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The work introduces a novel numerical method for solving the Fredholm Integro-
Differential Equations (FIDEs) and system of Fredholm Integro-Differential Equations
(SFIDEs) by employing the fourth-order compact finite difference methods in
conjunction with Simpson’s quadrature rule. The accuracy of the proposed scheme is
rigorously evaluated using [? and [® norms, while the computational efficiency is
measured by assessing the CPU-time values, demonstrating a notable reduction in
computational cost compared to standard finite difference schemes. The significance of
this approach lies in its ability to maintain high levels of accuracy, addressing acommon
challenge in traditional methods. The methods presented exhibit fourth accuracy in
space, as evidenced by numerical experiments. The mentioned work signifies a notable
progress in tackling problems related to FIDEs and SFIDEs. It introduces a robust and
efficient numerical methodology that proves particularly effective in situations where
obtaining exact solutions poses challenges. This advancement is crucial as it addresses
a common difficulty faced in the solution of FIDEs and SFIDEs problems, offering a
reliable numerical approach that can handle complex scenarios and contribute to more

accurate and practical solutions in various fields of study.

1. INTRODUCTION

Recent years, interest is particularly pronounced in the
domains of physical and biological modeling, as well as in
(bio-)engineering applications where initial- and boundary-
value problems involving Integro-Differential Equations are
prevalent. The Compact Finite Difference Method (CFDM)
has emerged as a valuable tool for approximating solutions to
these intricate problems. Its application extends to both
ordinary and partial differential equations, making it a
versatile and sought-after numerical technique. The compact
nature of the method, coupled with its ability to handle
Integro-Differential Equations, contributes to its growing
appeal in various scientific and engineering disciplines.
Researchers and practitioners are increasingly turning to
CFDM as an effective approach to address the challenges
posed by complex systems described by Integro-Differential
Equations, fostering advancements in computational
methodologies and facilitating more accurate modelling in
diverse fields [1-9].

In light of the limited progress in the development of high-
order compact finite difference methods for Integro-
Differential Equations (IDE), this research is dedicated to
addressing this gap by focusing on the derivation of efficient
and accurate high-order numerical schemes. The complexity
inherent in Integro-Differential Equations, particularly in the
context of second-order SFIDEs, necessitates advanced
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numerical tools for precise approximations of solutions. By
concentrating on second-order SFIDEs, this work aims to
contribute significantly to the ongoing efforts in developing
sophisticated numerical methodologies tailored for Integro-
Differential Equations. The research endeavours to provide a
comprehensive understanding of the challenges posed by
second-order SFIDEs and to propose novel high-order
compact finite difference methods as a solution. The outcomes
of this study have the potential to not only advance the field of
numerical analysis but also to enhance the capabilities for
tackling real-world problems in diverse scientific and
engineering applications [10-12].
Consider the second-order FIDEs as follows:

u”(x) + q(u’ (x) + p(x)ulx)

b (1
=f(x)+ lf k (x,tu(t)dt
a
with Dirichlet boundary conditions:
u(a) =a, ulb)=4p 2
A system of second-order SFIDEs can be defined as:
u" (%) + g, V' (x) + pr()u(x)

3)

b
=fi(x) + Alf (k1 (x, Hut) + ky(x, t)v(t)) dt
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v (x) * @ (u'(x) + p, (v (x)

= £,0) + 4 f (s, Ou(e) + ky(r, Ov©))de, P
with Dirichlet boundary conditions:
u(a) = az,u(b) = p1,v(a) = a,,v(b) = B,. )

Forx,t € [a, b], where all 4, @, and f§ are constant values,
all functions f(x),q(x), p(x)and k(x, t) are known and u(x)
and v(x) are the solutions to be determined.

In recent times, there has been a notable surge in interest
regarding the application of higher-order numerical methods
to integro-differential equations. A particularly promising
approach gaining attention is the utilization of compact
difference approximations, known for their ability to achieve
high accuracy even with a relatively small number of grid
points. This method strategically employs 9 grid points,
forming a compact patch of three cells around a chosen node,
to effectively nullify second-order truncation error terms. The
key advantage lies in the subsequent development of
alternative expressions, with lower derivatives, that are
equivalent to the higher-order truncation error terms. This
innovative strategy holds the potential to yield more efficient
and accurate solutions for partial differential equations
(PDEs), presenting a compelling avenue for advancing the
field of numerical analysis and enhancing the precision of
solutions in various scientific and engineering applications.

It is known that compact difference approximations exist for
certain operators that are higher-order than standard schemes.
As an example, in the reference [13], the difference
coefficients at the five grid points corresponding to the
compact patch of three cells surrounding a given node can be
selected so the second-order truncation error terms cancel.
Therefore, utilizing the differential equation, leads to
producing alternative lower-derivative expressions equivalent
to the higher-order truncation error terms [14].

The primary objective of this research is to establish a
comprehensive framework and methodology for the
development of higher-order compact (HOC) schemes tailored
for second-order System of Fredholm Integro-Differential
Equations (SFIDEs). Drawing inspiration from various studies
employing compact finite difference methods for Volterra
integral problems, including references [15-17]. Numerous
authors have developed numerical methods for integral and

Integro-Differential Equations recently, see references [18-24].

The present study is prepared as follows: In Section 2, the
numerical method for second-order FIDEs and the system of
second-order FIDEs equations are proposed. In Section 3,
convergence analysis is proposed. Some numerical
experiments are shown in Section 4. Finally, conclusions are
given in Section 5.

2. FOURTH-ORDER COMPACT FINITE
DIFFERENCE SCHEME

2.1 Second-order  Fredholm  Integro-Differential
Equations

We employ the fourth-order accuracy Compact Finite
Difference Method to tackle the problem stated in Eq. (1). To
begin, discretize the interval I = [a, b] into N equal spaced
grid points with nodes xg, X4, X5, ... Xy_1, Xy, then
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I={a=x0< X1< X2< ...<xN_1< XNIb},
and x; = xy + ih,i = 0,1,2, ..., N. (h is the spatial step size).
The following notation u(x + nh) = u;,, at x = x; is used
for clarity.

