

Deep Learning Optimization of the EfficienNet Architecture for Classification of

Tuberculosis Bacteria

Aeri Rachmad1* , Husni1 , Juniar Hutagalung2 , Dian Hapsari3 , Suci Hernawati4 , Mohammad Syarief1 ,

Eka Mala Sari Rochman1 , Yuli Panca Asmara5

1 Department of Informatics, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia
2 Department of Information System, STMIK Triguna Dharma, Medan 20146, Indonesia
3 Department of Informatics Engineering, ITATS, Surabaya 60117, Indonesia
4 Head of the Batuputih Community Health Center, Sumenep 69453, Indonesia
5 Faculty of Engineering and Quantity Surveying, INTI International University, Negeri Sembilan 71800, Malaysia

Corresponding Author Email: aery_r@trunojoyo.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.111008

ABSTRACT

Received: 13 July 2024

Revised: 3 September 2024

Accepted: 14 September 2024

Available online: 31 October 2024

 Tuberculosis (TB) remains a significant global issue, particularly in countries with low

economic status and limited healthcare systems. One of the primary challenges is

accurate early diagnosis, especially through microscopic examination of sputum

samples. However, subjective interpretation and variations in microscopic image

quality often hinder diagnostic accuracy. In recent years, the use of Convolutional

Neural Networks (CNN) has increased to enhance TB diagnosis effectiveness. This

study utilizes the EfficientNet architecture to understand the model's effectiveness in

detecting TB in medical images. The dataset used consists of 1266 images, divided into

training and testing data with a ratio of 70:30. Additionally, a median filter technique

was applied for image preprocessing. Several optimization algorithms are used in this

research, namely RMSprop, Stochastic Gradient Descent (SGD), Adam, and Stochastic

Gradient Descent with Momentum (SGDM), to find the best scenario. The test results

show that Adam optimization provides the best performance compared to the others.

The results showed excellent performance, with a low loss rate (9.20%) and high

accuracy (98.03%). The relatively fast model training time (122.81 seconds) also adds

to the model's efficiency value. This confirms that EfficientNet B0 is an attractive

choice for TB classification, with the hope that further development will improve

accuracy and efficiency in diagnosing this disease.

Keywords:

TB, CNN, EfficientNet, median filter, Adam

1. INTRODUCTION

TB remains a highly significant global public health issue,

particularly in countries with low economic levels and limited

healthcare systems, where the prevalence of the disease is

often high and its impact is widespread [1]. This disease is

caused by the bacterium Mycobacterium tuberculosis, which

spreads through the air and can infect anyone. If not identified

and treated properly, it can lead to serious complications and

even death [2]. The main challenge in controlling the spread

of this disease is finding ways to identify and diagnose it early

and accurately, even though preventive and control measures

have been implemented [3].

One of the key techniques for achieving early detection of

tuberculosis is by identifying TB bacteria through microscopic

examination of sputum samples [2]. Although the microscopic

identification of TB bacteria in sputum samples has

advantages in terms of speed and high cost efficiency, the main

challenges are subjective interpretation and variations in the

quality of microscopic images, which often hinder the

accuracy and consistency of the diagnostic results provided by

this method [3]. In recent years, along with rapid

advancements in technology, especially in the development of

artificial intelligence, specifically CNN, research has focused

on overcoming these challenges and enhancing the

effectiveness of the tuberculosis diagnosis process [4].

The feed-forward CNN is a model developed from the

Multilayer Perceptron algorithm, an innovation that enables

deep learning in image processing [5]. In this structure, each

set of parameters to be adjusted in the convolutional layer,

often referred to as convolutional filters, aims to extract deeper

visual meaning from the original image input into the network

[6]. This process aids in identifying meaningful features from

the image, such as color patterns, textures, and shapes, which

are then utilized for further analysis [7]. On the other hand,

parameters placed in the fully connected layers aim to classify

the extracted visual features into predefined target classes,

such as distinguishing between TB and non-TB bacteria in the

medical field. The convolutional layers in this architecture

play a key role in forming a hierarchical abstraction of visual

concepts from the initial images, with earlier layers focusing

on low-level features like color and simple shapes, while

Mathematical Modelling of Engineering Problems
Vol. 11, No. 10, October, 2024, pp. 2664-2670

Journal homepage: http://iieta.org/journals/mmep

2664

https://orcid.org/0000-0002-4322-2944
https://orcid.org/0000-0001-5045-5781
https://orcid.org/0000-0001-5514-7649
https://orcid.org/0000-0002-3478-0899
https://orcid.org/0009-0000-5659-9911
https://orcid.org/0009-0009-0304-3296
https://orcid.org/0000-0001-7324-1380
https://orcid.org/0000-0001-6930-0771
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.111008&domain=pdf

deeper layers within the network capture more complex visual

concepts, such as identifying sub-parts of objects present in the

image [8].

