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Activities of daily living are important for human locomotion prediction. Humans perform 

several activities while moving from one place to another. Some of these activities are 

coarse-grained while others are fine-grained. However, the challenges remain for efficient 

locomotion prediction for daily living activities. A couple of important challenges faced are 

modeling of the human skeleton along with extraction of the relevant feature. Therefore, this 

research focuses on locomotion prediction while performing daily tasks. For this, a 

benchmarked publicly available dataset known as Opportunity++ has been considered to 

conduct experiments. The paper proposed a system that converted the videos from dataset 

into sequences of frames and filtered them. Next, background of each frame is removed 

using background frame subtraction technique. Then, human is detected via the skeleton 

modeling method based on five skeleton points. Furthermore, stochastic features have been 

extracted from skeleton model. Using the quadratic discriminant analysis method, these 

extracted features are then optimized due to the large vector size. Lastly, locomotion 

detected has been validated via convolutional neural network. Moreover, the experimental 

results show that the proposed methodology has achieved improvement in terms of accuracy 

rate of 82.94%. Compared to other state-of-the-art systems in literature, the proposed system 

outperformed. 
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1. INTRODUCTION

Locomotion prediction is an important aspect of the 

computing world due to multiple locomotion modes in various 

conditions and terrains in humans' daily routine [1]. Accurate 

locomotion prediction is necessary to provide proper care and 

emergency services to elderly or patients. Though the 

activities of daily living (ADL) are of many types, thus 

multiple studies have focused on different aspects of daily 

locomotion prediction. Machine learning [2] and deep learning 

[3] have been utilized to predict daily locomotion. Likewise,

using multiple types of sensors is also common for locomotion

prediction. A few studies proposed the use of motion sensors

like inertial sensors and electromyography (EMG) devices [4],

while others preferred to utilize the vision-based data captured

from indoor-outdoor environments [5]. 

Current studies in the field of locomotion prediction [6-8] 

have focused over motion sensors or visual sensors-based 

ADL detection. Few of them has misclassifications while 

others did not treat complex and simple motion patterns 

separately. Vision-based researches focused on the accuracy 

while not focusing on extraction of human silhouette that 

limits the applications of proposed method. The proposed fine-

grained daily locomotion prediction system has specific 

healthcare-related applications such as assisted living for 

elderly home care, patient’s healthcare monitoring [9], smart 

home-based applications [10], and disability-risk recognition. 

These applications require finer-grained locomotion detection 

[11] to provide a critical platform for ADL-related safety and

independence at home. Therefore, this research has focused on
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fine-grained ADL for locomotion prediction. The major 

contributions of the proposed system are as follows. 

1) An intelligent robust system has been proposed for 

locomotion prediction of ADL using state-of-the-art 

skeleton modeling and convolutional neural network 

(CNN). When compared to the existing systems, it is 

evident that the proposed locomotion prediction system 

has outperformed in terms of recognition results. 

2) A benchmarked dataset called Opportunity++ [12] has 

been utilized for the experiments. There are a few 

researchers who have utilized this dataset, therefore the 

usage of such a novel dataset is important for the 

contribution to this research area. 

3) A novel technique has been proposed to extract the 

human body through motion detection. This state-of-

the-art technique has helped in extracting the human 

body in its excellent form shown through the skeleton 

points accuracies achieved. 

4) Stochastic features like heat maps and saliency maps 

have been introduced into the system through the 

features extraction phase. These features have 

supported the system in terms of robustness towards the 

real-life application. 

5) The system is more focused on finer-grained activities 

in the dataset, which will be helpful in recognizing the 

critical ADL detection in the system. Fine-grained 

actions are more significant to detect as these are used 

comprehensively to achieve the final ADL recognition. 

The rest of the paper has been divided into multiple sections. 

Section II provides a literature review of the signal and video 

features-based locomotion prediction. Section III describes the 

proposed implemented system in detail. Section IV contains 

the experiments performed along with their results and a 

comparison with other state-of-the-art methodologies. Finally, 

section V elucidates the concluding remarks about the paper 

and some limitations, and future directions. 