By Taylor’s series expansion

h4
Uy = U + huf + —u' +— (3) + —ui(4)
2! 3' 4! (6)
h5 h® h?
e, e Voo
+5!ui +6!ui +7!ui +
h h*
Uy =u; — huj + —u;’ — u(3)+—u§4)
2! 3' 41t 7)
h5 h®
_ (5) P C) BN ) BT
5' + ol u; 7 u; e
Denoting the central difference of second order

approximate with first and second derivative of the function
u(x) by 8, u; and 62u; respectively, where 8, u; and §2u; are
given as

Uiy —Uiq Uiy —
2h

Zui + U;j_q

2 —
'qui - h2

®)

Oyu; =

Substituting Taylor’s series expansion for u;,; and u;_4 in
(6) and (7) into (8) we have that

h2 h4 h6 h8
— o (3) (5) ) 9)
T T A T T
10 )
+—u 4
111t
h? hé
— (4) (6) (8)
SZu; = uj +2<Eu" +aui +§u"
+ h_s a0 4, = h'e (a2 4 .. (10)
o't Tzt '
So that
h2 h4 h6
up = xu; — (gu@ + gu-(s) + ?uim
h® e R e | (4
TR AR TTA A >
h h* h®
= 62u; — 2 (41 u(4) + Euge) + gulgs)
10 ' (12)
+ h_ (10) +— h (12) .
100" 12! ’
substituting (11) and (12) into problem (1) yields
b
Lyu; — Errl = f; + lf k;(®)u(t)dt (13)
a

where,
Lyu; = 83u; + q;6,u; + pyuy,

where, Errl is the truncation error given as



h® u®

(4)
u; + 8l i

h4
—lul.(@ +

Errl =2 n
" 3

41
h h* h®
+ <§ ul@ + gui(s) + —um

717t
ZhZ(Zqiui(3) ulw)
41

2h* (3qiui(5) + ul@)

+ -

Errl = (14)

+ 6!
2h6(4qiu§7) + ul.(g))
+ 8l

+ e

where, Errl = E, + Eg + Eg +

To achieve 4th-order accuracy, we can focus on the error
term E, in the expansion of the central difference of the
second order approximation given in (4). By summing this
error term to the central difference of the second order scheme,
we can obtain a scheme with 4th-order accuracy such that

hZ
E, = I [2q;u®® +u®)]. (15)

To obtain the terms u§3) and ulw, we begin by rearranging

Eq. (1) and then differentiating it repeatedly with respect to x
from Eq. (1), we have

b
——qui—pu+ i+ 1 [ k@u©d, (16
a
u® = b
i = qu! = pias = pa + £/ + [ ku@de (1)
a
u® = (q7 - 2q, — P/ + (@4} + qpi — q}' — 2P}
1 n ! n b r
+Hapi — piwi — i) + 1" — ai f, ki©Otu(®) dt (18)
b

+J ki’ (®)u(t) dt.

Then substituting u?) from (17) and ul@ from (18) into the
term E, in (15) and simplifying produces
5 = (hz(qiz +2q) +pi)
= — | — Y

"
12 )u"

(hz(qlql+q1pl+ql +2p1)) o
- (Mlap)y g (M) pr g 12
+ (hz )f ki (®)u(t) dt
+<§) f K (Ou(®) de.

Replace the terms u;" and u; in E, with those in (11) and
(12) to obtain

(19)

h*(q? + 2q; + p;
E4=_( (i lqu P\ 52,

h*(qiq; + qip; + ai’ + 2p;) s
- 12 x Ui
_ (P (api — i) hqu

17 u; fi (20)

+h2 "t ha fk'(t) t) dt

12/ 12 )] " u(®

hZ b
+ (E) f ki'(Ou(t) dt — Err2,
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the error term Err2 is given as

h%(q? + 2q; + p;
Err2=2< (qi 12% pi)

)

h? h h h hio
oo e " e, P a P a
(4!"“' Tttt trot o Tt )
h*(q:qi + qipi + qi’ + 2pi)
12
h h h h h10
@, Mo o e P oay,
(3' BT T - TR A TTAs B

Adding E, to the second order central difference scheme,

gives
(1+
+ (ql +

2
h?(q;pi — pi") h*q
+< 12 w12
h? " thi
vl +( 12
h2 b
( )J ki'(®)u(t) dt — Err3

12
=f+ Af k,(t) u(t) dt.

h?(q? + 2q; +p)
12
h?(qiq]+qpi+a; +2p;]) s

i>fi,

b
> f ki(®u(t) dt

>5§ui

2]

The new error term Err3 is a linear combination of the error
obtained from the central difference scheme (8) and the error
obtained from E, i.e. Err3 = Err1 + Err2, so that

(6)>

2k2 (8)
8 I.

+ ul@) k1
3|

2(3q,- ui(s)
6!

2(4qi ng )+u(8)) Ll (5) +
8! s 4

©) (10)
+he (2(3q,- u;” +u; ) L ky

10! 7'
o (

(3)
+— 4 u;

Err3 = h4<

+h®

(7) +22

)

2G3aq ™ + ™)k §o

12! 9'
10
+ 200 )4
10!
qiq;+aipi*a; +2p; ai+2q+p;

where, k; = " and k; = -

The integral part on the right-hand side of Eq. (21) will be
handled numerically using the composite Simpson’s rule
given by:

I; = Y (ku) + T75M,
where

Y (ku)

3 O

h
=3 (ki,ouo + 4’2 Kizj1Uzjq +2 Z kizjaj + kinuy
= =

), (22)



and 7™ be a vector denoting the truncation error such that
where ||75™|| = 0(h*). Replacing the terms 8,u; and §2u; in
(22) with their definitions in (4) and neglecting the error term
produces following fourth-order compact finite difference
scheme

Aiui+1 + Bl-ui + Ciui_l = Fi + Ii

i=123,...,N—-1, (23)

where, the coefficient 4;, B;, C;, F; and I; are given as

s L (@+2gi+p) g hqgi+awi+ai +2pD)
LT R 12 2h 24 '

5 = ~2, haf +2qi+p)  h*(awi—pi)
ton? 6 12 ’

oot (@ +2ai+p) a h@gi+api+ai +2p)
top2 12 2h 24 ’

hzqi hZ
Fi=fi- () i - A

hz‘“) f o) de - (h—2> f kru(e) de

12 /), 12)), " ’
where, u, and u, are Dirichlet boundary conditions get in
general system, when i = 1, and i = n — 1 we obtain u, and
u, respectively. The system in Eq. (23) consists of (N — 1)
linear equations with (N-1) unknowns
(U, Uy, Uz, ooy Up g, Up—q)-

b
L =2 f ki (Hu(t) dt + <

2.2 The algorithm

In order to find the numerical solution of Eq. (1) by utilizing
the fourth-order compact difference approximation with the
composite Simpson’s rule, we provide the method of solution
in algorithm.

Algorithm 1
Input: N,a, b and boundary condition Uy and u, ,where
(a=x9,b=xp).
Set: h = =2,
N
fori < Oto N do
for j < O to N do
x; =a+ih.
end for
end for
for i < Oto N do
u; — u(x;)
for j < O to N do
ki,j — k(xl-, t])
end for
end for
fori «<— 1to N —1do
Ci =F+w.
forj <— 1to N — 1do
cﬂ(i’j) =B+y.
end for
end for
C =[C1 —v1up; C3: Crp; Cpq
Output: U <— A\ C

- y3un]
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3. CONVERGENCE ANALYSIS

This section aims to prove the convergence analysis of the
fourth-order CFD method. We first introduce the following
lemma that play a crucial role in the proof. To prove the
convergence of the system in Eq. (36) using the same method
as the convergence analysis of the fourth-order CFD method.
We define the space L, (a, b) represents a Hilbert space with
the inner product

b
(u(x), v(x)) =f u(x). v(x) dx.

a

The Sobolev H! admit a natural norm
lullZs = llull® + llu'lI%.

