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Human pose estimation is an important and widely studied task in computer vision. One of 

the difficulties in human pose estimation is that the model is vulnerable to complex 

backgrounds when making predictions. In this paper, we propose a deep high-resolution 

network based on segmentation guided. A conceptually simple but computationally efficient 

segmentation guided module is used to generate segmentation maps. The obtained 

segmentation map will be used as a spatial attention map in the feature extraction stage. 

Since the skeletal point region is used as the foreground in the segmentation map, the model 

pays more attention to the key point region to effectively reduce the influence of complex 

background on the prediction results. The segmentation guided module provides a spatial 

attention map with a priori knowledge, unlike the traditional spatial attention mechanism. 

To verify the effectiveness of our method, we conducted a series of comparison experiments 

on the MPII human pose dataset and the COCO2017 keypoint detection dataset. The highest 

boosting effect of our model compared to HRNet on the COCO2017 dataset is up to 3%. 

The experimental results show that this segmentation guidance mechanism is effective in 

improving accuracy.  
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1. INTRODUCTION

Human pose estimation is one of the most important tasks 

with many applications in computer vision, such as human 

action recognition [1], human-computer interaction [2], 

activity analyses and tracking [3]. The task of 2D human pose 

estimation is to detect keypoints of the human body (e.g. head, 

shoulder, knee, ankle, etc.) in a  given RGB image. Although 

with the development of Convolutional Neural Networks, 

human body pose estimation has made significant progress, 

human body pose estimation is still a challenging task due to 

object occlusion, illumination changes, and severe 

deformation. 

Currently, deep learning-based methods for human pose 

estimation have achieved state-of-the-art performance. Most 

models have networks that repeatedly downsample the feature 

maps from high resolution to low resolution and then 

upsample the high resolution from the low resolution and fuse 

the features of different resolutions in the process. When 

downsampling high-resolution feature maps to low-resolution 

feature maps, information is easily lost. HRNet [4], recently 

proposed by Sun et al., can learn features at different scales 

while maintaining high-resolution features. The model 

contains four parallel branches with different resolution 

feature maps, and the high-resolution branch runs through the 

whole model. The network structure can be divided into five 

stages. The network structure can be divided into five stages, 

the first stage is formed by a high-resolution sub-network, and 

the subsequent stages connect high-to-low resolution sub-

networks in a parallel manner. Each sub-network is 

responsible for the extraction of feature maps of different 

resolutions. At the end of each stage, the feature maps of 

different resolutions are fused and then used as the input for 

the next stage. The feature maps of different resolutions are 

fused and used as input for the next stage at the end of each 

stage. Due to its excellent performance, it is recognized as one 

of the baseline models for pose estimation tasks. 

Most of the existing models for human pose estimation only 

use point annotations to generate heatmaps to supervise the 

model output [4, 5], where the model training is completely 

dependent on the heatmap. Each pixel will contribute equally 

to the network loss, resulting in the background region's loss 

dominating the model loss, making the model optimization 

difficult. The model does not fully exploit the supervisory role 

of point annotations. In the field of crowd counting, Shi et al. 

[6] pioneered the use of segmentation maps to provide spatial

supervision. Specifically, a branch containing an auxiliary loss

is added to generate segmentation maps. Inspired by this, we

used HRNet as the backbone of the model for feature

extraction and then added segmentation guided modules to the

high-resolution branches at each stage. Specifically, the

segmentation map generated by the segmentation guided

module is multiplied with the feature map to increase the

weight of the key point region in the loss function. Finally, a
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dynamic weighted averaging algorithm is used to dynamically 

co-operate the segmentation loss with the pose estimation loss 

as a percentage of the final loss according to the convergence 

rate of the task. In the standard attention mechanism, the 

weighting map is obtained by training on a specific task. It is 

implicit learning [7]. In contrast, the segmentation map 

provides spatial supervision containing a priori knowledge. 

More importantly, the segmentation map is universal and 

simple to generate so that the key point annotation of any 

human pose estimation dataset can be used to generate the 

corresponding segmentation map to extend the dataset. 

In this paper, to reduce the influence of background region 

features on the prediction results, we propose a Segmentation 

Guided Module (SGM) to make the model focus on key point 

region features. Finally, the final model is obtained by multi-

task training using dynamic weighting [8]. 