 

 

2. RELATED WORK 

 

Automatic prediction of different gait events and ADL 

recognition for locomotion prediction is the primary purpose 

of this study. Multiple methodologies have been proposed in 

the past for this purpose. Some researchers focused on the 

features based on the video domain while others preferred to 

extract the features found on one-dimensional techniques. 

Following is a literature review of video features and signal 

features-based locomotion prediction models proposed in the 

past. 

 

2.1 Signal features-based locomotion prediction 

 

Different authors of research articles have proposed 

different works related to the signal features-based locomotion 

prediction of ADL. Table 1 gives a glimpse of such systems 

that are extracting signal-based features. 

 

2.2 Video features-based locomotion prediction 

 

Various researchers have looked into the methods used to 

predict locomotion based on video features. Table 2 

summarizes such systems in detail and their limitations. 

 

 

Table 1. Literature review for signal features-based locomotion prediction 

 
Authors Systems Limitations 

Jonic et al. [13] 

Three machine learning techniques have been used to predict locomotion and ADLs, 

multilayer perceptron, an adaptive-network-based fuzzy inference system, and a 

combination of entropy minimization type of inductive learning technique along with the 

radial basis function type of artificial neural network. The authors have proposed this 

system to calculate the activity patterns and to determine a mapping mechanism between 

kinematics and patterns. 

The proposed method has 

certain misclassifications 

because of the related 

randomization of multiple 

classes. 

Gochoo et al. [14] 

A system to predict locomotion through multiple steps. First, they denoised the sensory 

data followed by windowing of filtered data. Next, they utilized the time-domain, 

wavelet-domain, and time-frequency-domain features pool. Furthermore, they have 

selected the related features, and finally, a reweighted genetic algorithm has been applied 

to classify and learn the locomotion actions. 

The system’s performance is 

limited due to the same static 

and kinematic signals 

treatment. 

Azmat and Jalal [15] 

A smartphone-based locomotion prediction system consisted of pre-processing, 

windowing, segmentation, features extraction, and classification steps. Another step 

called template matching has been introduced in between the pre-processing and features 

extraction stages. It helped in determining the samples for complex and static locomotion 

behavior. 

The system attained less 

accuracy due to 

misclassifications. 

Zhou et al. [16] 

The authors have proposed a system to detect gait intents. Time, frequency, and time-

frequency domain-based features were used to extract features from raw data. Further, 

ensemble learning methods are introduced to classify the outputs. 

The proposed methodology 

lacks the implementation of the 

initial filter. 

Bejinariu et al. [17] 

An evaluation method for rehabilitation centers has been proposed in this paper. Videos 

of patients performing certain actions have been used as input to the system. First, the 

walking patient’s position was estimated via VGGNet CNN. Next, the joint angles were 

calculated followed by a study of variation in angles. Abnormal values of the angles told 

about the locomotion injuries and their recovery. 

Only knee angles have served 

the purpose of statistical 

analysis resulting in low 

performance. 

Pan et al. [18] 

A more detailed action-level recognition is required for patients monitoring and elderly 

care centers. The heterogeneous multi-modal cyber-physical system had two phases. The 

first one contained the distributed vibration sensing-based event detection and activity 

recognition. The second one had the single-point electrical load sensing-based event 

detection and activity recognition. Based on both phases, the spatiotemporal aware event 

prediction ensemble for ADL and activity type has been recognized. 

The detection accuracy of the 

system degrades in a complex 

situation, which limits the 

system's accuracy. 
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Table 2. Literature review for video features-based locomotion prediction 

 
Authors Systems Limitations 

Yan et al. 

[19] 

A system to determine user movement intentions has been suggested by the authors. A 

system based on depth images has been proposed for locomotion recognition. Features 

extraction subsystem and finite-state machine subsystem have been used to make it possible 

to detect the locomotion mode. The depth features have been extracted using local average 

depth values and stair edge detection. 

The system’s accuracy has been 

decreased due to no filtration technique 

applied. 

Moriya et 

al. [20] 

An internet-of-things-based technology has been introduced to recognize ADL through 

machine learning. They have deployed a network in a home-based environment and used 

ECHONET Lite-ready appliances and motion sensors for features extraction. However, the 

system could achieve a classification accuracy of 68% only. 

The model was not effective for real-

time scenarios due to low performance. 