Lemma 3.1: The remainder 75" of the composite
Simpson’s rule satisfies

1 )
|75M| < ﬁh‘*u(“’)(f).

Proof. Let the function z = K (x;, s)u(s) be continuous and
possess a continuous derivative in [s, s, |. Expanding y about
s = s, we obtain

"

1 1
200 =20+ (s = s0)z + 5 (s = So)’zg + 36~ 5003z

1 . 5
+Z (s— 50)32(5”’) + f K (x;,s)u(s) ds

So

: NGOG G
=f0h<zo+rhzo+(2 Zy +%Zo +(TZé )+~~~>dr (24)
r*ho (k) (rh)? . R T
=h[rZO+TZO+ g PH o pa s 7z >+L
2,0 4h2 " 2h4 " 4h5 (iv)
=2h20+2h Zy +TZO +TZO ‘|‘EZ0 + -
Therefore,
Zy = Z (25)
2 3 h4 (iv)
! n nr w
zl=zo+hzo+?zo ezt oz (26)
4p3 2h*
Zy = Zg + ZhZ(’J + 2]’1226’ + TZE)” + TZSW) + .- (27)
Combining (24), (25) and (26), becomes
h h
3 [zo + 42, + 2,] = 3|67 + 6hz{ + 4h%z{ + 2h3z("
5h*
+ ?Zélv) + .- ,
(28)
4h3 4
= ZhZO + ZhZZ(I) + TZ(’), + TZ(’]”
5h*
20 W)
+ 18 zy e
Using (24) and (28), this leads
S2 h -1 .
(iv)
zds — =z + 4z, + z,] = —h5z;".
fs 3 90 0

0



The composite Simpson’s 1/3 rule is a numerical integration
method used to approximate the definite integral of a function
over an interval by dividing the interval into multiple sub-
intervals and applying Simpson’s 1/3 rule on each sub-
interval. To use this method, the interval of integration [0, [] is
subdivided into N even number of sub-divisions as follows:
0 =35y <5y <5y <:+ <sy =1l The integral over the entire
interval [0,l] can be approximated by summing up the
individual integrals over each sub-interval using the composite
Simpson’s 1/3 rule. The formula for the composite Simpson’s
1/3 rule for a sub-interval [s;, s;,1] is given by:

N/2 (N/2)-1
% h 15w
fs st=§ ZO+4ZZZJ-_1+2 Z Zyj+2zy. =%h Zy .

We obtain the errors in the intervals [0, [] as

TSM — ;_;hs[zoav) + 2, 4 g 2y, @]

-1 .
_ (iv)

Assumption 1: The kernel functions k(x,s) satisfies the
following positive definite property:

b (b
J. f (k(x,$)0(x), 6(s))dx ds > 0. (29)

for every continuous 6(x) = (Gl(x),Gz(x), ...Gk(x)) 0,

and the integral

b b
f f lk(x,s)|?dx ds < oo,
a a

Theorem 3.2 (Error estimates). Assuming that assumption

1 is satisfied and the kernel function k(x, s) is smooth enough,
then

lu(x) = 0, () g < Ch, (30)

where C > 0.
Proof: Setting e, = u — 0,,(x) in Eq. (1), gives

b
er + p(ep + qx)e, — yf k(x,5)e,(s)ds = f(x) +T(x,h), (31)

where T (x, h) be a vector denoting the truncation error such
that

T(x,h) = - pX)0;, —q(x)0,
+ ?\f k (x,5)0,(s)ds. (32)
Then, we have
T(x;,h) = —Lpz; + Af k (x;,s)w(z,s)ds
_G);ll (X )G)h (x )G)h + Lhzl (33)

—Af k (x, s)(w(z s) — @h(x))dx
= 0(h4)

Multiplying Eq. (31) by ey, and integrating with respect to x,
gives

b b
f (er, eh)dx+f q(x)(ey, ep)dx
a b a
+ [ p@en enix
b b
—7\[ f (k(x,s)(epn, ex))ds dx (34)
ba a
= [ (), en) x
b
+f (T (x, h),ep) dx.

Since p —%q” >0 and integrating by part along with
Assumption 1, we have

b b b
f (ep, ep)dx SJ- (f(x), ep)dx +f (T (x, h), ey)dx. (35)

Applying Cauchy’s inequality and Lemma 3.1 with,
truncation error estimate defined in (19), this becomes

llenll7s < NECONllenll 217 Ce, ) llen L,
which implies

lenllyr < CIT Ce, I = |75 + Err4]]
= CITM + Errall < CITMI + 17" [ llenll 2

), . (6)
4. (iv) 4(3‘11“”)&(3)
_||180hu”’ (§)||+C||h ( 6! +3!ui +
&ui@)) + h6( (4qlu(7)+u(8))+ kq 1(5) + (5)> ‘
4l 8! 51
||180h4”(iv)(5)”
(5) (6)
(2(3(11 +u; )+k1 (3)+2_kzug4)>
6! 3! 41
9 ©)
s 2(4qu;” + )_I_kl (5)+2k ©
8! 5! 6! b '

By taking small values of h* > h®, the proof will be
finished.

4. NUMERICAL EXPERIMENTS

In this section, the performance of a method is demonstrated
using an implementation in Malab programming. The error
norms of 12 and [* are utilized to quantify the error between
the numerical and analytical solutions. We denote by E errors
terms given by:

E(x) = u(x) — UAppro.(x)
e The pointwise error,

€(x) = |E(x;)]

e The [®-norm of the error,



[®(E,h) = OrgiglE(xi)l

e  The [?-norm of the error,

I2(E,h) = Vh EiL[E(x)|?

e The order of convergence R is calculated as,

log(Error(N;)/Error(N,))

Rate =
log (N,/Ny)

Example 1: We firstly deal with p(x) and q(x) = 0 such
that:

1
u'' (x) =e"—x+f xtu()dt,0<x<1
0

with Dirichlet boundary conditions: u(0) = 1, u(1) = e?,
and the exact solution is u(x) = e”.

Example 2: We secondary deal with p(x) and q(x) =0
such that:

1
u' (x) =x—2+60f (x—tu@®)dt,0<x<1
0

with Dirichlet boundary conditions: u(0) = 0, u(1) = 0, and
the exact solution is u(x) = x(x — 1)2.