Through the proposed optimization methods, namely

RMSprop, SGD, Adam, and SGDM, this research aims to

provide deeper insights into the strengths and limitations of

each model in the context of TB detection application in

medical images. By applying CNN methods using the

EfficientNet architecture, this step is expected to offer a more

holistic understanding of the effectiveness and scalability of

these models in addressing the challenges of TB detection in

medical images.

2. MATERIALS AND METHODS

2.1 Methodology

The steps outlined in Figure 1 for identifying the bacteria

causing TB involve analyzing microscopic images obtained by

collecting several microscopic images related to TB disease.

These images then undergo a series of preprocessing steps

that include various processes to ensure optimal image quality

before being used in further analysis. An important stage in

preprocessing is the use of a median filter, a highly effective

method in reducing noise and improving image details. The

use of a median filter allows for filtering of microscopic

images so that important information related to

microbiological structures remains preserved while removing

unwanted disturbances.

After completing the preprocessing stage, the next step is to

train the model using previously separated data. This data is

divided into two main parts: training data and testing data. In

this testing, 70% of the total data is used for the model training

process, while the remaining 30% is used to evaluate the

performance of the trained model. This division aims to ensure

that the model has the ability to effectively apply information

from unseen data, thereby accurately identifying TB disease

images.

The next step in this study involves the disease

identification stage through the analysis of TB images. Here,

the model that has undergone the training stage will be used to

classify these images into two categories: TB bacteria or non-

TB bacteria. The CNN architecture used in the research for

classification is EfficientNet, which serves as a crucial

foundation in implementing CNN. EfficientNet excels in

recognizing and analyzing essential features in images,

enabling the model to make accurate decisions based on the

information available in these features. This ensures obtaining

accurate final results.

Figure 1. System diagram

2.2 Dataset

Figure 2. Dataset TB

Figure 3. Dataset non-TB

The dataset used in this research consists of sputum images

captured through microscopy, totaling 1266 images. This data

is divided into two types: sputum images from TB patients,

comprising 633 data, and sputum images from non-TB

patients, also comprising 633 data (refer to Figures 2 and 3).

Images of sputum with dimensions of 800 × 600 pixels are

included in the image dataset. The Ziehl-Neelsen (ZN)

staining method was used to obtain these images. A Labomed

Digi 3 digital microscope with an L × 400 and an iVu 5100

digital camera with 5.0 MP were used for the process of taking

pictures. At a 1000 × magnification, the sputum images were

captured with a resolution of 120 and a color depth of 24 bits.

2.3 Median filter

The median filter, first introduced by Tukey [9], plays an

important role as an image processing technique that does not

rely on linearity but instead uses a non-linear approach in

processing image data [10]. The median filter method is

designed with the primary goal of reducing the noise level

present in an image, while simultaneously smoothing the

distribution of pixel values [11]. The median filter process

involves a series of structured steps, starting with sorting the

2665

pixels that form an odd-sized group such as 3 × 3, 5 × 5, 7 × 7

[12], followed by calculating the median value of that group.

The resulting median value is then used to replace the pixel

value at the center of the filter window. This unique approach

makes the median filter highly effective in reducing or even

eliminating noise in an image [13].

For a clearer example, consider the application of a median

filter using a 3 × 3 matrix that encompasses the central pixel

and its immediate neighbors within an image. The

fundamental operation of the median filter involves gathering

these pixels, arranging them in order, and then determining the

median value. This median value is subsequently assigned to

the central pixel of the matrix. The primary objective of this

process is to ensure that the central pixel's value is a more

accurate representation of the surrounding area, leading to

enhanced image clarity and reduced noise [14]. Figure 4

illustrates the visual impact of applying the median filter with

a 3 × 3 matrix, demonstrating how it effectively sharpens the

image while minimizing noise [9].