Khalid et 

al. [21] 

The RGB data was pre-processed through background subtraction and silhouette detection. 

The depth data was pre-processed using morphological closing, edge detection, area-based 

filter, and silhouette detection. Then, the features are extracted via geodesic distance, 3D 

Cartesian plane, joints MOCAP, and Way-point trajectory. Further, the features are 

combined and optimized using a particle swarm followed by the neuro-fuzzy classification 

technique. 

The proposed method could not detect 

the overlapped silhouette, hence lower 

performance has been observed. 

Zhang et 

al. [22] 

The authors proposed an intelligent video surveillance system where the images are 

acquired followed by communication. Then, the moving targets are detected and binary 

images are post-processed. Further, the moving targets are tracked and sports behavior is 

analyzed. The feedback is given to the feedback control system. 

Due to shape variability, environment 

changes, and real-time requirements, the 

moving target processes face many 

challenges and hence cause low 

accuracy rates. 

Wang et 

al. [23] 

A simple and efficient technique was proposed to address the gait recognition problem by 

identifying people by the way they walk. First, the background is subtracted and moving 

silhouettes are segmented and tracked. Then, principal component analysis based on Eigen 

space transformation was applied to reduce the dimensionality of the input features. Further, 

the patterns are classified using a supervised method. 

The limitations of the proposed 

technique are the gait patterns need to 

be diversified and the lack of generality 

of viewing angles. 

Guo et al. 

[24] 

The paper introduced a two-step process to identify 3D pose and shape representations, 

where 3D pose sequences are processed and rendered by the shape representations. Lie 

algebraic theory was also used to represent human motion followed by extracting the 3D 

detailed shape from different views. 

A small dataset was used that does not 

provide stable results from the proposed 

process. 

 

 

3. PROPOSED IMPLEMENTED SYSTEM 
 

 
 

Figure 1. Architecture flow diagram for intelligent fine-

grained daily living locomotion prediction system 
 

This section describes the proposed implemented system in 

detail. The problems of misclassification and correct human 

skeleton points detection have been taken into consideration 

here and a model based on visual sensors has been proposed. 

First, the videos have been acquired from a well-known 

dataset named Opportunity++ [12]. Next, the data acquired has 

been pre-processed through filtration [25] and background 

subtraction processes to get more precise raw data. Then, a 

human skeleton has been exhibited by finding relevant 

skeleton points on the human body. Further, the features have 

been extracted using energy and saliency map features 

extraction techniques. These two feature extraction methods 

are based on skeleton points detected. Moreover, these 

extracted features are then reduced by using quadratic 

discriminant analysis methodology to avoid dimensionality 

issue. Finally, CNN has been utilized for human locomotion 

prediction via ADL classification. Figure 1 has illustrated the 

idea of the implemented system through an architecture flow 

diagram. 

 

3.1 Data pre-processing 

 

For data pre-processing, we have processed the image 

sequences from videos of the Opportunity++ [12] dataset. 

Then, we filtered those image sequences by reducing noise as 

below. 

 

3.1.1 Weiner filter 

The image sequences are more sensitive toward motion blur 

noise and can cause more computational costs for the 

implemented system [26]. Therefore, we proposed to reduce 

the noise in image sequences through a Wiener filter [27]. This 

filter calculates the mathematical relationships as in Eq. (1). 

 

𝑤(𝑥, 𝑦) =
𝐻∗(𝑥, 𝑦)

|𝐻(𝑥, 𝑦)|2 + 𝐾(𝑥, 𝑦)
 (1) 

 

where, 𝑤(𝑥, 𝑦) is the actual data, 𝐾(𝑥, 𝑦) represents the filter 

values, and 𝐻∗(𝑥, 𝑦)  gives the large area [28]. Figure 2 

indicates the pre-processed data sample along with its original 

image. From the figure, we can see that filtered image has less 

noise as compared to the original image. 
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(a)                                           (b) 

 

Figure 2. Pre-processed image sequence for (a) Original 

image (b) Filtered Image over Opportunity++ dataset 

 

3.2 Background subtraction and human detection 

 

Data pre-processing is being followed by the background 

subtraction from images applied over the filtered image 

sequences [29]. For this purpose, we have proposed to select a 

base background image from the dataset, converted that image 

into a binary image [30], and used it as background image to 

subtract the background from image sequences [31]. Then, we 

have detected the movable parts from these sequences of 

images [32] and used its binary image along with the 

background subtraction to get human movable parts from the 

image sequences [33]. Figure 3 presents a sample image with 

its movable parts detected for further processing. It is evident 

from the figure that a complete human can be extracted from 

the moveable parts detected by this methodology. 