Example 3: We deal with p(x) # 0 and q(x) = 0 such that:

-15 _

e 1 5
u(x) = 9u(x) + T-l_ f u(t)dt,0 <x <5
0

with Dirichlet boundary conditions: u(0) = 0, u(1) = e~1>,
and the exact solution is u(x) = e 3%

4.1 Second-order system Fredholm Integro-Differential
Equations

The fourth-order Compact Finite Difference Method, along
with the first and second central differentiation formulas
defined in Egs. (6) and (7), provides a high-accuracy
approximation for solving differential equations, gives:

S7u; + q1;6,v; + pyuy — Errl = fi, +

N (a0 + e (00

36
S2v; + q2;0xu; + P2,V — Err2 =fo, + (36)

g8 j b(ksi(t>u(t> + kay (OV(D)) dt,

where, Errl and Err2 is the truncation error given as

h ht ht
Errl =2 (4' O+ ul® + au?)) +

h h* R®
@) NONELINC ) T
oy (3| v+ o >+

h h* ho
_ (4) (6) (8)
Err2 = 2(4' v; +6' i +8' i >+

(37a)

h h* h
+q21<3| & o 51 (5) +ﬁu§7)> + -

2h? (201,08 +u?) . 2h* (3q1,0° +u®)

Errl = 0 ol
2h® (4q1ivi(7) + ul(s))
+
|
37b
2h? (Zqziug + v(4)) 2h* (3q u ) 4+ v(6)) (370)
Err2 = +
4! 6!
2h® (4q2iul§7) + vi(g))
+ 8l

the error term Errl and Err2 can be written as €rrl = E;, +
Eig+Eg+-and€&rr2 =E,, +E, + E,; +

To yield 4th-order accuracy, there is need to only sum the
term E4 from Errl to the central difference of second order
scheme given in (8) i.e., from (10)

E,, = [Zq Lv(3) + u§4)]
(3%)
E,, [Zq2 (3)+vi(4)]
The terms u( ) u(4) L.() and vim are obtained by

rearranging the Eq 3) and differentiating repeatedly. From Eq.
(3) we have

SZu; = —q1;6,v; — p1u; + fi;
+ A f b(kli(t)u(t) + kg (O)V(0)) dt

8Fv; = —CIZi{%)xui —P2Vi t f2; (39)
+1, f (ks Ou(®
+ k4i(at)v(t)) dt.

From whence we get

3 1o " ’ ’ ’
uE ) = —q;Vi — q1,Vi —DP1Wi — bW+
b
+ /11f (k1; u(®) + ki u(®v(t))dt.
a
3 ’ ’ ” 1 1 ’
”g ) = —q2; U — q2,Ui — D2,Vi — P2 Vi +f2; (40)

+ lzf (kSL u(®)u(t)
+ ky; u(t)v(t))dt

u® = (a1, — a7 )i — 205 Vi’ + 4y, phvi
+ (_P1i + ‘h,-lhi)ufl
+ (1,03, — 201 )wi — P + f')
- qlilei

b
—Aqu.J’ (kju(t) + k4v(t))dt

+ /Ilf (kfu(®) + kyv(D))dt
”54) = (p1,42, — qé’i)ul 2q3,ui’ + qz,p1, i
+ (_Pzi + ‘hﬂz,-)”i”
+(q2,91; — 2p2,)vi — 2/ vi + f5',
- QZiflri
b
— Mgy, f (kiu(®) + kyv(t))dt

(41)

+/12J’ (kfiu(®) + k3w (D))dt.



and v?) from (40) and u§4) and
v® from (41) into the term E4 in (38) and simplifying
produces

Then substituting u§3)

_ R(pyan, t ) hqul
4= 12 vi——g vl
hqupélv h2(py, + 41,92,) o
i 12 b
_h? (q1 @ t2pi) W
] 12 it
h* i h‘hl
+Ef1i fZl
A,h%q,
+2—ql‘f (k3u(t) + kyv(t))dt

Alhz

Eq

f (kfu(t) + kyv(D))de

h2(p1az +45,) , R*qy ,, h*qxpi;
Ezy=- 12 e V.
Rt and) P40 +205)
12 i 12 i
R2py; h? h%qy;
- 121U'+E2L lf1l
l1’1 Q2L

S, (k u(t) +k2iv(t))dt

Azhzf (kyu(t) + kyv(D))dt.

Finally, replace the terms w;’,u;,v;" and v; in E; jand E;,
with those in (7) and (8) to obtain

g M@ ta), e, Raps
14 12 xYi 12 i
_ hz(pli + ‘hﬂzi) 6211,-
12 XY
W (a3, + 2p1) W h*py'; Wyl
12 U
h " h d1;
+ Efl i + lle

Ah2a,
2 9y f (k;iu(t)+k;iv(t))dt
12 i

12 Err3.
h2(p1,q2, + 4% ;) h?qj, h?q,,p1,
Eyy=———"7-——" 1é LS u; — L§2u; — 121 Lu;
_ hz (pzi + ‘hﬂzi) 621]-
12 x Yl
_ h(q5,91, + 2p3)) s h?p,, N
. 12 T
R, Py
+ Efz i + lfll
Alhzqz.

_l_

f f (ke u(®) + k3w (0))dt

lzh f (kyau(t) + ki;v(t))dt — €rra,

the error term Err3 and Err4 are given as
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h%(p,.q1, + q1;) (h? h* h®
err3 = (Pz,qh qu)( (3)+ (5)+_Ui(7)+_

12 31 51 71
hl
LD
ot +
Ah?qy, (h? (4)+h NONLANC!
6 \4l TR TR

10! vi 12! Vi
4h (Pll + 41,92, ) h? (4) W h* (6)
12 4. 6!

h h10
LB o e )

h® h8 K10
u® (10 202
Tat T i >
h*(q1,95, + 2p1,) (R? u® +h ©
12 3' 5!

h6 h8 hl
S ) A C) BRS¢ & O R
o tgr gt )

h2(p1,q2, + 47 ,) (h h* hé
_ itz (3) (5) )]
Srr4-——12 (3| +5 +7!ul— +
K10
e
+opu
2h?q;, (0 ® h* 2 h® (&)
6 \at Tt Tt
h8 K10
h ao NN
+ 10! Wt 12!
N 2h*(py, + 1,42, (h* »® +h ©
12 4-! 6!