The network structure is described in Figure 1 to illustrate 

the design of our segmentation guidance mechanism. To verify 

the effectiveness of our proposed method, experiments are 

conducted on two significant mainstream human pose 

estimation datasets, MPII [9] and COCO2017 [10]. The 

experimental results show that the segmentation guidance 

mechanism can effectively improve the accuracy of human 

pose estimation. Meanwhile, comparative experiments on 

different design proposals of guidance mechanisms proved the 

proposed scheme was the most reasonable scheme with the 

best results. 

 

 

 
 

Figure 1. Architecture of the segmentation guided human pose estimation network using HRNet 
 

 

2. RELATED WORK 
 

2.1 Human pose estimation 
 

Before the advent of neural networks, most human pose 

estimation algorithms used tree models [11] and graphical 

models [12] to solve human keypoint detection problems, such 

as mixed body parts or graphical structures. These methods 

usually extract features for individual parts and consider pair-

wise relationships to optimize the relationship between 

skeletal points to obtain more efficient and accurate 

inferences. The positions of these parts can be obtained using 

DPM. 

Convolutional neural networks have excelled in various 

complex computer vision tasks, including detection, 

recognition, and semantic segmentation. Since the work of 

DeepPose by Toshev and Szegedy [13], the research on human 

pose estimation started to shift from classical methods to deep 

networks because of its better performance. Currently, there 

are two mainstream approaches: regression-based and 

detection-based methods. The regression-based approach 

regresses key point locations by learning a mapping from 

images to keypoint coordinates through an end-to-end 

framework. The detection-based approach estimates the 

keypoint heatmaps [14] and then selects the location with the 

highest heat values as the keypoints. 

The classical model Hourglass is a multi-stage structure. 

Hourglass consists of a stack of Hourglass modules. The 

hourglass module is a symmetric structure that captures and 

integrates information at all scales of an image by repeating 

the bottom-up and top-down processes. Specifically, the 

bottom-up process uses convolution and pooling operations to 

generate high-resolution feature representations and low-

resolution feature representations. Feature representations of 

different resolutions are processed using separate sub-

networks. The top-down process uses the nearest-neighbor 

interpolation upsampling method to recover high-resolution 

feature representations from low-resolution feature 

representations. Finally, the different resolution feature 

information is fused using pixel point summation. Key point 

heatmaps are estimated for each Hourglass module. During 

training, the cascade of Hourglass structures and the role of 

intermediate supervised layers allow the prediction results to 

be continuously corrected and utilized. 

CPN [15], the champion model of COCO 2017 Keypoint 

Benchmark, utilizes two sub-networks: GlobalNet and 

RefineNet for human pose estimation.GlobalNet outputs the 

precise pixel locations of easily recognized human body key 

points (e.g., head, eyes, etc.).RefineNet uses the pyramid 

structure to fuse features at different resolutions so that some 

obscured and hard-to-locate keypoints can be better localized 

based on the fused contextual information. 

HRNet is a mainstream and effective baseline model. While 

previous models need to obtain information at different scales 

through bottom-up and top-down processes, HRNet maintains 

a high-resolution representation by connecting multi-

resolution subnets in parallel. It minimizes the loss of 

information. 

In conclusion, deep learning-based human pose estimation 

networks have improved significantly in accuracy and 

efficiency compared to traditional methods. The current 

research on human pose estimation has also entirely shifted 

from traditional methods to deep learning. 
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2.2 Attention mechanism 

 

Attention mechanisms are widely used in a wide variety of 

computer vision tasks, among which soft attention 

mechanisms are the most prevalent. In the soft attention 

mechanism, spatial attention is formed by focusing on 

different image regions, and channel attention is formed by 

focusing on different features channels. Due to its microscopic 

nature, the gradients computed by the neural network can be 

propagated forward in the soft attention module, and the 

weight parameters of the soft attention module can be 

continuously updated by backward feedback. Therefore, the 

soft attention mechanism can be added directly to the end-to-

end deep neural network. A common way to use the soft 

attention mechanism in a network is to add a network branch 

with one or more convolutional layers. Each branch generates 

an attention map of an image region and overlays it with 

information from different steps to make the final decision. 

