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The intelligent detection of driver distracted driving and mask wearing can strengthen the 

safety management of passenger vehicle operators, the correct detection of drivers in 

monitoring images by regulatory authorities is the basis for the implementation of these two 

tasks. Although the traditional object detection model can detect the driver and the passenger 

accurately, there are still many wrong classification between the driver and the passenger. 

In order to increase the detection rate, this paper uses CBAM attention mechanism and the 

idea of non-maximum suppression in YOLO v5, and proposes a combination model of 

YOLOv5+Stacking integrated learning, which can effectively reduce false detection 

between drivers and passengers and ultimately increase the detection rate of YOLO v5 

model. In this paper, this model is used to verify and detect the collected data set, and its 

evaluation indexes are not only better than the original YOLO v5 model but also better than 

other similar detection models. 
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1. INTRODUCTION

Distracted driving is the main cause of passenger car traffic 

accidents [1-3], and the correct wearing of masks during the 

outbreak of COVID-19, influenza and the post-epidemic era 

can effectively protect passenger car drivers from virus 

infection [4]. Intelligent supervision of passenger vehicle 

drivers' driving behavior and mask wearing behavior can 

effectively reduce the safety risks of passenger vehicle 

enterprises. In the past, the monitoring process was realized by 

manual sampling of the monitoring images sent back by 

passenger vehicles every minute, but this management method 

has disadvantages such as low efficiency, poor effect, limited 

rationality and discontinuity of management. Real-time 

detection of driver behavior requires each vehicle to be 

equipped with high-performance edge computing equipment. 

For passenger vehicle enterprises, one-time investment is too 

high and can not be immediately converted into profits. If the 

surveillance video is sent back to the server for processing, 

there are problems such as poor signal, high delay, high traffic 

cost, and high server load. This paper discusses how to use 

artificial intelligence based on the existing digital system of 

passenger vehicles to carry out real-time detection and locate 

the driver in the image of the minute back monitoring image, 

so as to prepare the technology for the subsequent mask 

wearing detection and distracted driving detection. 

In fact, whether it is mask wearing detection or distracted 

driving detection, the driver is the subject of detection. The 

monitoring images transmitted back to the server from the 

passenger vehicle include external and internal monitoring, 

while the internal monitoring has both specialized passenger 

monitoring and driver monitoring, and the driver monitoring 

comes from the camera in front of the driver's right side. 

However, it is possible that there is only the driver in the driver 

monitoring image, or there is both the driver and the passenger, 

or there is no driver in the image. The driver and the passenger 

are both human beings and cannot be distinguished from each 

other only by their physical appearance. The difference lies in 

whether they are in the driver's seat in front of the steering 

wheel, i.e., the person sitting in front of the steering wheel is 

the driver and the other person is the passenger. Thus steering 

wheel detection is a must. The research in this paper is to 

detect and localize the driver in front of the steering wheel in 

the image from all the uploaded images. 

2. RELATED WORK

Based on CNN, detection models have been widely applied 

in the past decade due to their outstanding performance in 

image recognition and processing. These models can be 

divided into two-stage models [5-7] and single-stage models 

[8-10] by design, both of which need to first detect candidate 

bounding boxes and then perform classification. However, 

whether single-stage or two-stage models, they usually treat 

object detection as independent and parallel classification and 

regression subtasks, operating on each candidate bounding 

box separately, without explicitly modeling the spatial 

relationships between objects. Hence, they are deficient in 

representing spatial relationships between objects. 

Compared with CNN-based models, spatial relation 

networks can effectively capture relational information and 

context information in object detection, thereby improving 

detection accuracy and performance [11, 12]. These models 

perform better for detecting small objects or occluded objects, 

providing an effective way to enhance the performance of 
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small object detection [13]. Such models can adopt various 

methods to model the spatial relationships between detected 

objects. For example, Hu et al. [11] incorporated relation 

network modules into CNN detection models like Faster R-

CNN and FPN, inferring the relationships between candidate 

bounding boxes through weighted inner products of object 

features; Xu et al. [14] employed graph neural networks to 

graph-embed candidate bounding boxes and calculate spatial 

positional relationships between regions. 