T 10! Vi 12! Vi
+ h?(92,91, + 2p2;) <h @2 i ®

hs h h10
e B oao M an, )

12 3! 5!
hS h® h10
LN G BN O) (11)
v v F vt >

8
o

©
o1 Vi

i

Adding Eq, and E; , to the second order central difference

scheme, gives

hquipz’iv
12 ¢
h?(qy,95, + 2p1,)
12
h?py, h? 2qq,
+<1+ 12‘>ui+—1i 12‘le

Azh ql‘f (K4u(t) + kv (D))dt

8Zv; —

12

h2(py, + q1,92,
+ <1 + WPy + 4192 uql‘qz‘)) 82u; +

h*(py,ay, + a1',) h2q;,
G +—————— |6 —

(qui

Err5

— ity f (kli(t)u(t) + kzi(t)v(t)) dt, (qzi

h?(py, 42, + qéﬁ-)) s
12 XY
Mo N ( R2(p,, + ql,-qzi)) stn
12 “ 12 Vi
2 ! ’ 2 "
+ 7,1 (quq;i;‘ zpzi) 6,0 + (pzi + %) v;
h? ‘hl

SZu

h2
+ —fz”,
l1h ‘hl

f1 i
f (kuu(t) + kv (t))dt

Erré

b
= fo; + 2 f (k3i(t)u(t) + k4i(t)v(t)) dt.

(42)



If we replace the term §,u; , 62u;, 8,v; and 52v; in the Eq.
(36) by the terms in (4), and neglecting the error terms (Err1)
and (Err2), the subsequent accurate central difference of
second order schemes are obtained

Ajuirq + Biug + Couy g + Dyvyyy + Eivi g = Fop +
GiVipr + Hivy + v + Jisi + Ky = Fop + Iy,
i=123,...,N,

(43)

where the coefficients 4;, B;, C;, F; and I; and the following
fourth-order compact finite difference scheme is defined as

(p1; + 01,92,) N h(q1,q5; + 2p1;)

A = — '
Y h? ( 12 ) 242
=2 (P, +q1,9, h?py’.
Bi:F_T+pli+ 121’
oo L, rtaua)  h(aya, +2v)
oR? 12 24 )
b= - sy du "z, + ai'y)
' 2h 24
E. = qll _ hquipéi
Y3 12
P PO YL X))
L 6 2h2 24
h II h’ q1;
=fi, — - lle

L= ’ Jey (O (t) + Ky (DV(E) ) dt
L f ( )

‘hl
f (k31u(t)
+ k4lv(t))dt
1u®) + kyv(t))dt
(44)
G = (le + 41,4z, ) 4 h(qz q1; + 2p2; )
l hz ( 12 ) 24
-2 pzi + Chﬂzi thl'
Hi=gg = tpyt—
I = l + (pzi + qliqzi) _ h(quq]’_i + zpél)
" h? 12 24
PO T G P D)
L 2h 24
P T
' 12 3
oo B2 heyaa tad)
L 6 21; 24
h' Il h’ ql
le 12 i l fl i

b
I, = Azf (k3.(t)u(t) + k4.(t)v(t))dt
A f (k u(t)
+k2Lv(t))dt
Azh f (kyu(t) + kyv(®))dt,

CIZL

and the new error term Err5 and Err6 is a linear combination
of the error obtained from the central difference scheme (11)
and the error obtained from E4 i.e. Err5 = Errl + Err3 and
Err6 = Err2 + Err4 so that
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Err5 = h*

2(3qll ) + ul@) N k1u§3) + kzvi(S)

6! 3!

2(k3u§4) + k4vi(4))
+
(8))

4!
2(4q1ivi(7) +u;
8!
kyu®® + kv
+ 5!
2(5q1ivi(9) + ugw))
10!
57) + kzvim +
7!

+ K10 (2(6011: 1(11) tu

12!
)+

kyu + kv
10!
Z(kguglo) + k4vi(1°))
+ 10!
2(3q,,y; ® 4 ) ksu® + kgv®
6! + 3!
ol 1)
4!
2(4q1 @ 4 vi(s))
8!
ksu'™ + kev® 2(k7u§6) + kgv(®)
+ 5! 6!
© , . @10) )
2(5q Wi Ty ) ksu; +k6v
10! 7!
2(kyul® + kgv®)
+ 8l
2(6q1 an 4 u(u))

12!

ksu + kv
2(p1i+¢hi‘hi)

+ h

2(k3u§6) + k4vi(6))
6!

)
)

+ h8

ku 2(k3u§8) + k4vi(8))
+ 8l

(12))

Err6 = h*

+ h

)

|

+h'°

10!
2(k7 a0 4 k v(“’))

10!

q1,92;+2p1; ko =

12 > 2 =

P1;42; +q3 i
12

P2,q1;+41;
s k3 =
12
qz; q11+2p21
12

where k; =

th

6 - ks =
kg = (Pzﬁ%ﬂzi)’
12
Here, ug, vy, u, and v,, are Dirichlet boundary conditions
in general system, when i =1, and i = n — 1 we obtain u,
and u,, respectively. The system in Egs. (35) and (36) consists
of (2N — 2) linear equations with (2N — 2) unknowns
(Uyg, Ug, Ug, ey Up—z, Up—1, V1, Vg, Vs, e, Uz, Up—1) and can
be written in the following matrix form