The essence of the spatial attention mechanism is to pay 

different levels of attention to different locations on the feature 

map, selectively focusing on the important parts of the image 

and ignoring other irrelevant background information, thus 

contributing to the generation of the feature map. 

The representative Spatial Transformer Networks (STN) 

[16] algorithm uses a spatial transformer module first to 

identify the regions of the image information that need to be 

focused on and then enhances the importance of this region 

and weakens the importance of other areas to make the 

extraction of features more focused on the essential areas. The 

STN algorithm focuses on the relationship between different 

channels of the feature map, using squeeze and excitation 

operations to obtain a 1 × 1 × C attention map with each value 

characterizing the importance of its corresponding channel. 

Then a scale operation is performed on the attention map and 

the original feature map to enhance the features of important 

channels and suppress the features that are not useful for the 

current task. BAM [17] and CBAM [18] combine spatial and 

channel information to generate the final attention weights, 

which are then pointwise multiplied with the feature map to 

adjust the features adaptively. 

Spatial attention mechanisms have been broadly studied in 

human pose estimation. For example, Chu et al. used a stacked 

hourglass network to generate attention maps of different 

resolutions, with low-resolution attention maps focusing on 

the whole human body and high-resolution attention maps 

focusing on specific parts of the body. Finally, the model fuses 

each body part's attentional maps of different resolutions to 

generate the corresponding local attentional maps. To improve 

the final results, Huo et al. use HRNet as the skeleton network 

and add spatial attentional mechanisms and channel attentional 

mechanisms to the network. The above models' attention maps 

are implicitly obtained by accompanying the key point heat 

map regression task. However, the attention graph based on 

segmentation guidance can be derived from the existing 

segmentation graph without learning the attention graph from 

scratch. More specifically, we construct a segmentation map 

as an additional but free, supervised signal for accurate pose 

estimation of the human body. 

 

 

3. APPROACH 

 

In this study, Human pose estimation is formulated as a 

heatmap regression problem. Our goal is to learn a 

convolutional neural network model, denoted as ℱ. The model 

takes image I as input and learns to regress a heatmap �̂�𝑖 for 

each key point by the following method: 

 

�̂�𝑖 = ℱ(𝐼; 𝛩) (1) 

 

𝛩 denotes the parameters to be learned in the neural network 

model. 

Our model uses HRNet as the backbone network, a high-

resolution network with excellent performance. HRNet 

consists of five stages. Each stage consists of branches that 

extract features at different resolutions, scales the extracted 

feature map size by upsampling or downsampling, and then 

fuses the extracted feature maps from different branches with 

each other. Each branch of each stage receives the fused 

information from the previous stages. This network design 

ensures that effective high-resolution features are obtained 

when fusing low-resolution features, and eventually, a more 

accurate heat map of key points is obtained. 

We add a segmentation guided module to the network as an 

attention layer to reduce the weight of features in the 

background region in the loss function, allowing the model to 

concentrate on skeletal point region features and thus improve 

the accuracy of skeletal point heat map estimation. In contrast 

to the traditional way of training the attention layer, we use an 

almost free ground truth segmentation map as an additional 

guide to training the attention layer. 

We use dynamic weighted averaging in the pose estimation 

network training to balance the share of heat map loss and 

segmentation map loss in the final loss. The heat map loss and 

segmentation map loss for each iteration are recorded and 

compared with the previous losses to obtain the training speed 

for the pose estimation and attention generation tasks. The 

share of each task in the final loss is adjusted based on the 

training speed so that the two tasks learn at similar speeds. 

 

3.1 Point annotations 

 

Point annotations are used in our approach in two ways: heat 

maps and segmentation maps. The heat map makes it possible 

to solve the human pose recognition problem without directly 

regressing the coordinates of key points. The segmentation 

maps generated by point annotation can be used to provide 

spatial focus; intuitively, regions within a specific range of 

point annotations are of high interest. We use a method similar 

to heat map generation to generate segmentation maps from 

point annotations. The binarized segmentation value at 

position p in the image I is represented as follows: 

 

𝑆(𝑝) = {
1, if ∃𝑝∈𝜌(‖𝑝 − 𝑃‖2 ≤ 𝑟)

0, otherwise 
 (2) 

 

where, p is a two-dimensional position vector (x, y) and  is the 

set of all key points of the human body, P is a two-dimensional 

position vector of a human skeleton point, and ||•|| is the 

Euclidean norm. r is the radius of the high response region. 

