, and measuring inaccuracies. Feature fusion 

strategies enhance the resilience of the classification system 

by amalgamating data from different sources, hence mitigating 

the influence of fluctuations in individual feature domains. 

Feature fusion approaches can effectively decrease the 

dimensionality of the input data while retaining important 

information.  

By mitigating the curse of dimensionality, the efficiency of 

the classification process can be improved. Feature fusion 

strategies enhance model generalisation by identifying 

underlying patterns that are constant across diverse 

populations, situations, or measurement modalities. This can 

result in enhanced stress categorization accuracy across a wide 

range of situations. Feature fusion techniques may be modified 

and tailored to meet the unique needs and limitations of the 

stress categorization task. Researchers can conduct 

experiments using various fusion tactics and combinations to 

enhance performance, taking into account the data and domain 

knowledge that is accessible. Feature fusion approaches 

enable researchers to integrate pre-existing information or 

specialised knowledge into the process of categorization. To 

enhance the effectiveness of stress categorization, it may be 

necessary to incorporate domain-specific connections or 

restrictions into the fusion model through encoding. 

 

Table 2. Metrics based on a different combination of fusion 

methods 

 
Combination Accuracy AUC  F1-Score 

fECG+fEEG 64.3 0.56 0.39 

fEEG+fACC 68.7 0.53 0.36 

fECG+fACC 82.2 0.72 0.48 

fECG+fEEG+fACC 94.58 0.82 0.70 

 

Table 2 includes the metrics for the three-level stress 

categorization. The feature-level fusion of fECG+fEEG+fACC had 

the most excellent average accuracy (94.58%), AUC (0.82), 

and F1 score among the several fusion techniques (0.70). 

There were substantial variations in accuracy and AUC when 

performance was compared to the baseline model (t-test, 5% 

significance level). The lowest average accuracy (64.3%), 

lowest average AUC (0.53), and lowest F1 score were shown 

by the feature-level fusion fECG+fEEG and fEEG+fACC, 

respectively (0.36). When given physiological signals (fECG, 

fees, and fACC), fECG+fEEG+fACC performed better in feature-

level fusion situations than fECG+fEEG, fEEG+fACC, or fECG+fACC. 

The sensitivity, specificity, and the system's accuracy are 

evaluated using the training and testing datasets, which are 

picked at random. The average of the rounds' results is 

calculated using 70% of the data for testing and 30% for 

training. To find the optimal model, many supervised 

techniques are used and contrasted. The Gini index is the split 

criterion while creating a decision tree. One hundred decision 

tree learners are produced by using the random forest 

bootstrap. The radial basis function creates the K Nearest 

Neighbor using K = 3 as the SVM kernel. In this instance, the 

algorithms' chosen parameters produced the greatest accuracy.  

 

Table 3. Results of various algorithms based on the K-EmoCon dataset 

 

EEG+ECG+ACC 

Accuracy 

(During 

Training) 

Accuracy 

(During 

Testing) 

Sensitivity 

(During 

Training) 

Sensitivity 

(During 

Testing) 

Specificity 

(During 

Training) 

Specificity 

(During 

Testing) 

Decision tree 

µ±SD 
87.6±1.8 87.4±4.6 87.6±1.5 81.8±5.9 86.1±3.0 83.5±9.4 

Random forest 

µ±SD 
90.0±0.0 92.7±3.2 87.7±1.2 84.1±3.1 84.2±2.0 82.3±5.5 

KNN µ±SD 86.1±1.4 93.4±2.5 87.0±1.1 95.2±3.1 94.8±2.2 86.6±5.5 

SVM µ±SD 94.0±0.0 94.58±1.9 90±0.0 86.8±2.7 90.0±0.0 93.4±3.3 
µ- Mean, SD- Standard Deviation 

 

Table 4. Comparison of recent studies using the DL approach 

 
Research Input Data No. of Classes Classifier Accuracy 

[20] ECG 2 KNN 93.12 

[30] ECG,EDA,EEG 2 SVM 94.4 

[29] EDA 3 LDA 85.05 

[28] HRV 2 MLP 86 

[9] PPG,EDA,ACC 2 MLP 85.06 

[22] ECG,EDA,EMG 2 LDA 82.59 

[27] PPG,EDA,TEMP 2 RF 94 

Our Work EEG, ECG, ACC 3 SVM 94.58 
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For example, a loop function that iteratively assigns 

multiple values to the variable K and identifies the model with 

the highest level of accuracy is used to identify the optimal 

value of K. Along with these techniques, a Decision Tree 

Network, Random Forest, and a group of learners using KNN 

were first looked at as well but were disregarded due to their 

poor accuracy.  

Table 3 displays the general efficacy of several approaches. 

Furthermore, the standard deviation is included. If all of the 

data are utilized to create the final model, the test column's 

scores demonstrate how well we expect to be able to identify 

stress.  

Table 4 presents a comparison of different research efforts 

and their respective performances. Based on our knowledge, 

our work is the first to introduce a fusion strategy using deep 

learning that incorporates many types of data and different 

data sources to investigate job-related stress. This approach is 

discussed in the Related Works section. While we applied a 

well-trained network to assess the probability of human 

emotions, they used CNN-LSTM [20] and Bi-LSTM [22] to 

interpret physiological data and the order of psychological 

attributes, respectively. Regarding the classification problem, 

[29] considered three levels of stress, [27] two levels. 

However, in our study, we evaluated three levels of stress. 