k4_ k6_ ,k7=2q—



yl+A ST+ BIU Fi+w+ ¢ h32 10hR32
- b )
}/2 +C §2+9Dllv Fo + wy, + @, aj = 9 1i+1,2j—41 1i—12j-1 9 Li2j-1
where q,,h*2
e LS |
18 i+1,2j-1 i-1,2j-1
[Vz ys 0 0] [52 6 0 - 0] h32, 10h32,
N LA G 0 | st 0 % G o 0 bii =18 (kli“m’ * kli—w) TR
yl=1: . . o 6t = | : . . . ! Q1-h4/12
0 Yi Y2 V3 0 81 6, & . ks ks ),
l 36 3i+1,2j 3i—1,2j
0 = 0 h T 0 0 6 & h32 10h32
aj by, a3 bis - bino Ain-1 ci = 1 (k +k ) + i
a1 by, ass b4 byns azn-1 + 9 Zit12j-1 Zim12j-1 9 Zizj-1
asq by, asz b3 4 b3 n_> azn-1 qhh A2 (k +k )
A= : : : : : : , 18 4i+1,2j-1 4i-12j-1)"
n-31 bnosz Gnss bpsa by 3n-2 Qnozn-1 d . = hsﬂi (k Tk ) n 10h3ﬂ1
n_21 bn_zy Qn_23 bp_za byp_sn—2 Qn_zn-1 LT 18 \M2itzj 2i-1,2j 18 2iz2j
(an_11 bn-12 an-1,3 bn—1,4 bn—1n—2 an-1n-11 qlih4/12
[ C11 dq, €13 dya din—2 Cin-1 ] + 36 (k4i+1,2j + k4i—1,2j)'
C21 dq, C33 daa dyn—2 Con-1 h3,12 1()h3,12
C31 d%,z EE d?,a, d3,7_1—2 Can-1 Wij =g (k3i+1,2j—1 + k3i—1,2j—1) + 9 K350
B = : : : : : : ' qzihllﬂl
Cn—31 dpn-32 Cn—33 dnp_34 dn_3n-2 Cn-3zn-1 (kl. otk ),
18 i+1,2j-1 i-1,2j-1
Cn-21 dn—Z,Z Cn—-2,3 dn—2,4 dn—Z,n—Z Cn—2n-1 3 3
c d c d d c h>A, 10h°2,
[Cn-11 Gn-12 Cn-13 Gdn-4 On-1n-2 Cn-1n-1 Xij = 18 (k3i+1 ;T k3i_1'2j) + 8 K3z
fll f21
e qz; h*24
U, flz sz —(k . + k. .),
36 1it1.2j 112
Us Jis f2s h31, 10h32,
U=\ ¢ G I PGl I y--=—(k. o+ kg, .)+7 .
Up-3 VUn-3 fln—3 fzn—3 Y 9 4L+1’2]h_:1 4L_1,2]_1 9 4L’2]_1
u v qz; 1
luz j VZ j fin-a fon—s 118 (k2i+1,2j—1 + k2i—1,2j—1)’
il ool R31 10h321
(all_}/l)u0+ﬂ11un [ (a21_61)170+32117n Z; i = —2(k4_ + k. ) +72 4
Uy + PBryun A,V + B2,V 7 18 2 2 18 b2
2 2 2 2 4
@y ,Up + Pty a3,V + Bagy QZih A (k Tk )
w, = B Py = ﬁ I 36 2i41,2j 2i 1,2j )’
A1,_sUo + 1n-3Un A2n-3V0 + 2p-3Vn h ql
@,y + Bi,_yUn A2p_5Vo + Bap_yVn fli 12 (f11+1 + 10f1 + flL 1) +—— (f21+1 fzi—1)’ fzi
[y, U T (/31,,_1 —¥3)uy | &2, _1Vo T (/32,1_1 — 83)v,] h
(a3, — ¥a)uo + B3 un =1 (fzm +10f3, + f2,_ 1) + (f1l+1 f1l-_1)'
Vs ¥e O - 0 @3t + B3ytin . P*(@,92, + p1) h3(q1i a3; +2p1;)
e s e 0 35U + Bglin Yi=1+ 12 + 24 ’
ye = . , Wy = , h2 g, + ' h4 "
8 )8; Ys Ve A3, U + P3,_3Un Y =—2-— M plihZ + pll
- e Ya Vs a Ug + u
n-ato + Fangtin h?(q1,q2, + p1,)  h3(a1, a5, + 2p1,)
(s, Uo + ('3311—1 - y6)un7 ys=1+ 12 - 24 ,
r 71 S1,2 71,3 S1,4 S1n-2 T1n-1 h2a! h h3( ey )
21 S1,2 733 $2,4 S2n-2 T2n-1 8. = 41, + 4y, P2;q1; T 41
T31 S1,2 T33 S34 S3n-2 3n-1 1 6 2 24 ’
_ : : : : . : : 2 4 ’
c=[ : : : : . : )b 5 = ha1;  h*qyps,
T™h-31 Sn-32 "™-33 Sn-34 Sp—-3n-2 "h-3n-1 2= 3 12 '
T™h-21 Sn-22 ™-23 Sn-24 Sn-2n-2 Tn-2n-1 h2a!. R K3 +ql'
l"n-11 Sn-12 "™m-13 Sn-14 Sn-1n-2 Tn-1n-1 83 = gll — % - w,
Ay, — O4)Vo + L4,V
(2 4)+° e h?q5;  hqy  h3(py,q +45))
4,00 + PayVn s 8¢ 0 -+ 07 V4= iy i i12§ i/
43V + Pazln [54 6s 6 = 0 6 _thq’. h4q2.§;4.
@, = : 5 82 = w1 Ys=— 28 —121 S
a4n_3170 + 4n_3vn 0 ° 54— 55 66 hZ h h3 "
. q,. + .
Aap_ V0 + Bay_yVn 0 - 0 & &5l Yo = gzl - Zzl - (pllqzzél L L>,
X4, _4Vo T (Ba 1 86 ) n 2 3( 1 '
Vin o ziz " Yis | Zia Zin-z  Yin-1 1 5, =1+ h (41,92, + P2) _ h (Chi‘bi * ZpZi)’
Y21 Z1,2 Y33 Zy4 Zyn-2 Y2n-1 5 12 24 o
Y31 Z1,2 Y33 Z3,4 Z3n-2 Y3n-1 h (Q1iQZi+'p2i) 5 P2,
p=| : ; ; P : c Oy =—2—————+ph° +——,
Yn-31 Zn-32 Yn-33 Zn-34 Zpn-3n-2 Yn-3n-1 hZ(Q1iQZi+'PZJ h3(q{iq2i+-2péi)
Yn-21 Zn-22 Yn-23 Zn-24 Zn-2n-2 Yn-2n-1 =1+ B - ) )
Yn—l,l Zn—1,2 yn—1,3 Zn—1,4 Zn—l,n—z Yn—l,n—l-
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h3/11 10h3/11
ay, = 36 (k1i+1,o + kli—m) + 36 Lio
Q1ih4/12
72 (k3i+1,0 - k3i—1,0)’
h314; 10R32,
az; = 36 (k2i+1,0 + k2i—1,0) + 36 20
‘hih4/12
+ 72 (k4i+1,0 - k4i—1,0)’
h3/11 10h3/11
Bli = 36 (k1i+1,n + kli-1,n) + 36 lin
‘hih4/12
+ 72 (k3i+1,n - k3i—1,n)'
h3/11 10h3/11
Bzi = 36 (k2i+1,n + kzi—1,n) + 36 2in
CI1ih4/12
+ 72 (k4i+1,n - k4i-1,n)’
h32, 10h32,
as, = 36 (k3i+1,0 + k3i—1,0) + 36 3i0
QZih4/11
72 (k1i+1,0 - kli—m)’
h3%2 10h321,
Ay, = 36 (k4i+1,0 + k4i—1,0) + 36 4i0
QZih4/11
72 (k2i+1,0 - k2i—1,0)’
K32, 10h32,
B3i = 36 (k3i+1,n + k3i—1,n) + 36 3in
qzihl}ll
72 (k1i+1,n - kli—1,n)'
h32, 10h3%2
B4i = 36 (k4i+1,n + k4i—1,n) + 36 4in

+ qu;L;AI (k2i+1,n - kzi—lln).