Although transformer-based object detection models like 

DETR [15] do not explicitly model spatial positional 

relationships between objects, its encoder and decoder can 

implicitly understand the relative positions and interactions 

between objects through self-attention layers. However, 

DETR is not as good as CNN models in capturing local details 

because it focuses more on global context, while CNNs can 

learn multi-scale local features through receptive field 

mechanisms [16-18]. Additionally, the positional encoding in 

DETR is directly added in the semantic space, unlike word 

vectors in natural language processing that can interact with 

each other, so its positional encoding has limitations and may 

fail to accurately convey spatial positional information, and 

the inference speed is also slower [15]. 

Stacking, also known as stacked generalization [19], is an 

ensemble learning technique that combines the outputs of 

multiple base models to build a more powerful prediction 

model. This technique leverages the strengths of different 

models and typically provides more accurate results than a 

single model [20-23]. Current research focuses on improving 

the generalization ability of stacking models, such as through 

more effective base model selection, adaptive model fusion 

methods, and the use of complex features extracted by deep 

learning models [24]. Stacking models have shown significant 

performance improvements in various fields, including 

financial risk analysis [25], medical diagnosis [23], image and 

speech recognition [26]. 

The YOLO v5+stacking ensemble learning model proposed 

in this study improves upon YOLO v5 by explicitly modeling 

only the spatial information of faces and steering wheels due 

to the characteristics of the data, and enhances the 

understanding of spatial relationships between objects through 

a stacking model, thereby significantly improving the 

detection accuracy by enhancing YOLO v5's spatial 

representation capability.  

 

 

3. MODEL ARCHITECTURE AND PRINCIPLE 

 

The goal of this paper is to detect the driver in the image for 

further safety monitoring, in order to accomplish this goal this 

paper needs to detect three types of objects: steering wheel, 

driver and passenger. Misdetection and omission of these three 

types of objects have different impacts on realizing the goal of 

this paper. According to the subsequent experimental analysis, 

these three types of objects are misdetected or omitted on the 

goal of this paper, as well as the frequency of occurrence of 

the situation shown in Table1. 

 

 

Table 1. Analysis of the impact of misdetections and omissions on targets for the three categories of objects 

 
No. Types of False or Missed Detections Possible Impact of Missed or False Detection Implications Frequency 

1 Driver misclassified as passenger the image may be discarded Yes Often 

2 
Passenger misclassified as driver 

(Image without driver) 
The driver detected was a passenger Yes Often 

3 
Passenger misclassified as driver 

(Image with driver) 
Two or more drivers detected Yes Often 

4 Missed steering wheel detection Potential driver missed detection and image discard yes no 

5 Background misclassified as steering wheel Potential incorrect driver detection yes Infrequently 

6 Background misclassified as passenger Passenger increase barely affects driver detection no Often 

7 
Background misclassified as driver 

(Image without driver) 
detected the wrong driver yes Infrequently 

8 
Background misclassified as driver 

(Image with driver) 
may detected the wrong driver yes Infrequently 

 

In all the aforementioned scenarios, the fourth situation is 

almost nonexistent; the fifth, seventh, and eighth scenarios 

occur very rarely; whereas the first, second, third, and sixth 

scenarios are more frequent. The sixth scenario has a minor 

impact on the objectives of this paper. Reducing the false 

positives of types one, two, and three would not only improve 

the overall detection performance of the model but also greatly 

assist in achieving the goals of this paper. 