 

 
 

Figure 3. Human detection through moveable parts in a 

sample frame sequence from Opportunity++ dataset 

 

3.3 Skeleton modeling 

 

 
 

Figure 4. Human Skeleton model containing five detected 

skeleton points and their connections 

 

Furthermore, we have extracted the centroids from blobs 

[34] in order to detect the human body's five skeleton points 

[35]. The five points include head, shoulder, elbow, hand, and 

foot [36]. Figure 4 shows the detected skeleton model from a 

random image sequence, where the yellow line shows the head 

point connected to the shoulder skeleton point, the green line 

represents the shoulder connected to the elbow skeleton point, 

the red line gives the elbow connected to the hand skeleton 

point, and the cyan colored line offers the skeleton points 

connection between elbow and foot. The red dots represent all 

the skeleton points detected in the proposed methodology. 

This shows a human skeleton model extracted from the five 

skeleton points detected. 

 

3.4 Features extraction 

 

Locomotion prediction for intelligent ADL is an important 

task that consists of another vital step known as features 

extraction. The features are extracted from the skeleton points 

and help in identifying the salient features from the frame 

sequences. This paper has proposed to extract two different 

feature types comprising of energy and saliency map features. 

 

3.4.1 Energy features 

Energy features have been extracted as the human body 

parts move from one frame to another and have been captured 

in the form of a heat map [37]. The more the human parts move, 

the more yellowish colors are formed on the map, whereas the 

lesser motion of a human will generate more reddish or 

blackish color over the map [38]. The map has been 

represented in the shape of a matrix and the values of matrix 

range from 0 to 6000 that is calculated as in Eq. (2) and Eq. 

(3). 

 

𝐻𝑘 =
𝑝k
ṕnϵk

 (2) 

 

𝑇𝑀(𝑥) = ∑𝑙𝑛𝑅(𝑖)

𝑘

𝑖=0

 (3) 

 

where, 𝑥 is the 1D vector consisting of extracted vector, 𝑖 is 

the index value, and 𝑅 refers to the RGB values [39]. Figure 5 

displays the heat map extracted from an image sequence. 

 

 
 

Figure 5. Energy features extraction results 

 

3.4.2 Saliency maps 

The next extracted features are through salient locations of 

a frame because the entire frame cannot be processed at the 

same time [40]. The fixated region is analyzed and then 

attention is redirected to other salient regions using saccades 

movements that are more to be focused upon [41]. Saliency 
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maps are a successful biologically plausible technique for 

modeling visual attention and hence being used in this study 

[42]. The generalized Gaussian distribution is also utilized to 

model each of these and calculated as in Eq. (4): 

 

𝑃(𝑓𝑖) =
𝜃𝑖

2𝜎𝑖𝛾(𝜃𝑖
−1)

exp (−|
𝑓𝑖
𝜎𝑖
|𝜃𝑖) (4) 

 

where, 𝜃𝑖 > 0  is the shape parameter, 𝜎𝑖 > 0  describes the 

scale parameter, and 𝛾 is the gamma function [43]. Figure 6 

illustrates the saliency map extracted from an image sequence 

of Opportunity++ dataset. 

 

 
 

Figure 6. Saliency map extracted for an image sequence over 

Opportunity++ dataset 

 

3.5 Features optimization 

 

After extracting the stochastic features, dimensions of the 

vector increased enormously. In order to make the features 

vector as connected to the goals as possible, this study 

proposed to apply quadratic discriminant analysis over the 

extracted features vector of energy and saliency map features. 

Other techniques for features optimization such as, sequential 

forward selection, linear discriminant analysis, genetic 

algorithm, and factorial discriminant analysis have been 

applied over this system as well. Due to the non-linear nature 

of data in this system, we have found quadratic discriminant 

analysis (QDA) to give the superlative outcomes. 