In our approach, the true value 𝐻𝑖(𝑝) of the heat map for the 

ith keypoint is generated by a Gaussian template with 𝜎 = 2 

and without normalization. 

 

𝐻𝑖(𝑝) = 

{𝑒
−

(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2

2𝜎2 , if (‖𝑥 − 𝑥𝑖‖ ≤ 𝑙 and ‖𝑦 − 𝑦𝑖‖ ≤ 𝑙)

0, otherwise
 

(3) 
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(𝑥𝑖 , 𝑦𝑖) denotes the two-dimensional position coordinates of 

the ith skeletal point in the picture, and l denotes the side 

length of a high response square region. A Gaussian kernel is 

used to generate the heat map true value within a square area 

centered at p. For places outside the square region, the heat 

map truth value is 0. 

 

3.2 Segmentation guided module 

 

The Segmentation Guided Module (SGM) is shown in 

Figure 2, consisting of a 3 × 3 convolutional layer, a 1 × 1 

convolutional layer, and a sigmoid activation function. A 

spatial attention map is generated under the supervision of the 

segmentation map. The weight of each region in an image is 

different, and the model should focus on the areas that are 

significant to the task. Locating the critical areas in an image 

through the spatial attention mechanism can effectively 

alleviate the problem of complex background interference and 

thus improve the final results of the model. 

The mechanism of the segmentation bootstrap module is 

shown in Figure 3. x denotes the output convolutional features 

of the high-resolution branch of the s-stage. We use a 

convolutional layer with a convolutional kernel size of 3 × 3 

containing the parameter x to map x into a feature map y that 

is more suitable for predicting the segmentation map, followed 

by a convolutional layer with a convolutional kernel size of 1 

× 1 to reduce the number of channels in the feature map to 1. 

Finally, a sigmoid function is used to generate a prediction 

segmentation map s. Each value in this segmentation map 

represents the probability that this location is in the key point 

region, which will be used for the pose estimation branch. The 

feature map y at the output of the high-resolution branch of 

stage s is calculated as follows: 

 

𝑦𝑠 = 𝑓𝑠 ⊙ 𝑉𝑠 (4) 
 

 

 
 

Figure 2. Structure of the main modules in the network 

 

 
 

Figure 3. split boot mechanism 

 

3.3 Network configuration 

 

Our study utilizes the state-of-the-art human pose 

estimation model HRNet to build the network instead of 

designing a new network from scratch. The entire network 

consists of five stages, the input image is 256 × 192, and the 

corresponding heat map output size is 64 × 48. In the first 

stage, the feature map size is scaled to 64 × 48 using two 

convolutional layers with a convolutional kernel size of 3 × 3 

and a stride size of 2. Then, a series of feature extraction 

operations are performed to finally output a feature map with 

a channel number of 256 and a size of 64 × 48. Next, a 

convolutional layer with a kernel size of 3×3, the stride of 1×1, 

and padding of 1 reduce the number of channels of the feature 

map to 32, which is used as the input of the high-resolution 

branch in the second stage. At the same time, a convolutional 

layer reduces the feature map to 64 in parallel, with the size 

reduced to half of the original size, which is used as the input 

of the low-resolution branch in the second stage. 

In the second stage, we add a segmentation guide module to 

estimate the attention maps. The segmentation bootstrap 

module takes the feature maps generated from the high-

resolution branches in the previous stage as input and outputs 

attention maps with the same spatial resolution. This is 

achieved by a convolutional layer (convolutional kernel size 

of 3 × 3, stride of 1 × 1, and padding of 1), a convolutional 

layer with a convolutional kernel size of 1 × 1 compressing the 

feature map channels, and a sigmoid activation function. 