Figure 1 shows example images where passengers were 

incorrectly classified as drivers. In Figure 1 (a), two drivers 

appear in one image, with the driver on the left being farther 

away from the steering wheel. Although the passenger in 

Figure 1 (b) is farther from the steering wheel, they were still 

classified as a driver. This indicates that, while the YOLO v5 

model can classify drivers and passengers with relative 

accuracy, it also shows insensitivity to certain geometric 

features such as distance. 

Although the false detection of the steering wheel was very 

rare in the YOLO v5 detection process, the false detection as 

shown in Figure 2 also occurred, and two steering wheels 

appeared in one image. 

 

   
(a)                                               (b) 

 

Figure 1. Example of YOLO v5 detection error (a) The 

model detects multiple drivers; (b) Passengers misclassified 

as driver 

 

For the problems shown in Figure 1, the output of the 

YOLO v5 model was modified in this paper. The output results 
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were divided into pre-classification results and final 

classification results. A stacking model was inserted between 

the two classification results to improve the classification 

accuracy of drivers and passengers. To solve the problem 

shown in Figure 2, this paper adopts the idea similar to non-

maximum suppression to reduce the false detection of the 

steering wheel class. In addition, the CBAM module used in 

YOLO v5 not only enhances the model's ability to represent 

the local area of the image, but also enhances the model's 

ability to perceive the location and scale of the target object. 

The overall structure of the model is shown in Figure 3. 

 

 
 

Figure 2. Multiple steering wheels detected by YOLO v5 

 

 
 

Figure 3. Overall structure of the model 

 

 
 

Figure 4. CBAM architecture 

 

 

3.1 YOLO v5+CBAM 

 

YOLO v5 model is a single-stage object detection model 

with high precision and fast speed, which can detect a variety 

of objects accurately and stably. This article uses the YOLO 

v5x version with the largest number of parameters. 

CBAM module [27] is composed of channel attention 

mechanism and spatial attention mechanism in sequence, and 

its structure is shown in Figure 4. The channel attention 

mechanism calculates the importance of each channel through 

global pooling and multi-layer perceptron, and the spatial 

attention mechanism calculates the importance of each 

position through channel pooling and convolutional layer. 

CBAM can enhance the ability of local image representation, 

so that the network can accurately capture the location and 

scale of the target object. 

CBAM modules can be inserted in multiple parts of YOLO 

v5, and their functions vary depending on the insertion 

location. The 17th, 20th and 23rd layers of YOLO v5 contain 

rich high-level semantic information and are connected with 

the detect output of the model. Therefore, by inserting CBAM 

modules into these positions, the model can not only recognize 

and distinguish the interaction and context information 

between different objects more effectively, but also enhance 

its feature extraction and expression ability for objects of 

various scales. The YOLOVx5 model and CBAM module 

structure used in this paper are shown in Figure 5. 
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Figure 5. YOLO v5x + CBAM architecture 

 

The loss function of the YOLO v5x model in this paper 

mainly consists of three parts, namely 𝐿𝑐𝑙𝑠 , 𝐿𝑜𝑏𝑗 , 𝐿𝑙𝑜𝑐 , whose 

values are shown in Eq. (1). 

 

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑜𝑏𝑗 + 𝜆3𝐿𝑙𝑜𝑐 (1) 

 

𝜆1, 𝜆2, 𝜆3 are 0.5, 1 and 0.05, respectively. 

Classes loss: BCE loss is used to calculate only the 

classification loss of the positive sample, and its function is 

shown in Eq. (2). 

 

L = −ylogp − (1 − y)log(1 − p)

= {
−logp y = 1

−log(1 − p) y = 0
 

(2) 

 

Objectness loss: The BCE loss is still used, which refers to 

the CIoU of the target bounding box and GT Box of the 

network prediction. here the loss is calculated for all samples, 

and the confidence loss function is shown in Eq. (3). 