 

3.5.1 Quadratic discriminant analysis 

The extracted features from both the techniques explained 

in the previous subsection are present in a non-linear way [44]. 

Hence, quadratic discriminant analysis is supportive in 

features optimization of such non-linear vectors when 

compared to other linear methods [45]. We cannot assume the 

locomotion dispersion, therefore QDA is a good option in our 

proposed scenario [40]. The covariance matrix 𝑀𝑖  is 

calculated for each ADL as 𝑖 ∈ {1, ……… , 𝐼}. QDA can be 

calculated as in Eq. (5): 

 

𝜎𝑖(𝑥) = −
1

2
log |∑𝑖| −

1

2
(𝑥 − 𝜑𝑖)

𝑇 ∑ (𝑥 − 𝜑𝑖

−1

𝑖
)

+ log⁡ 𝜋𝑖 
(5) 

 

where, 𝑥 represents the extracted features vector and 𝜋𝑖 gives 

𝐼  activity priors [46]. Figure 7 explains the optimization of 

features using QDA from fine-grained activities of the 

Opportunity++ dataset [12]. 

 
 

Figure 7. Optimized features extracted via QDA over the 

Opportunity++ dataset 

 

3.6 Classification through CNN 

 

CNN has been utilized in learning algorithms in order to 

recognize classes, objects, actions etc. It is a neural network 

based architecture that learns from given input data. A variety 

of methodologies has been utilizing the CNN as a 

classification step [47]. There are one-dimensional and two-

dimensional CNN implementations [48]. However, multi-

dimensional CNN can also be used to classify fine-grained 

activities [49]. It can solve complex tasks in less time than 

conventional artificial neural networks [50, 51]. 

 

 
 

Figure 8. CNN architecture diagram 

 

CNN consists of different layers providing input to each 

other, such as convolutional, stride, max pooling, and fully 

connected layers [52]. The proposed CNN architecture 

consists of input layer, convolutional layer1, pooling layer1, 

convolutional layer2, pooling layer2, two fully connected 

layers, and finally a softmax layer. This architecture was 

implemented for two times and was compared to other 

architectures of CNN as well. But it provided the best possible 

results, hence we proposed this architecture of CNN for ADL 
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recognition. This study also applies the activation function 

named ReLU (rectified linear unit). The ReLU function trains 

by mapping the negative values to zero and by keeping 

positive values only. The learning rate was set to 0.0005 and 

the maximum epoch was also set to 200. Figure 8 displays the 

proposed method's structure applied over the Opportunity++ 

dataset. The input data from the selected dataset has been 

given in the form of reduced energy and saliency map features 

from QDA. Then, convolutional layer was applied where a set 

of convolutional filters has been used to activate the important 

features from video sequences. Further, a max-pooling layer is 

applied to downsample output and multiple parameters used 

for network learning. Finally, a fully connected artificial 

neural network has been used to recognize the ADL. Whole 

set of parameters and activation size have been displayed in 

Table 3. 

 

Table 3. CNN-based parameters 

 

Layer 
Activation 

Shape 

Activation 

Size 
#Parameters 

Input Layer (32,32,3) 3072 0 

CONV1(f=4,s=1) (28,28,8) 6272 392 

POOL1 (14,14,8) 1568 0 

CONV2(f=4,s=1) (10,10,16) 1600 2064 

POOL2 (5,5,16) 400 0 

FC3 (120,1) 120 48120 

FC4 (84,1) 84 10164 

Softmax (17,1) 17 1445 

 

 

4. EXPERIMENTAL OUTCOMES 

 

In this section, a detailed review of experiments performed 

along with their outcomes has been given. The experiments 

have been performed on the MATLAB tool. The hardware 

system used was Intel Core i7-8th Gen with 2.40GHz 

processing power, 24GB RAM having x64 based Windows 10. 

We used a publicly available dataset for validation of the 

proposed system. First, we assessed the performance of ADL 

detection through the Opportunity++ dataset [12]. Next, we 

evaluated the performance using precision, recall, and F1-

score. Then, the last part compared the proposed system with 

other state-of-the-art models. This section is split into two 

subsections: dataset description and performance metrics and 

results. 