Except for one study [28] that employed a driving simulator as 

the experimental environment, most trials were static, 

including the one we looked at. Our study did well in terms of 

accuracy compared to earlier DL investigations. Next, 

compared to paper [27], our analysis showed similar accuracy 

in the three-level stress categorization. Lastly, our examination 

showed that, compared to the DL study [29], the three-level 

stress categorization had a lower accuracy. The results of our 

investigation and previous studies could have been more 

consistent. This discrepancy might be explained by several 

factors, such as experimental methods, the number of 

participants (size of the datasets), the window size, or the kind 

of data. The confusion matrix summarizes the three-level 

stress SVM classification's performance. 

Table 5 demonstrates that 30 real examples from the low-

stress category were accurately identified as belonging to that 

condition. Out of the total 75 occurrences, this accounted for 

40%, and all of those instances were accurately categorized 

into the appropriate class. Regarding the moderate degree of 

stress, 25 occurrences, up to 36%, were diagnosed correctly, 

and the accuracy rate for that class was 93%. Two actual 

events from the high-stress class, or 1% of the 18 highly 

stressed forecasts, which amounted to 15 instances, or 20%, 

were incorrectly categorized as moderate stress. The confusion 

matrix indicates that the three-level stress categorization 

achieved an accuracy of 94% in predicting stress levels, with 

only 6% of predictions being wrong. 

Table 6 displays the performance of all models, showing the 

average accuracy together with the standard deviation in 

various iterations. The Random Forest method had a shorter 

processing time than the others, but its performance was lower 

than KNN and SVM algorithms and greater than Decision 

Tree algorithms. Conversely, the SVM method had the longest 

processing time across all iterations. Nevertheless, its 

performance surpassed that of all other algorithms. 

 

4.1 t-SNE visualization  

 

We reveal the t-distributed Stochastic Neighbor Embedding 

(t-SNE) [68] before and throughout the procedure to better 

understand the joint feature learning that our model performed. 

The t-SNE method maintains two points nearby if they have 

the same distribution by projecting multi-dimensional data 

into two-dimensional or three-dimensional regions. Similar 

separations between distant places may be seen in the t-SNE 

projections. We utilize t-SNE to map the combined 

characteristics onto a 2-Dimensional plane. 

Figure 4 illustrates the feature visualization of UECG-EEG-

ACC (standard features) and joint aspects acquired by the 

MSE cost function on the entire signal of all benchmark 

datasets. The red dots stand for ECG characteristics, the blue 

for ACC attributes, and the green for EEG traits. Combining 

features extraction aims to combine the traits of many 

modalities in one place. After collaborative feature learning, 

we saw substantial overlap in visualization across the ECG, 

EEG, and ACC modalities. Figure 4 shows that the modality 

gap between the distribution of modalities has significantly 

decreased. 

 

Table 5. Confusion matrix for Three level stress classification by the SVM 

 

Actual Class 

Predicted Class 
Accuracy (%)  Low Level Moderate Level High Level 

Low Level 30 0 0 100 

Moderate Level 1 25 1 93 

High Level 1 2 15 84 

 

Table 6. The average accuracy and time of different models during training 

 
Models No. Iteration Time Accuracy (Mean±std) 

Decision tree 

50 13h 58.16±2.1 

75 17h 59.95±2.1 

100 21h 87.6±4.46 

Random forest 

50 9h 70.17±1.4 

75 12h 72.98±1.4 

100 14h 90.35±1.06 

KNN 

50 15h 73.32±0.7 

75 20h 76.99±9.4 

100 23h 86.61±1.7 

SVM 

50 19h 82.77±1.1 

75 21h 83.91±1.9 

100 25h 94.52±1.3 
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Figure 4. Outcomes of the feature-based fusion for 

categorizations of stress using fECG, fEEG, and fACC 

demonstrate the highest/lowest accuracy 

 

 

5. CONCLUSION 

 

Using multimodal and heterogeneous data, we provided a 

DL technique in this article for precisely identifying work-

related stress. We created the DNN structures that handled the 

K-EmoCon multimodal dataset's ECG, EEG, and ACC feature 

data. After that, we fused features at the feature level. The 

feature-level fusion fECG+fEEG+fACC had the most significant 

average performance in three-level stress categorizations. By 

employing feature level fusion and utilizing a poly kernel, the 

SVM achieved an impressive accuracy of 94% in categorizing 

the data into three distinct stress levels: low, moderate, and 

high. The model created by the DL technique may assist in 

enhancing the mental healthcare of workers, reducing stress-

related costs, and adequately detecting stress. 

This study suggested an alternative framework for 

developing strong and dependable stress categorization 

models utilising sophisticated deep learning methods. 

Although the results of this study are positive, it is important 

to recognise some limitations. The suggested approach can 

help identify suitable LSTM hyperparameter values for 

enhancing stress classification. It is recommended to evaluate 

the algorithm's performance by comparing it to other 

classifiers and testing it in various circumstances. In this work, 

we solely examined the efficacy of the suggested approach on 

two hyperparameters: batch size and the number of hidden 

neurons. It would be beneficial to investigate the effectiveness 

of the suggested framework on different hyperparameters.  

The suggested temporal multimodal fusion demonstrated 

satisfactory performance, however employing a more intricate 

classifier with additional layers might enhance stress 

classification performance. It is advisable to apply this method 

to several datasets to assess its efficacy in stress 

categorization. These methods are exclusively available for 

offline data processing, prioritising accuracy above computing 

efficiency. Training processes can be placed on the cloud in 

order to reduce response time in the era of cloud computing. 

The presented models are appropriate for real-time affective 

intelligence systems because of the tiny window widths 

considered, ranging from 1 to 10 seconds.  

The suggested algorithms for stress detection may be 

integrated into many settings like e-health monitoring, mental 

health treatment, intelligent teaching, or gaming. The 

algorithms need enhancement to provide quicker and more 

efficient results for the new applications and should be 

implemented in cloud computing.  
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