 

𝐿𝑜𝑏𝑗 = 4.0 ⋅ 𝐿𝑜𝑏𝑗
small + 1.0 ⋅ 𝐿𝜌𝑘𝑗

medium + 0.4𝐿large

large
 (3) 

 

Location loss: CIoU loss is used to calculate the location 

loss for positive samples only, and its function is shown in Eq. 

(4). 

 

LCIoU = 1 − IoU +
𝜌2( b,  bgt)

c2
+ 𝛼v (4) 

 

3.2 Steering wheel type non-maximum suppression 

 

Although the probability of steering wheel misdetections 

occurring is extremely low, misdetections have occurred as 

shown in Figure 2. Multiple steering wheels in an image will 

have a large impact on the subsequent integration learning, so 

in this paper the idea of non-maximum suppression similar to 

the anchor frame selection in object detection is adopted. 

When multiple steering wheels are detected in an image, the 

steering wheel with the highest reliability in the image is 

selected, and the basis for selection is shown in Eq. (5). 

 

𝐴𝑛𝑐ℎ𝑜𝑟𝑠𝑡𝑒𝑒𝑟 = 𝑚𝑎𝑥⁡(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖
∗ 𝑠𝑐𝑜𝑟𝑒𝑖 , 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑗 ∗ 𝑠𝑐𝑜𝑟𝑒𝑗) 

(5) 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖  represents the confidence level of the ith 

detected steering wheel in the current image, 𝑠𝑐𝑜𝑟𝑒𝑖  
represents the classification score of the steering wheel in that 

detection frame. 

 

3.3 Stacking integrated learning model 

 

Table 2. Template for base model dataset in stacking 

ensemble model 

 
Field 

Name 
Notes 

Field 

Name 
Notes 

width Image width Steering x 
Top-left x-coordinate 

of the steering wheel 

height Image height Steering y 
Top-left y-coordinate 

of the steering wheel 

face x 

Top-left x-coordinate 

of the face bounding 

box 

Steering 

w 

Width of the steering 

wheel 

face y 

Top-left y-coordinate 

of the face bounding 

box 

Steering h 
Height of the steering 

wheel 

face w 

Width of the face 

bounding box 

detected by YOLO 

v5 

TrueClass 

The ground truth’s 

true class for the face 

bounding box 

face h 
Height of the face 

bounding box 
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Figure 6. The stacking model proposed in this paper 

 

The learning data of the stacking model comes from the pre-

detection results obtained from the YOLO v5 model, and its 

learning data is the geometric information between the objects, 

which is shown in Table 2. 

As shown in Figure 6, the stacking model proposed in this 

paper includes base models consisting of Support Vector 

Machine (SVM) models [28] with three types of kernel 

functions (poly, rbf, linear) and the K-Nearest Neighbors 

(KNN) model, as well as the preliminary classification results 

from the YOLO v5 model itself, forming a total of five groups 

of base learning models. These models are responsible for 

classifying the faces in the images as either drivers or 

passengers. Building upon this, the secondary meta-learner 

model, a Back Propagation (BP) neural network [29], will 

learn from the outputs of the five groups of base models and 

their corresponding true labels. Ultimately, the meta-model's 

classification results are used to update and refine the 

preliminary categorization results of drivers and passengers to 

obtain the final classification outcome. This approach 

significantly improves the accuracy of the detection. 

In the SVM model, when the dataset is not linearly 

separable, kernel functions can be employed to map the feature 

data into a higher dimensional space, where it becomes 

linearly separable. The three types of kernel functions utilized 

in the SVM [28] in this article are as follows: 

Linear kernel function, Liner: 

 

𝑘(𝐱𝑖, 𝐱𝑗) = 𝐱𝑖
T𝐱𝑗 (6) 

 

Polynomial kernel function, Poly: 

 

𝑘(𝐱𝑖 , 𝐱𝑗) = (𝐱𝑖
T𝐱𝑗 + 1)

𝑑
 (7) 

 

Gaussian kernel function, RBF: 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
∥∥𝐱𝑖 − 𝐱𝑗∥∥2