Subsequently, the attention maps generated by the 

segmentation bootstrap module are dotted with the feature 

maps of the second stage high-resolution branches. Finally, the 

high-resolution feature maps are downsampled by a 

convolutional layer with the stride of 2 × 2 and then fused with 

the feature maps of the low-resolution branch. The low-

resolution feature map is upsampled using bilinear 

interpolation and fused with the feature map of the high-

resolution branch. After the fusion of the different resolution 

features, we use the fused feature maps as the input for the next 
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stage. 

A new low-resolution branch is added in stages 3 and 4, so 

that in stage 4, the network outputs four features of different 

resolutions. Similar to stage 2, a segmentation guided module 

is used in stages 3 and 4 to generate spatial attention and 

perform the fusion of features coming from each resolution. 

A final segmentation guides the output of the high-

resolution branch after fusion in stage 4. Then the resulting 

feature map is fed to a convolutional layer with a 

convolutional kernel size of 1 × 1 to obtain a skeletal point 

heat map with the number of channels as the number of key 

points. 

 

3.4 Loss function with dynamic weight averaging 

 

We use the mean squared error to calculate the pixel-level 

difference between the predicted heat map and the true value 

of the heat map and write the calculation as ℒ𝑘𝑒𝑦 . 

The key point heat map loss calculation is shown below: 

 

ℒ𝑘𝑒𝑦(𝛩) = ∑ ∑‖𝑦𝑝(𝑚, 𝑛) − 𝑦�̂�(𝑚, 𝑛)‖
2

2

𝑛𝑚

𝑃

𝑝=1

 (5) 

 

where, p represents the pth skeletal point, (m, n) denotes the 

two-dimensional spatial coordinates, and 𝑦𝑝(𝑚, 𝑛)  denotes 

the predicted heatmap value at position (m, n), and 𝑦�̂�(𝑚, 𝑛) 

denotes the value of the true value of the heat map at position 

(m, n). 

For the losses between the predicted partitioned graph and 

the true-value partitioned graphs the losses are determined by 

Binary Cross Entropy Loss to calculate, denoted as ℒ𝑠𝑒𝑔. The 

formula is shown below: 

 

ℒ𝑠𝑒𝑔= 

−
1

𝑁
∑‖𝑀𝑠 ⊙ 𝑙𝑜𝑔( �̂�) + (1 − 𝑀𝑠) ⊙ 𝑙𝑜𝑔( 1 − �̂�)‖

1

𝑁

𝑠=1

 
(6) 

 

N is the number of stages the model contains, and in our 

network N is 4. Ms denotes the predicted partition map for the 

sth stage, and �̂�  is the Segmentation map truth value. ||•||1 

denotes the 1-parametric number, which is the sum of the 

absolute values of the matrix elements. ⊙ denotes the 

corresponding elements of the matrix multiplied by each other. 

These two loss functions constitute the final loss function of 

the model ℒ(Θ), and the model optimizes both loss functions 

simultaneously for multitask learning. 

 

ℒ(𝛩) = 𝑤𝑠(𝑡)𝜆ℒseg (𝛩) + 𝑤𝑘(𝑡)ℒ𝑘𝑒𝑦(𝛩) (7) 

 

Here is a hyperparameter that adjusts the magnitude of the 

loss of the segmentation task so that the loss of the 

segmentation task and the pose recognition task are of the 

same magnitude, set to 0.002 in our experiments. Meanwhile, 

to balance the learning speed of the two tasks, we use a multi-

task learning optimization method with dynamic weighted 

averaging. During training, the weight parameters for the loss 

of the segmentation task are dynamically calculated 𝑤𝑠(𝑡) and 

the weight parameter for the loss of the pose recognition task 

𝑤𝑘(𝑡), specifically, the faster the loss decreases for the task, 

the smaller the weights become; conversely the weights 

become larger. The t in the expression denotes the tth 

backpropagation. The weight parameter is calculated as 

follows: 

 

𝑤𝑠(𝑡) =
𝑁 ∗ 𝑒𝑥𝑝(𝑟𝑠(𝑡 − 1))

∑ 𝑒𝑥𝑝
∑(𝑟𝑛(𝑡−1))
𝑛

 (8) 

 

𝑤𝑘(𝑡) =
𝑁 ∗ 𝑒𝑥𝑝(𝑟𝑘(𝑡 − 1))

∑ 𝑒𝑥𝑝
∑(𝑟𝑛(𝑡−1))
𝑛

 (9) 

 

N is the number of tasks, which in our experiments is 2. 