Algorithm 2

Input: N,a,b, and boundary conditions g, Uy, Vo and
v, where (a = xg, b = x).
Set: h = 22
N
fori < Oto N do
for j < Oto N do

x; =a+ih.
ti=a+ jh.
end for
end for

fori «— Oto N do
w; — u(x); vy — v(x;)
for j < O to N do
ky;; k(i £5); ko ka(xi t)); ks
k3(xi b)) 5 kay ;< ka(xi t))
end for
end for
fori «<— 1to N —1do
Cli=T1+(A)1+(p1
Czi=T2+(l)2+(p2
forj— 1to N —1do

A=y'+A
B=6'+B
c=y%2+¢C
D=6%+D
end for

end for

R = [AB; CD]

Cy; = [C1; — v uo — 81v0; C15:C1,_p;C1pyyg
- Y3un - 831771]

Cy; = [Cay — VU0 — 84v0; C25:Cap_5;Copy
- y6un - 861771]

C =[G Gy

w = [U;V]

Output: W — R\ C

Next, the following examples, a system of Integro-
Differential Equations, are solved by Compact Finite
Difference Method.

Example 4: We deal with p;(x),p,(x) =0,q,(x) and
q,(x) # 0 such that:

u”(x) +v'(x) = 2(e* —sinx) — Jﬂex(u(t) —v(t))dt
0

rn ! n T[ :
v (x) + 2u'(x) = (1 +E) cosx—ismx

— fncos(x +1t) (u(t) + v(t))dt,
0

0<x<m
with Dirichlet boundary conditions,

u(0) =0, u(m) =0, v(0) =1, v(m) = -1,

and the exact solutions are u(x) = sinx and v(x) = cos x.
Example 5: We deal with p,(x),p,(x) = 0,q,(x) and
q,(x) = 0 such that:

u'(x) = i—g +6— ZJ- Xt(u(t) - 3v(t))dt
0

4 1
v"(x) =15x + = — 3] (2x + ) (u(t) — 2v(D))dt,
5 0

0<x<1
with Dirichlet boundary conditions,

u(0) =1, u(l) =4, v(0) = —1, v(1) =2,

and exact solutions are: u(x) = 3x2+ 1 and v(x) = x* +
2x —1.

Example 6: We deal with p;(x),p,(x) =0,q,(x) and
q-(x) # 0 such that:

x 1
u'(x)+v'(x)=e*+ 3 + f xt(u(t) + 2v(t))dt,

v'(x)+u'(x) =2—xel+ g +e*
+ flx(u(t) + 2v(t))dt,
’ 0<x<1
with Dirichlet boundary conditions:
u(0) =1, u(l) = e,

v(0) =0, v(l) =1,

and the exact solutions are u(x) = e* and v(x) = x2.
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Table 1. Rate convergence for Example 1

N I(E, h) Rate 1*(E, h) Rate
10 2.5935e-07 3.5847e-07

20 1.6227e-08 3.9984 2.2488e-08 3.9946
40 1.0145e-09 3.9996 1.4079e-09 3.9975
80 6.3409e-11 3.9999 8.8014e-11 3.9997

Table 2. Rate convergence for Example 2

N I?(E, h) Rate I°(E, h) Rate
10 5.4065e-05 7.9096e-05

20 3.3780e-06 4.0005 5.0185e-06 3.9783
40 2.1112e-07 4.0000 3.1365e-07 4.0000
80 1.3195e-08 4 1.9603e-08 4.0000

Table 3. Rate convergence for Example 3

N I2(E, h) Rate I°(E, h) Rate
10 2.9359¢-03 3.5700e-03

20 2.1150e-04 3.7951 2.4212e-04 3.8821
40 1.3614e-05 3.9575 1.6098e-05 3.9108
80 8.5649¢e-07 3.9905 1.0112e-06 3.9927

Table 4. Comparison of the pointwise error €(x) when h = 0.1 and 0.05 for Example 1

Reference Reference
x; Present Method Reference [13] [18] [25]
N=10 N=20 N=10 N=20 N=10
0.1 9.77e-08 6.11e-09 4.31e-05 1.21e-06 4.39e-06
0.2 1.86e-07 1.16e-08 3.07e-05 6.82e-07 1.81e-05
0.3 2.61e-07 1.63e-08 1.43e-05 1.41e-07 4.24e-05
0.4 3.18e-07 1.99¢-08 2.37e-06 4.02e-07 7.83 e-05 N=10
0.5 3.52e-07 2.20e-08 1.91e-05 9.45e-07 1.27e-04 2.05e-02
0.6 3.58e-07 2.24e-08 3.59e-05 1.49e-06 1.91e-04
0.7 3.31e-07 2.07e-08 5.28e-05 2.04e-06 2.70e-04
0.8 2.65e-07 1.66e-08 6.93e-05 2.59e-06 3.67 e-04
0.9 1.57e-07 9.82e-09 7.94e-05 3.12e-06 4.85e-04

Table 5. Comparison of the pointwise error £(x) when h = 0.0417 and 0.0208 for Example 2

. Present Method Reference [13] Reference [26] Reference [26]
' N=24 N=48

0.041 5.99e-07 3.74e-08

0.125 1.51e-06 9.45e-08

0.250 2.26e-06 1.41e-07 N=24 N=24 N=24
0.333 2.41e-06 1.51e-07 2.41e-06 3.25e-06 2.89e-03
0.375 2.41e-06 1.50e-07

0.500 2.12e-06 1.32e-07 N=48 N=48 N=48
0.625 1.57e-06 9.86e-08 1.51e-07 2.41e-07 7.91e-04
0.750 9.30e-07 5.81e-08

0.875 3.49e-07 2.18e-08

0.958 8.02e-07 5.01e-09

Table 6. Comparison of the pointwise error £(x) when h = 0.05 and 0.25 for Example 3

X Present Method Reference [13] Reference [21]
t N=10 N=20 N=10 N=20

0.5 3.57e-03 2.35e-04 1.28e-01 3.88e-02

1.0 1.77e-03 1.20e-04 3.47e-02 6.56e-02

15 8.03e-04 5.70e-05 2.83e-03 9.48e-04

2.0 4.61e-04 3.46e-05 5.30e-03 2.64e-03 N=10

25 3.57e-04 2.77e-05 7.20e-04 3.03e-04 8.31e-01

3.0 3.27e-04 2.57e-05 7.64e-03 3.11e-03

3.5 3.17e-04 2.50e-05 7.73e-03 3.10e-03

4.0 3.03e-04 2.39e-05 7.70e-03 3.01e-03

4.5 2.48e-04 1.95e-05 7.08e-03 2.57e-03
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The results are computed as the [?(E, h), and [®(E, h) error

norms for the proposed method in Tables 1-3. The error norms 018 '

of E(x) are reported in Tables 4-6 for different space and 014k |
compared with the results given by references [13, 18, 21, 25,

26] at different space levels h < 1 are reported for different 0.12F '—‘:l—gssrc‘ixmate’

values of N, at domain [a, b]. It is clear that from the all tables
our results are better than the results given by references [13,
18, 21, 25, 26]. In addition, that the number of subintervals % 008
increases, the pointwise errors become smaller. The solution i
profiles in Figures 1 and 2 visually compare the physical 0.08
behavior of both the exact and approximate solutions of the
problem at different levels of space. Approximate solutions
generated through the proposed approach of compact finite
difference have a strong agreement with the exact solutions.
The consistency across the different levels of space serves to
underpin the solver's effectiveness at Fredholm Integro- ' X
Differential Equations with high accuracy.