 

4.1 Datasets description 

 

A publicly available dataset called Opportunity++ [12] 

having 25 hours of video data from 12 subjects performing 

coarse-grained and finer-grained types of activities inside a 

room has been used for experimental examination of the 

implemented system. This system focused on 17 finer-grained 

level activities such as open door, close door, open fridge, 

close fridge, open dishwasher, close dishwasher, open drawer, 

close drawer, clean table, drink from cup, and toggle switch. 

There were 6 different runs for each subject having five ADL 

runs followed by a drill run scenario [53]. The runs included 

different ADL situations like the groom, relax, preparing food, 

eating food, cleaning up, and break. The videos were recorded 

using 640×480 pixels resolution and 10 frames per second 

speed. The videos were anonymized to hide the subjects’ 

identity [54, 55]. Figure 9 gives a few image sequence samples 

from the dataset. 

    
 

Figure 9. Sample image sequences from Opportunity++ 

dataset [12] 

 

The variety of activities on both levels including fine-

grained level and high-level have suggested that this system 

can be applicable to a number of daily life routine actions. The 

diversity in captured data using multiple sensors has also 

recommended the robustness of this system for efficient 

results. These factors support the long-establishment of our 

proposed system and it can also be generalized to other 

datasets and the real-world human locomotion related 

situations. 

 

4.2 Performance metrics and results 

 

We utilized multiple performance evaluation metrics to 

assess the performance of the implemented system. The 

performance of ADL detection was evaluated with five 

evaluation metrics including accuracy, precision, recall, F1-

score, and confusion matrix calculated as in Eqs. (6)-(8), and 

Eq. (9) as: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 

F1 − score = 2 × (
Precision × Recall

Precision + Recall
) (8) 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

where, TP means the true positive values, TN gives the true 

negative values, FP is the false positive values, and FN is the 

false negative values. Accuracy in Eq. (6) depicts how 

accurate the implemented system and precision is in Eq. (7) 

mentions the confidence in the implemented system’s results. 

In Eq. (8), the F1-score states the system’s accuracy over the 

Opportunity++ dataset. The recall in Eq. (9) presents the 

fraction of relevancy among the finer-grained level activities. 

 

4.2.1 Experiment 1: Locomotion ADL recognition over 

opportunity++ dataset 

CNN has been used to test the implemented system over the 

Opportunity++ dataset [56]. We chose the k-fold cross-

validation technique to avoid overfitting issues [57]. The 

results are given in the form of a confusion matrix [58] in 

Table 4. A total of 17 fine-grained level activities have been 

classified through CNN [59]. The mean accuracy achieved 

over Opportunity++ video data is 82.94%. Table 5 contributes 

towards the precision, recall, and F1-score calculated for each 

fine-grained locomotion ADL in the system. The system also 

showed a low computational cost of 0.59ms, which 

demonstrates that the proposed locomotion ADL recognition 
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system is quite efficient. A receiver operating characterictic 

(ROC) curve has been shown in Figure 10 to describe the 

performance of proposed system in terms of false positive rate 

and true positive rate using Eq. (10) and Eq. (11) as: 

 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 (10) 

 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 

 

where, TP shows the actual true positives and FP gives the 

actual false positives. 

 

4.2.2 Experiment 2: Locomotion ADL detection comparison 

with state-of-the-art methods 

The proposed system has been compared with other well-

known methods in this experiment. Table 6 compares with 

other state-of-the-art systems [60, 61] based on locomotion 

prediction models. Different models were proposed in the past 

for ADL recognition via locomotion prediction [62]. 

The authors [63] proposed an ADL recognition system 

based on videos of actions performed by elderly people and a 

CNN-based network. Donaj and Maučec [64] suggested an 

hidden Markov models based ADL recognition strategy by 

modifying the Viterbi algorithm. A four modules based 

method for locomotion prediction has been presented in the 

study [65], namely, processing, extraction, optimization, and 

recognition modules. A multi-layer perceptron based approach 

has been proposed using IoT-based data from Opportunity++ 

dataset [66]. Next, they pre-processed and extracted a bag of 

features, which is further optimized. The authors [67] have 

extracted ten skeleton points to further extract cues from the 

data from Opportunity++. They have utilized deep belief 

network to identify the actions. Micro activities have been 

identified by Sridharan et al. [68] by location-aware algorithm. 