𝑟𝑛(𝑡 − 1) is t h e loss function change factor for task n at step 

t-1, which is calculated as follows: 

 

𝑟𝑛(𝑡 − 1) =
𝐿𝑛(𝑡 − 1)

𝐿𝑛(𝑡 − 2)
 (10) 

 

where, 𝐿𝑛(𝑡 − 1) denotes the loss of task n at step t-1, and 

𝐿𝑛(𝑡 − 2) denotes the loss of task n at step t-2. 

 

 

4. EXPERIMENT 

 

We evaluated the performance of SG-HRNet on the MPII 

human pose dataset [9] and the COCO keypoint detection 

dataset [10] and compared it with the current state-of-the-art 

methods. At the same time, we also compare the impact of 

segmentation graph truth values of different radii and different 

segmentation guidance modules on the performance. Finally, 

we performed a series of ablation experiments to select the 

optimal radius for generating the segmentation graph truth 

values. The datasets and evaluation metrics used in the 

experiments, the experimental results, and the network 

training details are as follows. 

 

4.1 Datasets 

 

The MPII human pose dataset is a popular benchmark 

dataset collected and provided by the Max Planck Institute for 

Informatics. The dataset contains annotations of body joints of 

more than 40 K people with 25 K images. The test set includes 

12 K human instances annotations, and the rest of the 

annotations are used to build the training set. All the images in 

the dataset are extracted from YouTube videos and contain 

their respective life scenes. Sixteen human body key points are 

annotated in MPII with their 2D coordinates in the original 

image, while a "visible" attribute indicates whether the key 

points are occluded or beyond the image boundary. For 

invisible key points, the "visible" attribute has a value of 0. 

The COCO keypoint detection dataset is a very challenging 

dataset with more than 250,000 human instances labeled, with 

17 keypoints per human instance. The dataset contains more 

than 200,000 images and is divided into three parts: training 

set, validation set and test set. The COCO train2017 dataset 

contains 57K images with a total of 150K individual 

annotations. The val2017 and test-dev2017 sets contain 5000 

images and 20K images respectively. 

 

4.2 Evaluation metrics 

 

In our experiments, different metrics are used on the MPII 

and COCO datasets to evaluate the model's performance. PCK 

(Percentage of Correct Keypoints) is used on the MPII 

dataset.PCK indicates the percentage of key points where the 

normalized distance between the predicted key points and their 
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corresponding ground truths is less than a set threshold. In our 

experiments following the previous work, the head length is 

used as the normalized reference, i.e., PCKh. Using the 

average accuracy (AP) metric on the COCO dataset, the 

calculation of AP will involve the calculation of the OKS 

metric.OKS (object keypoint similarity) is a commonly used 

evaluation metric for human bone keypoint detection 

algorithms today and indicates the similarity between the true 

value and the predicted keypoint. The OKS metric is computed 

as a scalar, and then the AP is computed by specifying a 

threshold T. The calculation of each metric is as follows: 

 

𝑃𝐶𝐾𝑖
𝑘 =

∑ 𝛿𝑝 (
𝑑𝑝𝑖

𝑑𝑝
def ≤ 𝑇𝑘)

∑ 1𝑝

 
(11) 

 

Eq. (11) is the formula for calculating the PCK of the ith 

key point at the kth threshold. k represents the kth threshold; i 

indicates the ith key point; p indicates the pth human instance; 

𝑑𝑝𝑖 indicates the distance of the ith key point of the p-th human 

instance from the true value; 𝑑𝑝
def  indicates the normalized 

scale factor, and the head size of the human instance is used as 

the scale factor in MPII. 𝑇𝑘 indicates the threshold. The PCK 

metric of the algorithm under the 𝑇𝑘 threshold is calculated as 

follows.  

 

𝑃𝐶𝐾mean
𝑘 =

∑ 𝑃𝑖 𝐶𝐾𝑖
𝑘

∑ 1𝑖

 (12) 

 

The PCKh@0.5 indicator is used in the experiment. 