2

2𝜎2
) (8) 

 

 

4. EXPERIMENT AND RESULT ANALYSIS 

 

4.1 Experimental data 

 

The training and testing approach for the models used in this 

paper is primarily divided into three stages: The first stage 

focuses on the YOLO v5 object detection model; the second 

stage centers on the base models (SVM and KNN) of the 

ensemble model; and the third stage revolves around the meta-

model (BP neural network) of the ensemble model. Since 

YOLO v5 not only exhibits misclassifications between drivers 

and passengers but also suffers from missed detections or 

misdetections of faces, leading to inconsistencies between the 

detected face data and the face data in the image annotations, 

and YOLO v5 itself is one of the base models, the detection 

boxes used during the training and testing in the second and 

third stages correspond to the detection results of YOLO v5, 

while the classes correspond to the ground truth classes. The 

training, validation, and test data for the second stage 

correspond to the training, validation, and test data from the 

first stage. The training, validation, and test data for the third 

stage correspond to the training, validation, and test data from 

the second stage, respectively. The specific training and test 

data for each stage are as follows. 

The first stage involves using the YOLO v5 model for 

object detection, with the dataset being PCSI - Passenger Car 

Surveillance Images. This is an image dataset containing 

20,000 image files, 10,000 of which are surveillance images 

of the driver's seat. In other words, these images include 

10,000 with a steering wheel present and 10,000 without a 

steering wheel. Of these images, 7,864 contain a driver in the 

driver's seat, while 2,136 do not have a driver present, and the 

total number of passengers is 7,049. This dataset is primarily 

used for training and testing the YOLO v5 model for object 

detection. We have annotated the drivers, passengers, and 

steering wheels in this dataset using VOTT, and different file 

names are used to distinguish whether a given image depicts a 

driver actively driving. In this paper, we randomly selected 

70% of the images from PCSI as the training set for YOLO v5, 

15% as the validation set, and 15% as the test set. The test set 

consists of 3,000 images, of which 1,500 contain a steering 

wheel, 1,126 images include a driver, 363 images do not 

contain a driver, and there are a total of 1,063 passengers. 

The second stage uses the base models (SVM and KNN) of 

the ensemble model to classify drivers and passengers. The 

training, validation, and test data for this stage correspond to 

the training, validation, and test data from the first stage. As 

the detection results for the test set in the first stage missed 25 

passengers (detected as background), and no drivers were 

detected as background, the test set for this stage includes 

1,126 driver records and 1,038 passenger records, for a total of 

2,164 data points. 
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The third stage takes the outputs of the individual base 

models as a feature vector and inputs it to the BP neural 

network meta-model. The training, validation, and test sets for 

this stage correspond to those from the second stage. The test 

data for this stage also consists of 2,164 data points, divided 

into 6 columns, with the first 5 columns representing the 

feature vector corresponding to the classification results of the 

5 base learning models for the current face bounding box, and 

the last column representing the ground truth class for the face 

bounding box. 

 

4.2 Experiments and results analysis of the YOLO v5 

model 

 

For object detection experiments, the hardware and 

software configuration utilized was dual E5-2666 CPUs, 

64GB RAM, two Tesla M40 24GB GPUs, CUDA 10.1, 

PyTorch 1.7.1, and Python 3.7. The YOLO v5 model was 

optimized using SGD with a momentum of 0.937, an initial 

learning rate of 0.01, a weight decay of 0.0005, a training 

threshold of 0.2, image size normalized to 640x640, 300 

epochs, and a batch size of 16. 

 

4.2.1 Experiments with the original YOLO v5x model 

In this paper, we first used the original YOLO v5 model to 

conduct 3-class training and testing for drivers, passengers, 

and steering wheels on the images. The test results are shown 

in the confusion matrix in Figure 7, where P represents the 

precision for detecting that class of objects, R represents the 

recall rate for that class of objects, and C represents the count. 