A transfer learning methodology-based system has been 

proposed in the study [69], which used random forest classifier 

to recognize ADL. 

 

 
 

Figure 10. ROC curve for Opportunity++ dataset 

 

Table 4. Confusion matrix for fine-grained locomotion ADL prediction accuracy over Opportunity++ dataset 

 
Opportunity++ Dataset OD1 OD2 CD1 CD2 OF CF ODW CDW ODR1 CDR1 ODR2 CDR2 ODR3 CDR3 CT DC TS 

OD1* 9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

OD2 0 8 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

CD1 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CD2 0 0 0 7 1 1 1 0 0 0 0 0 0 0 0 0 0 

OF 0 0 0 1 8 0 0 1 0 0 0 0 0 0 0 0 0 

CF 0 0 0 1 0 7 1 1 0 0 0 0 0 0 0 0 0 

ODW 0 0 0 0 0 1 8 1 0 0 0 0 0 0 0 0 0 

CDW 0 0 0 0 0 1 1 8 0 0 0 0 0 0 0 0 0 

ODR1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 1 0 

CDR1 0 1 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 

ODR2 0 0 0 0 0 0 1 1 0 0 8 0 0 0 0 0 0 

CDR2 0 0 0 0 0 0 0 0 0 1 1 7 0 0 0 1 0 

ODR3 0 1 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 

CDR3 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 

CT 1 0 0 0 0 0 0 0 0 0 0 0 1 1 7 0 0 

DC 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 

TS 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9 

Mean Accuracy = 82.94% 
*OD1=Open Door 1, OD2=Open Door 2, CD1=Close Door 1, CD2=Close Door 2, OF=Open Fridge, CF=Close Fridge, ODW=Open Dishwasher, CDW=Close 

Dishwasher, ODR1=Open Drawer 1, CDR1=Close Drawer 1, ODR2=Open Drawer 2, CDR2=Close Drawer 2, ODR3=Open Drawer 3, CDR3=Close Drawer 3, 

CT=Clean Table, DC=Drink from Cup, TS = Toggle Switch. 

 

Table 5. Precision, recall, and F1-score for fine-grained locomotion ADL prediction over Opportunity++ dataset 

 
Performance 

Measures 
OD1 OD2 CD1 CD2 OF CF ODW CDW ODR1 CDR1 ODR2 CDR2 ODR3 CDR3 CT DC TS Mean 

Precision 0.80 0.80 0.90 0.70 0.80 0.70 0.80 0.80 0.90 0.90 0.80 0.70 0.90 1.00 0.70 0.90 0.90 0.82 

Recall 0.80 0.80 0.82 0.70 0.89 0.70 0.67 0.67 1.00 0.90 0.89 0.87 0.82 0.91 0.87 0.82 1.00 0.83 

F1-Score 0.80 0.80 0.86 0.70 0.84 0.70 0.73 0.73 0.95 0.90 0.84 0.77 0.86 0.95 0.77 0.86 0.95 0.82 

 

A novel parts-based model has been proposed in the study 

[70] to recognize interaction between people and fully 

convolutional network has also been utilized to classify them. 

These compared systems couldn’t perform very well due to no 

filtration technique applied to video sequences and no hand-

crafted features being extracted. Therefore, these models [63-

70] did not perform very well and hence achieved less 

accuracy rates. Our implemented system has attained better 
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prediction in ADL recognition due to the introduced ADL 

recognition system of background subtraction, human 

detection, features extraction, optimization, and classification. 

 

Table 6. Comparison of locomotion prediction accuracies 

with other state-of-the-art models 

 
Models  Average Accuracy (%) 

Gabrielli et al. [63] 64.55 

Donaj and Maučec [64] 70.95 

Javeed et al. [65] 74.26 

Azmat et al. [66] 74.70 

Akhter et al. [67] 74.70 

Sridharan et al. [68] 76.67 

Myagmar et al. [69] 78.90 

Ghadi et al. [70] 82.55 

Implemented System 82.94 

 

4.2.3 Experiment 3: Locomotion ADL detection comparison 

with other neural networks 

The proposed system has been compared with other well-

known neural networks in this experiment. Table 7 compares 

the CNN based precision (prec) and recall (rec) results to 

artificial neural network (ANN) and Adaboost algorithms. It is 

evident from the comparison that CNN performed much better 

than other compared classifiers as CNN achieved precision of 

82.0% and recall of 83.0%. 