 

𝑂𝐾𝑆 =
∑ 𝑒𝑥𝑝

∑{−𝑑𝑖
2/2𝑆2𝜎𝑖

2}(𝑣𝑖>0)

𝑖

∑ 𝛿𝑖 (𝑣𝑖 > 0)
 (13) 

 

Eq. (13) is the formula for OKS, and di is the Euclidean 

distance between the predicted critical point and the 

corresponding true value, the vi denotes the visibility of the 

true value, S is the human instance scale factor whose value is 

the square root of the area of the human detection frame, and 

𝜎𝑖 denotes the ith critical point normalization constant whose 

value is obtained by counting the standard deviation of the 

presence of the artificially labeled and true values in the 

sample set. 

 

𝐴𝑃 =
∑ 𝛿𝑝 (𝑜𝑘𝑠𝑝 > 𝑇)

∑ 1𝑝

 (14) 

 

p denotes the human instance number and T is a custom 

threshold. Evaluation metrics used in the experiments, AP50 (T 

is taken as 0.5), AP (T takes the average value obtained from 

0.5, 0.55, ..., 0.90, 0.95), APL denotes the large subject, the 

APM for medium subjects, and AR. 

 

4.3 Network training 

 

SG-HRNet was implemented using PyTorch and 

experimented on a server platform configured with NVIDIA 

GeForce2080ti GPU, 32-core Xeon(R) Silver 4110 CPU. The 

"Adam" optimizer was used during training, and the initial 

learning rate was set to 1e-3, decreasing to 1e-4 at the 170th 

epoch, 1e-5 at the 200th epoch, and ending the training at the 

210th epoch. In the experiments, the human instances in the 

images are cropped down to a 4:3 aspect ratio, and the image 

patches are scaled to a fixed size: 256 × 192. We use the 

technique of mini-batch, where 32 image patches are randomly 

selected per iteration, and image enhancement is performed for 

input to the network. The specific image enhancement 

methods include random rotation with a rotation range of 

(−45°, 45°), random scaling in (0.65, 1.35), and horizontal 

flipping. In the testing phase, similar to reference [19], the 

human instances in the images are first detected using a 

pedestrian detector, and then the key points of these human 

instances are predicted. The heat map is obtained by averaging 

the original image's heat map and the flipped image's heat 

map. By convention, the position is obtained for each key 

point by shifting the highest response position of this key point 

towards the 2nd highest response position by an offset of one 

quarter. 

 

4.4 Result 

 

Our model is compared with the HRNet family of models 

as well as the state-of-the-art model on the MPII validation set, 

and the results are shown in Table 1, with the best results for 

key points highlighted in bold. It can be seen from the 

experimental results that our approach is the best performer 

among the HRNet family of models. The overall result of the 

model on the MPII test set is 90.6%, which is a 0.3% 

improvement relative to HRNet and still 0.1% higher than the 

latest model in the HRNet family, PRAB. This result suggests 

that our segmentation-guided attention-based mechanism is 

not only effective but also superior to the traditional attention 

mechanism via steganography learning, which is further 

supported by the experimental results on the COCO val2017 

dataset in Table 2. Meanwhile, the values of the Params 

column and the GFLOPs column are equal to those of the 

corresponding columns of HRNet, indicating that the cost of 

our enhancement effect is almost free. 

Figure 4 shows the visualization results of the bit-pose 

estimation for some images of the MPII dataset, where the 

joints of human instances with complex background regions 

and human instances with uncommon poses are still correctly 

estimated. These results also confirm the good robustness of 

the proposed method. 

 

Table 1. Comparisons of PCKh@0.5 scores on the MPII validation set 

 
Method Params GFLOPs Head Sho Elb Wri Hip Kne Ank Mean 

HRNet-W32 [4] 28.5M 7.10 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 

Hourglass [20] 25.1M 19.1 96.5 96.0 90.3 85.4 88.8 85.0 81.9 89.2 

PRM [21] 28.1M 21.3 96.8 96.0 90.4 86.0 89.5 85.2 82.3 89.6 

DLCM [22] 15.5M 15.6 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8 

SimpleBaseline [23] 68.6M 20.9 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6 

PRAB [24] 28.9M 9.5 97.1 96.2 90.7 86.4 89.8 86.9 83.3 90.5 

Our 28.5M 7.10 97.3 96.2 90.9 86.4 89.9 86.8 83.4 90.6 
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Table 2. Results on the COCO val2017 dataset 