28 T T
= B - Exact P
26| == approximate R

4 - - Exact
06 —8— approximate | |

u(x)

0.4r

021

-0.2
0

Figure 2. Exact and approximate solution of Examples 2 and
Figure 1. Exact and approximate solution of Example 1 3using N = 20,h = 0.05 and h = 0.25, respectively
using N = 20,h = 0.05

Table 7. Rate convergence for Example 4

N *(E, h) Rate [*°(E,, h) Rate I*(E,, h) Rate 1°(E,, h) Rate
10 7.2085e-05 7.2541e-05 1.1759%e-04 1.0227e-04

20 4.5080e-06 3.9991 4.5370e-06 3.9990 7.3236e-06 4.0051 6.3556e-06 4.0082
40 2.8172e-07 4.0002 2.8364e-07 3.9996 4.5719e-07 4.0017 3.9667e-07 4.0020
80 1.7606e-08 4.0001 1.7771e-08 3.9965 2.8565e-08 4.0005 2.4792e-08 4.0000

1 T T T T
- - Exact
1 0.8 === approximate |

0.9

0.8r q 06F

0.7 1 0.4r

= P+ Exact
—&— approximate

06+ 1 02r

Zos 1 g of ]
0.4 R 02+ 4
03 041
0.2 g 0.6 i
0.1 0.8
0 0.5 1 1.5 2 25 3 35 _10 0.5 35
X X
Figure 3. Exact and approximate solution of u(x) for Example Figure 4. Exact and approximate solution of v(x) for
4 with N=20 and h=0.1571 Example 4 with N=20 and h=0.1571
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Table 8. Rate convergence of for Example 5

N I?’(E,h) Rate I®(E, h) Rate I?(E,, h) Rate I[°(E, h) Rate

10 3.1963e-06 4.4469e-06 5.0889e-06 6.9621e-06

20 1.9978e-07 3.9999 2.7793e-07 4.0000 3.1807e-07 3.9999 4.3572e-07 3.9980
40 1.2486e-08 4.0000 1.7411e-08 3.9967 1.9880e-08 4.0000 2.7283e-08 3.9973
80 7.8035e-10 4.0000 1.0881e-09 4.0001 1.2425e-09 4 1.7052e-09  4.0000

Table 9. Comparison between the present method and B-spline for Example 5

. Present u(x) [19] Present v(x) [19]
! N=10 N=10 N=10 N=10
0.1 1.14e-06 3.23e-07 2.73e-06 8.40e-06
0.2 2.22e-06 2.58e-06 4.76e-06 3.70e-05
0.3 3.16e-06 8.73e-06 6.11e-06 9.08e-05
0.4 3.89e-06 2.06e-05 6.83e-06 1.75e-04
0.5 4.34e-06 4.04e-05 6.96e-06 2.95e-04
0.6 4.44e-06 6.98e-05 6.53e-06 4.55e-04
0.7 4.13e-06 1.11e-04 5.57e-06 6.61e-04
0.8 3.33e-06 1.65e-04 4.14e-06 9.17e-04
0.9 1.98e-06 2.35e-04 2.27e-06 1.23e-03
4 . 2 T
« b+ Exact = b - Exact
=== gpproximate === gpproximate
3.5 q 161
3 N 1
Z 25t Zos
2 o
1.5- q -0.5
g : : : 1 : : :
0 0.2 0.4 08 0.8 1 0 0.2 0.4 06 0.8 1
X X
Figure 5. Exact and approximate solution of u(x) for Figure 6. Exact and approximate solution of v(x) for
Example 5 with N=20 and h=0.05 Example 5 with N=20 and h=0.05
Table 10. Rate convergence for Example 6
N I*(E, h) Rate 1*(E,, h) Rate I*(E,, h) Rate I°(E,, h) Rate
10 3.5239-07 4.8050e-07 2.0983e-07 2.8764e-07
20 2.2050e-08 3.9983 3.0228e-08 3.9906 1.3125e-08 3.9906 1.8001e-08 3.9981
40 1.3785e-09 3.9996 1.8898e-09 3.9976 8.2048e-10 3.9997 1.1279e-09 3.9964
80 8.6105e-11 4.0009 1.1811e-10 3.9999 5.1280e-11 4 7.0490e-11 4.0001
28 T T T 1 T
-D - Exact - B - Exact
24 08¢
071
221
06
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Z Zost
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Figure 7. Exact and approximate solution of u(x) for Example Figure 8. Exact and approximate solution of v(x) for
6 with N=20 and h=0.05 Example 6 with N=20 and h=0.05
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To provide the summary of the proposed method to find the
approximate solutions based on applying compact finite
difference on the system of Examples 4-6 that have been
illustrated in Tables 7-10. The error norms of E,(x), and
E,(x) are reported in the Table 9 for space levels and
compared with the results given by Ebrahimi and Rashidinia
[19]. Tt is clear that from Table 9 our results are better than the
results [19]. One of the reasons is due to the errors produced
by the presented scheme are much close to zero and the
obtained numerical solutions indicate that the method is
reliable and yields results compatible with the previous studies
and analytical solutions. In addition, the scheme is shown that
is fourth-order convergent in space as evidenced by the results
presented in Tables 7, 8, and 10. The solution behavior
depicted in Figures 2-8, evidently indicates a comparison
between the exact and approximate solutions of the problem at
different spatial modes. The approximate solution obtained
from the proposed compact finite difference method is highly
compatible with the exact solution. The strong agreement for
different spatial modes further justifies the efficiency of the
method in generating accurate approximate solutions to the
coupled Fredholm Integro-Differential Equations.

5. CONCLUSION

This study establishes a connection between the fourth-
order compact finite difference methods with Simpson’s
quadrature rule to address Fredholm Integro-Differential
Equations (FIDEs) and System of Fredholm Integro-
Differential Equations (SFIDEs) of the second order. The
precision and efficacy of the proposed scheme are rigorously
evaluated through the application to various test problems,
with the assessment based on [? and [® error norms at
different spatial resolutions. The convergence for the
suggegested methods is proved through Sobolev space.
Numerical experiments affirm the efficiency, reliability,
fruitfulness, and robustness of the presented method in
obtaining accurate solutions for SFIDEs. The scheme exhibits
a fourth-order spatial accuracy, demonstrating excellent
agreement with analytical solutions and outperforming
existing solutions reported in the literature.
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