 

Table 7. Comparison of locomotion prediction with other 

neural networks 

 

Opportunity++Dataset 
ANN Adaboost CNN 

Prec Rec Prec Rec Prec Rec 

OD1 0.72 0.70 0.77 0.74 0.80 0.80 

OD2 0.78 0.78 0.68 0.66 0.80 0.80 

CD1 0.80 0.82 0.59 0.60 0.90 0.82 

CD2 0.67 0.66 0.74 0.71 0.70 0.70 

OF 0.89 0.87 0.85 0.89 0.80 0.89 

CF 0.91 0.90 0.77 0.75 0.70 0.70 

ODW 0.77 0.66 0.71 0.72 0.80 0.67 

CDW 0.67 0.70 0.67 0.67 0.80 0.67 

ODR1 0.78 0.72 0.69 0.74 0.90 1.00 

CDR1 0.72 0.70 0.70 0.73 0.90 0.90 

ODR2 0.65 0.61 0.84 0.80 0.80 0.89 

CDR2 0.69 0.67 0.66 0.64 0.70 0.87 

ODR3 0.73 0.76 0.76 0.78 0.90 0.82 

CDR3 0.80 0.79 0.80 0.77 1.00 0.91 

CT 0.70 0.67 0.74 0.76 0.70 0.87 

DC 0.67 0.61 0.90 0.90 0.90 0.82 

TS 0.89 0.80 0.80 0.78 0.90 1.00 

Mean 0.75 0.73 0.74 0.74 0.82 0.83 

 

 

5. DISCUSSION 

 

There are certain challenges associated with the extraction 

of skeleton model from an image. The skeleton points may not 

be visible in few sample images that can cause limitations to 

model skeleton. There is also a possibility of mix up for two 

or more skeleton points when it comes to variable number of 

subjects in the same frame and different lighting conditions. 

Figure 11 presents such limitations for Opportunity++ dataset. 

Other potential limitations of this system are related to the 

environment site. The selected dataset is based on indoor 

environment and thus we can say that the system’s 

implementation is limited to indoor settings, such as hospitals, 

smart homes, industrial indoor areas etc. This could affect the 

locomotion prediction in general environment. The visual data 

alone is not enough to predict human locomotion in general. 

We would require other sensors including motion and ambient 

sensors for the application of this system in outdoor 

environments. There can be another issue in the 

implementation of this method for real-world patient 

monitoring systems due to its implementation complexities 

including time complexity and cost factor. 

Another possible limitation is the background subtraction 

using a background frame because it can lead to inaccurate 

detection of skeleton points when the background is dynamic. 

Therefore, we can apply this system for videos with static 

backgrounds. 

 

 
 

Figure 11. Examples of limitations related to ADL over 

Opportunity++ dataset 

 

 

6. CONCLUSION 

 

This paper has implemented an intelligent daily living 

locomotion prediction system that will be supporting human 

daily routine activities. It consists of data acquisition from 

state-of-the-art Opportunity++ dataset in the form of videos, 

which are further pre-processed using the Weiner filter and the 

background has been subtracted through detecting moveable 

body parts. Then, a human skeleton model has been extracted 

via five body points, which are further utilized to extract the 

stochastic features such as the energy heat map and saliency 

map. Moreover, the large feature vectors are reduced using the 

quadratic discriminant analysis technique followed by the 

classification step through CNN has supported the 

implemented system in achieving an 82.94% mean accuracy 

rate for fine-grained ADL recognition for locomotion 

prediction over the Opportunity++ dataset. 

The system requires more related features extraction and a 

combination of multiple types of sensors. Hence, in the future, 

we will improve the system by applying robust algorithms for 

filtration and optimization along with multi-sensory devices. 

The system has used only one dataset named Opportunity++ 

that is limited to indoor data. There is a need to experiment the 

proposed system over outdoor data as well. We will also be 

focusing on the presented dataset limitation in upcoming 

studies. 
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