Figure 4. 3 × 3 pixel area

2.4 EfficientNet architecture

Since 2012, there has been a noticeable improvement in the

success rates of models from the ImageNet dataset, which

have grown increasingly complex over time. This complexity,

however, introduces the challenge of heightened

computational demands from these advanced models. In

response to this challenge, recent developments such as

EfficientNet have gained prominence due to their impressive

accuracy, achieving a 84.4% success rate in ImageNet

classification tasks with just 66 million parameters,

showcasing their exceptional efficiency [15].

EfficientNet is particularly notable for its family of 8

models, ranging from B0 to B7. Interestingly, as the model

number increases, there is no substantial growth in the number

of parameters; yet, there is a consistent enhancement in

accuracy. A key feature that distinguishes EfficientNet from

other CNN models is its adoption of the Swish activation

function, a novel alternative to the traditionally used Rectifier

Linear Unit (ReLU) activation function [16].

The goal of deep learning architectures is to uncover more

efficient approaches with smaller models. Unlike other

contemporary models, EfficientNet achieves superior

efficiency by uniformly scaling depth, width, and resolution

while reducing model size. The initial step in this compound

scaling technique involves a grid search to identify

correlations between various tuning dimensions in the base

network within resource constraints. Through this approach,

the most appropriate scaling factors for each dimension,

including depth, width, and resolution, can be determined. The

resulting coefficients are then implemented to tune the base

network to match the desired target network. Figure 5 shows

that EfficientNet architecture has proven highly successful in

various image processing competitions and applications,

capable of producing lightweight and efficient models without

sacrificing accuracy [15].

Figure 5. Schematic representation of EfficientNet

2.5 Algorithm optimization

Optimization algorithms in the context of machine learning

are methods used to minimize or maximize an objective

function measured based on a specific dataset. These

algorithms iteratively update model parameters to reduce

prediction errors. This research employs four types of

optimization:

RMSprop is a modification of AdaGrad that is more

effective for non-convex optimization by changing the

accumulation of gradients into exponentially weighted moving

averages. The standard value for the learning rate in SGD is

0.001. Here are the calculations for RMSprop updates as

described in Eqs. (1)-(3) [17].

(1)r r g g = + − (1)

g
r





 = −

+
 (2)

  = + (3)

In this context, r is the squared gradient accumulation, p is

the decay rate, ∆θ is the computed update, α is the learning

rate, 𝛿 is a constant with a value of 10-7 and θ is the initial

parameter.

SGD is one variation of gradient descent optimization that

updates parameters each time it processes training data. In the

parameter update process, SGD does not iterate, making it

faster, especially for large datasets. The standard value for the

learning rate in SGD is 0.01. The parameter update process in

SGD can be defined in Eq. (4) [17].

()() ()* ; ;i iJ x y   = −  (4)

In this context, θ is the updated parameter, ղ is the learning

rate, and x(i) and y(i) are the training data. This process ensures

that each learning iteration updates the parameter θ according

to the processed data.

Adam is an algorithm that combines elements from

RMSProp and Momentum. This algorithm retains the learning

rate as RMSProp does and merges it with momentum-

weighted moving averages. This combination allows Adam to

efficiently optimize the model by leveraging the advantages of

both approaches [18-20].

()1 11i i

i

L
m m 




= + −


 (5)

2666

()
2

2 21i i

i

L
v v 



 
= + −  

 
 (6)

Parameters (5) and (6) tend to experience bias as they

approach the value of 1, especially if the initialization of time

steps and decay rates is very small. To address this, bias

correction and moment estimation are required by dividing

parameters (5) and (6) by the difference between 1 and the

decay factor. With this step, the bias that arises in the initial

estimation can be corrected, resulting in more accurate

parameters.

1

ˆ
1

im
m


=

−
 (7)

2

ˆ
1

iv
v


=

−
 (8)

The developers of the Adam algorithm recommend using a

beta-1 value of 0.9, a beta-2 value of 0.999, and an epsilon

value of 10-8. After obtaining the optimal values of parameters

(5) and (6), the Adam formula can be computed as follows:

1
ˆ

ˆ
t t t

t

m
v

 


+


= − 

+
 (9)

Based on the formula of Adam, it is known that Adam uses

the foundation of RMSProp but with gradient estimation

through momentum methods. This combination aims to

enhance training speed. With this method, Adam has

succeeded in surpassing previous optimization algorithms

both in training stages and in other experiments. However,

Adam introduces new hyperparameters that can complicate

hyperparameter tuning when facing increasingly complex

problems.