Although the accuracy rates for drivers and passengers are 

relatively high, there are many instances of drivers being 

detected as passengers, and vice versa. The confusion matrix 

includes an additional 'background' class. The detection results 

show that many passengers were not detected, and many 

background regions were detected as passengers. There were 

also 3 cases where the background was detected as a driver. 

Furthermore, the recall rate for steering wheels is 1, although 

two background regions were predicted as steering wheels, the 

precision for the steering wheel class is approximately 1. 

 

 
 

Figure 7. Detections by original YOLO v5 model 

 

4.2.2 Experiments with the CBAM module 

After incorporating the CBAM module into the YOLO v5 

model, the model implemented a sequential attention structure 

from channel to spatial dimensions. Figure 8 shows the 

detection results after using the CBAM module. As can be 

seen from the figure, adding the CBAM module significantly 

improved the recall rate and precision for the passenger class. 

The recall rate and precision for the driver class also increased 

by approximately 1% each. 

 

 
 

Figure 8. YOLO v5+CBAM detection results 

 

4.2.3 Experiments with non-maximum suppression for the 

steering wheel class 

After integrating CBAM into YOLO v5, we applied the 

concept of non-maximum suppression to the detection results 

for the steering wheel class. Figure 9 shows the detection 

results. From the results, we can see that the two previous 

instances of background being detected as a steering wheel 

have been resolved using this method. 

 

 
 

Figure 9. YOLO v5+CBAM + steering-wheel-type NMS 

detection results 

 

4.3 Experiments and results analysis of ensemble learning 

models 

 

The experiments in this section continue to use the 

confusion matrix for evaluation. Additionally, among the four 

base models in the ensemble learning approach, the parameters 

for the three SVM models were obtained through a grid search 

for the optimal values on the dataset employed in this paper. 

 

4.3.1 Experiments on the SVM-RBF base model 

For the SVM model based on the RBF kernel function, the 

search range for the C parameter was 0.1-5, with an increment 

of 0.25 each time, and the optimal parameter found was 
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4.849999999999999. The search range for gamma was 1-101, 

with an increment of 1 each time, and the optimal value for 

this dataset was 22. 

Figure 10 shows the test results of the SVM model based on 

the RBF kernel function. While this model achieved high 

classification accuracy for drivers and passengers on the 

manually labeled test data, there were still many classification 

errors between drivers and passengers from a quantitative 

perspective, with 44 out of 2,164 classification objects being 

misclassified. Notably, 2 of the bounding boxes detected as 

passengers by YOLO v5 in the background were incorrectly 

classified as Drivers by the SVM-RBF model. 

 

 
 

Figure 10. Test results for the SVM-RBF model 

 

4.3.2 Experiments on the SVM-POLY base model 

 

 
 

Figure 11. Test results for the SVM-POLY model 

 

For the SVM model based on the polynomial kernel 

function, the parameter search range for parameter C was 0.1-

5, with an increment of 0.25. The optimal result found was 

0.8499999999999999. The search range for the coef0 

parameter was 2-6, with an increment of 0.5, and the optimal 

result found was 3.5. The search range for the degree 

parameter was 0-5, with an increment of 0.5, and the optimal 

result found was 5. Figure 11 shows the test results for the 

SVM model based on the polynomial kernel function. From 

the results, it can be seen that using the polynomial kernel 

SVM model results in a slight performance decrease compared 

to using the RBF kernel SVM model for both test methods. 

However, among the background bounding boxes detected as 

passenger by YOLO v5, only 2 were misclassified as Driver 

by the SVM-RBF model. 

 

4.3.3 Experiments on the SVM-linear base model 

For the SVM model based on the linear kernel function, the 

search range for the C parameter was 0.1-5, with an increment 

of 0.25. The optimal parameter value found was C': 

3.5999999999999996. 