 
Method Back Bone Pretrain Input Size Paramss GFLOPS AP AP50 AP75 APM APL AR 

Hourglass[20] 8-stages Hourglass N 256 ×192 25.1 14.3 66.9 - - - - - 

CPN [15] ResNet-50 Y 256 × 192 27.0 6.20 68.6 - - - - - 

CPN+OHKM [15] ResNet-50 Y 256 × 192 27.0 6.20 69.4 - - - - - 

Simple Baseline [23] ResNet-50 Y 256 × 192 34.0 8.90 70.4 88.6 78.3 67.1 77.2 76.3 

Simple Baseline [23] ResNet-101 Y 256 × 192 53.0 12.4 71.4 86.3 79.3 68.1 78.1 77.1 

Simple Baseline [23] ResNet-152 Y 256 × 192 68.6 15.7 72.0 89.3 79.8 68.7 78.9 77.8 

Simple Baseline [23] ResNet-152 Y 384 × 288 68.6 35.6 74.3 89.6 81.1 70.5 79.7 79.7 

HRNet-W32 [4] HRNet-W32 Y 256 × 192 28.5 7.10 74.4 90.5 81.9 70.8 81.0 79.8 

HRNet-W32 [4] HRNet-W32 N 256 × 192 28.5 7.10 72.0 89.3 79.8 68.7 78.9 77.8 

PRAB [24] HRNet-W32 Y 256 × 256 28.9 9.5 74.6 90.7 82.1 71.1 81.3 80.0 

Empose [25] HRNet-W32 Y 256 × 192 30.3 7.63 75.0 90.3 82.3 71.7 81.5 80.2 

Our HRNet-W32 Y 256 × 192 28.5 7.10 76.3 93.5 83.6 73.6 80.9 79.5 

 

 
 

Figure 4. Visualization results of human pose estimation for some human instances of the MPII dataset 

 

Table 3. Results for different radii on the MPII validation set and the value is PCKh@0.5 scores 

 
Radius Head Sho Elb Wri Hip Kne Ank Mean 

r=3 97.2 96.1 90.9 86.1 89.2 86.5 83.3 90.4 

r=5 97.3 96.2 90.9 86.4 89.8 86.8 83.4 90.6 

r=9 97.2 95.9 90.9 86.0 89.1 86.5 82.7 90.3 

 

The results of comparing our model with the HRNet family 

of models on the COCO val2017 dataset are shown in Table 

2. The improvement of our model is more pronounced on the 

COCO val2017 dataset compared to the results on the MPII 

validation set. The performance of our model on the MPCO 

val2017 dataset is more significant than that on the MPII 

validation set. APL and AR, our model, is far superior to 

HRNet-W32 and PRAB for all other metrics. AP50 and APM 

both metrics are almost 3% higher than HRNet, while the AP 

and AP75 two metrics are still almost 2% higher than HRNet. 

These metrics are sufficient to show the effectiveness of 

segmentation guidance. Also, compared to the PRAB model 

using the traditional attention mechanism, the metrics are 

improved by about 2%-3%, indicating that the segmentation-

guided attention mechanism is more suitable for the human 

pose estimation task. 

We have done ablation comparison experiments for 

different values of radius r for making segmentation map truth 

values. The experimental results in Table 3 show that the best 

results are obtained when r is set to 5. 

 

 

5. CONCLUSION 

 

This paper uses segmentation mapping maps to form spatial 

attention with prior knowledge to guide the learning of human 

pose estimation models and propose a segmentation guidance 

network with HRNet as the backbone. With this spatial 

attention with a priori knowledge, the model will focus more 

on the key point regions in the picture without being disturbed 

by the complex background regions when making predictions. 

At the same time, spatial attention is formed faster and focuses 

on areas more accurately under the supervision of 

segmentation mapping maps. The experimental results on 

MPII and COCO datasets show that the guided mechanism by 

segmentation mapping maps can lead to better performance of 
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SG-HRNet. And, the cost required for this effect is almost free. 

In the future, we plan to introduce the guided mechanism of 

segmentation mapping map in more human pose estimation 

models to improve the model effectiveness. 
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