SGDM is a variation of gradient descent optimization that

consistently updates parameters for each training data. In the

parameter update process, SGDM does not iterate, making it

faster, especially for large datasets. The standard value for the

learning rate in SGD is 0.01. The parameter update process in

SGD can be described in Eq. (8) [21].

()() (); ,i iGt J x y = (10)

with θ as the updated parameter, ղ as the learning rate, and x(i)

and y(i) as the training data. This ensures that each learning

iteration updates parameters according to the processed data.

2.6 Confusion matrix

Confusion matrix is a table used to describe the performance

of a classification method by comparing the model's predicted

outcomes against the actual values of the observed objects

[22]. By dividing the prediction outcomes into four categories:

true positive, false positive, true negative, and false negative,

the confusion matrix provides deep insights into how well a

model can identify true and false objects. This aids in

evaluating the strengths and weaknesses of the classification

model, as well as enabling better optimization of the

classification strategies employed [23]. Here is a table of the

confusion matrix:

Figure 6. Confusion matrix

The confusion matrix consists of four main components

(refer to Figure 6):

True Positive (TP): This is the number of data points

correctly predicted as positive by the model.

True Negative (TN): This is the number of data points

correctly predicted as negative by the model.

False Positive (FP): This is the number of data points

incorrectly predicted as positive by the model (negative).

False Negative (FN): This is the number of data points

incorrectly predicted as negative by the model (positive).

3. RESULT

3.1 Test scenario

The next step is to train the EfficientNet architecture model

using microscopic images of tuberculosis bacteria. Table 1

below summarizes a series of experiments aimed at gaining a

deep understanding of the influence of optimizers, batch sizes,

and learning rates on model performance. Consequently, test

scenarios were conducted by varying combinations of the

Adam, RMSProp, SGD, and SGDM optimizers while

maintaining consistency with a batch size of 16, a learning rate

of 0.0001, and 20 epochs. Table 1 presents below contains the

results obtained from these experiments, providing a solid

foundation for further analysis to determine the optimal

strategy for the appropriate learning configuration.

Table 1. Test scenario

 Optimizer Batch Learning Rate Epoch

Test

Scenario

Adam 16 0.0001 20

RmsProp 16 0.0001 20

SGD 16 0.0001 20

SGDM 16 0.0001 20

3.2 Test result

The trial results on the images were conducted using the

EfficientNet model architecture, which has been proven to be

efficient in resource utilization. The trial results indicate that

the EfficientNet model with the Adam optimizer, batch size of

16, learning rate of 0.0001, and 20 epochs can be seen in

Figures 7-10.

Test results using the RMSprop optimizer in Figure 7 show

that the model has quite good performance on training data

with an accuracy of 90.48% and a loss of 23.51%. However,

the model performance on validation data experienced a

significant decrease, with an accuracy of 51.23% and a loss of

68.49%. This indicates the possibility of overfitting, where the

model fits the training data too well but is less able to

generalize to new data.

2667

Figure 7. RMSProp optimizer test results

Test results using the SGD optimizer in Figure 8 show that

the model has unsatisfactory performance on training data

with an accuracy of 58.47% and a loss of 67.77%. Apart from

that, the model performance on validation data also did not

show significant improvement, with an accuracy of 37.93%

and a loss of 69.20%. This indicates that the model has not

been able to learn and generalize well, both on training data

and validation data.

Figure 8. SGD optimizer trial results

Test results using the SGDM optimizer in Figure 9 show

that the model has quite good performance on training data

with an accuracy of 60.57% and a loss of 66.95%. Apart from

that, the model performance on validation data also shows

adequate results with an accuracy of 66.50% and a loss of

68.78%. This indicates that the model is able to learn and

generalize quite well, although there is still room for further

improvement in reducing loss values and increasing accuracy

on training and validation data.

The test results using the Adam optimizer in Figure 10

achieved a loss value of 9.20%, which shows a relatively low

level of information loss during the training process.