Figure 12 shows the test results for the SVM model based 

on the linear kernel function. On both test datasets, the error 

rate of the SVM-linear classifier was significantly higher. 

 

 
 

Figure 12. Test results for the SVM-linear model 

 

4.3.4 Experiments on the KNN base model 

In this study, the KNN model employed the 

KNeighborsClassifier classifier, with the default parameters of 

n_neighbors=5, algorithm=auto, leaf_size=30, and p=2 [30]. 

Figure 13 illustrates the test results obtained using the KNN 

model. The results demonstrate that the accuracy of the KNN 

model is comparable to that of the SVM-linear model. 

 

 
 

Figure 13. Test results for the KNN model 

 

4.3.5 Meta-model experiments: BP neural network 

The meta-model BP neural network in this study had an 

input layer with 5 nodes, corresponding to the prediction 

results of the 5 base models. The network consisted of three 

hidden layers, each with 100 neurons. To prevent overfitting, 

a dropout rate of 0.65 was employed, along with the ReLU 

activation function. The output layer featured a single node, 

utilizing the mean squared error function as the loss function. 
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The prediction result was a floating-point number that required 

conversion into a binary classification label (greater than 0.5 

for 1, representing the driver class, otherwise 0 for the 

passenger class). The Adam algorithm served as the optimizer, 

with an exponential decay strategy for adjusting the learning 

rate, initially set at 0.01. The learning rate underwent 

exponential decay, being reduced to 0.8 times its previous 

value every 200 epochs. A total of 2000 training epochs were 

performed. 

Figure 14 depicts the test results obtained after employing 

the meta-model, which also represents the final outcome of the 

entire model. The implementation of the proposed model 

significantly reduced misclassification cases between drivers 

and passengers, indicating that this method can effectively 

perceive the positional relationships among the driver, 

passenger, and steering wheel. 

 

 
 

Figure 14. Test results for the YOLOv5+Stacking model 

 

4.4 Benchmark evaluation of models on this study's dataset 

 

Since there is no research on the detection of passenger 

vehicle drivers, this paper uses several commonly used and 

different types of detection models to test the data set in this 

paper. Figure 15 shows the PR curves of several models. As 

can be seen from Figure 15, the model in this paper is not only 

superior to the original YOLOv5 model. It is also significantly 

better than the Transformer-based DETR model. Table 3 

shows the comparison of evaluation indicators among these 

models. The model in this paper is the best among all 

evaluation indicators. 

 

 
 

Figure 15. Test results for the SVM-linear model 

Table 3. Benchmark evaluation of models on this study’s 

dataset 

 

Model 

Name 

Recall 

Rate 

Precision 

Rate 

F1 

Score 
mAP@.50 

YOLOv5 97.04% 96.54% 96.79% 94.95% 

RetinaNet 95.7% 95.3% 95.5% 92.34% 

DETR 97.8% 97.3% 97.56% 95.91% 

YOLOv5+ 

Stacking 
98.82% 98.52% 98.67% 98.53% 

 

 

5. CONCLUSION 

 

Building upon the YOLO v5 model, this study first 

employed a CBAM module to enhance the model's perception 

of positional information. Subsequently, a non-maximum 

suppression approach was adopted to reduce false detections 

of the steering wheel class. Finally, the extraction of detected 

object bounding box locations and the utilization of the 

stacking ensemble algorithm further minimized 

misclassifications between drivers and passengers. The 

proposed model improves detection accuracy and can 

precisely locate the primary subject of bus safety 

monitoring—the driver. This research lays the foundation for 

subsequent monitoring of driver distraction and face mask 

detection. In this study, the stacking ensemble algorithm 

utilized the detection results from the YOLOv5 model as 

positional information inputs. The overall training and testing 

process was relatively complex. Future work will investigate 

how to incorporate positional relationship information 

between objects into the model to enhance detection accuracy, 

ultimately enabling end-to-end training, testing, and inference. 
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