Additionally, the model accuracy reached 98.03%,

demonstrating the model's ability to classify data with a high

level of correctness. Furthermore, the precision metric of

98.04% indicates the proportion of true positive results, while

the recall metric of 98.03% indicates the proportion of true

positive data correctly identified from all actually positive

data. The F1-score of 98.03% combines both metrics to

provide an overall assessment of the model's quality in

predicting data classes. The time required to train the

EfficientNet model was 122.81 seconds, which is relatively

fast considering the model's good performance in producing

accurate results. Overall, the trial results demonstrate that the

EfficientNet architecture performs very well in data

classification, with high accuracy and low loss rates, as well

as the ability to maintain a balance between precision and

recall. The training time for the model is also quite efficient,

making EfficientNet an attractive choice for various

classification tasks. Table 2 and Figure 11 present a

comparison of metrics between the testing and validation

stages, illustrating the consistency and performance of the

model in both stages.

Figure 9. SGDM optimizer trial results

Figure 10. Adam optimizer test results

Table 2. Comparison of metrics between training and validation stages using Adam optimization

 Loss Acc Precision Recall F1-Score Time (s)

Training 16.61 97.24 97.25 97.24 97.24 122.81

Validation 9.20 98.03 98.04 98.03 98.03 122.81

Figure 12 depicts the loss performance of the EfficientNet

B0 model in TB classification. There is significant variation in

loss between training and validation data during model

iterations. Initially, there is substantial variation in loss for

both types of data. However, as the iterations progress, the loss

on the validation data starts to stabilize and decrease,

2668

indicating that the model is improving its performance and

becoming better at generalizing on new data. Nevertheless,

some points still show significant increases in loss.

Figure 11. The EfficientNet test results using Adam

optimization

Figure 12. EfficientNet loss performance graph

Figure 13. EfficientNet accuracy performance graph

Figure 13 shows the accuracy performance of the

EfficientNet B0 model in TB classification. There are

fluctuations in accuracy on both training and validation data

during model iterations. Initially, there is significant variation

in accuracy for both types of data. However, as the iterations

progress, an overall improvement in accuracy on both data sets

is observed, indicating the model's enhanced ability to classify

data more accurately. Some points show significant increases

in accuracy, indicating an overall improvement in model

performance.

4. CONCLUSIONS

The conclusion from the experiments with EfficientNet

using the Adam optimizer with a batch size of 16, learning rate

of 0.0001, and 20 epochs shows excellent performance in

classifying TB data, with a low loss rate (9.20%) and high

accuracy (98.03%). Precision, recall, and F1-score metrics

also indicate the model's ability to predict data classes

effectively. The relatively fast model training time (122.81

seconds) adds value to the model's efficiency. Performance

graphs demonstrate a consistent decrease in loss on validation

data and an overall increase in accuracy. This confirms that

EfficientNet B0 is an attractive choice for TB classification,

with the hope that further development will improve accuracy

and efficiency, contributing positively to the medical field,

particularly in diagnosing diseases like tuberculosis.

REFERENCES

[1] Rochman, E.M.S., Suprajitno, H., Rachmad, A., Santosa,

I. (2023). Utilizing LSTM and K-NN for anatomical

localization of tuberculosis: A solution for incomplete

data. Mathematical Modelling of Engineering Problems,

10(4): 1114-1124.

https://doi.org/10.18280/mmep.100403

[2] World Health Organization. (2019). Global tuberculosis

report 2019. Geneva, Switzerland: World Health

Organization, pp. 1-297.

[3] Sugirtha, G.E., Murugesan, G. (2017). Detection of

tuberculosis bacilli from microscopic sputum smear

images. In 2017 Third International Conference on

Biosignals, Images and Instrumentation (ICBSII),

Chennai, India, pp. 1-6.

https://doi.org/10.1109/ICBSII.2017.8082271

[4] Kumar, S., Arif, T., Alotaibi, A.S., Malik, M.B., Manhas,

J. (2023). Advances towards automatic detection and

classification of parasites microscopic images using deep

convolutional neural network: Methods, models and

research directions. Archives of Computational Methods

in Engineering, 30(3): 2013-2039.

https://doi.org/10.1007/s11831-022-09858-w

[5] Rachmad, A., Syarief, M., Hutagalung, J., Hernawati, S.,

Rochman, E.M.S., Asmara, Y.P. (2024). Comparison of

CNN architectures for mycobacterium tuberculosis

classification in sputum images. Ingénierie des Systèmes

d’Information, 29(1): 49-56.

https://doi.org/10.18280/isi.290106

[6] Rachmad, A., Sonata, F., Hutagalung, J., Hapsari, D.,

Fuad, M., Rochman, E.M.S. (2023). An automated

system for osteoarthritis severity scoring using residual

neural networks. Mathematical Modelling of

Engineering Problems. 10(5): 1849-1856.

https://doi.org/10.18280/mmep.100538

[7] Hassanpour, M., Malek, H. (2020). Learning document

image features with SqueezeNet convolutional neural

network. International Journal of Engineering, 33(7):

1201-1207. https://doi.org/10.5829/ije.2020.33.07a.05

[8] Leadholm, N., Stringer, S. (2022). Hierarchical binding

in convolutional neural networks: Making adversarial

attacks geometrically challenging. Neural Networks,

155: 258-286.

https://doi.org/10.1016/j.neunet.2022.07.003

[9] He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J. (2016). Deep

2669

residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, Vegas, NV, USA, pp.770-778.

https://doi.org/10.1109/CVPR.2016.90

[10] Zhu, Y., Huang, C. (2012). An improved median filtering

algorithm for image noise reduction. Physics Procedia,

25: 609-616.

https://doi.org/10.1016/j.phpro.2012.03.133

[11] Khan, S., Lee, D.H. (2017). An adaptive dynamically

weighted median filter for impulse noise removal.

EURASIP Journal on Advances in Signal Processing,

2017: 1-14. https://doi.org/10.1186/s13634-017-0502-z

[12] Murinto, B.M. (2012). Analisis perbandingan metode 2D

median filter dan multi level median filter pada proses

perbaikan citra digital. Jurnal Informatika, 6(2): 654-662.

[13] Maulana, I., Andono, P.N. (2016). Analisa perbandingan

adaptif median filter dan median filter dalam reduksi

noise salt & pepper. Cogito Smart Journal, 2(2): 157-166.

https://doi.org/10.31154/cogito.v2i2.26.157-166

[14] Boateng, K.O., Asubam, B.W., Laar, D.S. (2012).

Improving the effectiveness of the median filter.

International Journal of Electronics and Communication

Engineering, 5(1): 85-97.

[15] Atila, Ü., Uçar, M., Akyol, K., Uçar, E. (2021). Plant leaf

disease classification using EfficientNet deep learning

model. Ecological Informatics, 61: 101182.

https://doi.org/10.1016/j.ecoinf.2020.101182

[16] Tan, M., Le, Q.V. (2019). EfficientNet: Rethinking

model scaling for convolutional neural networks. In

Proceedings of the 36th International Conference on

Machine Learning, Long Beach, California, pp. 10691-

10700.

[17] Liu, J., Huang, Y. (2020). Comparison of different CNN

models in tuberculosis detecting. KSII Transactions on

Internet and Information Systems (TIIS), 14(8): 3519-

3533. https://doi.org/10.3837/tiis.2020.08.021

[18] Kusumah, H., Zahran, M., Rifqi, K., Putri, D., Wakti

Hapsari, E. (2023). Deep learning pada detektor jerawat:

Model YOLOv5. Journal Sensi: Strategic of Education in

Information System, 9(1): 24-35.

https://doi.org/10.33050/sensi.v9i1.2620

[19] Arouri, Y., Sayyafzadeh, M. (2022). An adaptive

moment estimation framework for well placement

optimization. Computational Geosciences, 26(4): 957-

973. https://doi.org/10.1007/s10596-022-10135-9

[20] Kingma, D.P., Ba, J.L. (2015). Adam: A method for

stochastic optimization. arXiv preprint

arXiv:1412.6980v4.

[21] Chen, R.C., Dewi, C., Huang, S.W., Caraka, R.E. (2020).

Selecting critical features for data classification based on

machine learning methods. Journal of Big Data, 7(1): 52.

https://doi.org/10.1186/s40537-020-00327-4

[22] Rochman, E.M.S., Setiawan, W., Hardi, S., Permana,

K.E., Husni, Asmara, Y.P., Rachmad, A. (2024).

Classification of salt quality based on the content of

several elements in the salt using machine learning.

Mathematical Modelling of Engineering Problems.

11(4): 1005-1012.

https://doi.org/10.18280/mmep.110417

[23] Tharwat, A. (2021). Classification assessment methods.

Applied Computing and Informatics, 17(1): 168-192.

https://doi.org/10.1016/j.aci.2018.08.003

2670

