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As autonomous vehicles grow more common, maintaining their cyber security becomes 

increasingly important. The CAN (Controller Area Network) bus, a critical communication 

network in self-driving cars, is susceptible to cyber-attacks that can jeopardize vehicle 

safety and performance. In this paper, we offer a novel hybrid approach, DeepXG, that 

combines XGBoost and deep learning (DL) approaches to detect intrusions in the CAN bus. 

Our model takes advantage of both algorithms' strengths to extract critical characteristics 

and learn complicated patterns for accurate and resilient intrusion detection. We conducted 

comprehensive studies to evaluate DeepXG's performance using a genuine CAN traffic 

dataset from a CAV's OBD-2 port. The proposed method outperformed many intrusion 

detection methods, achieving an amazing accuracy of 99.90%. The XGBoost feature 

relevance score enables effective feature selection while reducing computing complexity 

and boosting generalization. Our findings show that DeepXG helps improve cyber security 

in autonomous vehicles. The hybrid model's ability to effectively detect and classify 

network intrusions makes it a potential approach for safeguarding the CAN bus and 

ensuring autonomous vehicle safety. 
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1. INTRODUCTION

Self-driving automobiles, also recognized as autonomous 

vehicles, have made significant strides in the automotive sector, 

operating by utilizing cutting-edge sensors, cameras, and 

algorithms. Their potential to enhance transportation 

efficiency, mobility alternatives, and safety has garnered 

global popularity [1, 2]. These vehicles offer compelling 

advantages, such as reducing traffic accidents caused by 

human error through advanced sensors and algorithms, 

optimizing routes, lowering traffic congestion, and improving 

mobility options for individuals such as disabled or elderly 

who cannot drive. Though, challenges remain to be addressed, 

with cyber security being a major concern [3]. Communication 

networks and software systems have a heavy dependence on 

sophisticated self-driving vehicles that are susceptible to 

cyber-attacks that could jeopardize their security and 

functionality. Additionally, establishing comprehensive 

regulatory frameworks to address liability, privacy and ethical 

issues is crucial to ensure autonomous cars' safe and 

responsible deployment [4]. 

The rise in connection and automation in autonomous 

vehicles has made cyber security a prominent issue. Malicious 

actors could exploit communication network flaws to target 

these vehicles, raising serious concerns. Understanding and 

addressing the unique cyber security challenges associated 

with autonomous vehicles is imperative, including detecting 

and categorizing various cyber-security risks and weaknesses, 

such as vehicle-to-everything network attacks and attacks on 

in-vehicle networks [5]. Effective defense tactics and safety 

standards must be developed to safeguard autonomous 

vehicles and mitigate potential cyber threats [6, 7]. Innovations 

in cyber security for autonomous vehicles, such as software-

defined networks, artificial intelligence, and block chain, offer 

promising solutions. By prioritizing cyber security, we can 

ensure autonomous vehicles are reliable, maintain public trust 

and safe in this transformative technology [8, 9]. 

The complex In-Vehicle Network (IVN) utilized by 

autonomous vehicles facilitates communication among 

various components, with the Controller Area Network (CAN) 

network being a critical element [10]. The CAN network 

enables data transmission between ECUs and electronic 

control units within the vehicle, but it is not immune to security 

issues and potential attacks [11, 12]. Exploiting these 

vulnerabilities, malicious actors could gain unauthorized 

access and alter the functionality of vehicle's, affecting serious 

risks to the vehicle's occupants and road safety [13]. 

The CAN network may become the target of a flood attack, 

where the invader overwhelms the system by flooding the 

network with a large number of messages, leading to a DoS 

stand for denial-of-service scenario that disrupts the vehicle's 

operation. Another form of an attack is replaying, wherein the 

invader intercepts and resends previously intercepted CAN 

communications to manipulate the vehicle's behavior. 
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Spoofing attacks involve a hacker posing as a trustworthy ECU 

and then sending malicious commands or fake sensor data, 

causing the vehicle to act dangerously or misperceive its 

surroundings [14, 15]. 

To address these cyber security challenges, effective 

protection tactics are essential. Intrusion Detection Systems 

(IDS) can monitor the CAN network detecting any unusual or 

suspicious activity. Encryption and authentication 

mechanisms can secure communication between ECUs, 

preventing unauthorized access. Anomaly detection 

algorithms can identify deviations from typical network 

behavior offering rapid defense against potential attacks [16]. 

The International Organization for Standardization (ISO) has 

proposed a CAN security framework, providing standards and 

best practices for protecting the CAN network in autonomous 

cars [17]. 

Autonomous vehicle manufacturers and stakeholders can 

enhance the general safety and dependability of autonomous 

vehicles by understanding the vulnerabilities of the IVN, 

particularly the CAN network and implementing robust 

security measures. Building public trust and confidence in the 

widespread deployment of autonomous vehicles depends on 

the integrity and resiliency of the IVN [18, 19]. 

The hybrid XGBoost-deep learning approach has shown 

superior performance compared to conventional algorithms, 

including Bi-LSTM, CNN-LSTM, XGBoost, multilayer 

perceptron and other machine learning models, for enhancing 

the cyber security of self-driving vehicles [20, 21]. It provides 

a various attack types in a real-world dataset [22]. The 

multilayer perceptron and other machine learning models are 

utilized for enhancing the cyber security of self-driving 

vehicles [23-26]. 

Figure 1 represents attack scenarios on the CAN network in 

a vehicle. The CAN network comprises interconnected nodes 

that use a protocol based on messaging to facilitate 

communication allowing all devices to receive and process 

messages. To protect against malicious attacks, an Intrusion 

Detection System (IDS) is incorporated into the vehicle's 

architecture. 

 

 
 

Figure 1. Intrusion detection architecture of a vehicle 

 

The hybrid model effectively combines the strengths of 

gradient boosting and deep learning architectures resulting in 

a more accurate and reliable intrusion detection system [27, 

28]. For autonomous vehicles, the XGBoost model has proven 

to be more accurate and dependable at detecting intrusions and 

its combination of a deep learning's will provide the ability to 

handle intricate linkages and unobserved events in the input 

data [29]. 

IDS various machine learning algorithm [30]. The feature 

engineering makes it highly effective [31]. The hybrid model's 

success is attributed to its ability to improve the accuracy and 

scope of intrusion detection by combining the capabilities of 

XGBoost's ensemble learning and deep learning's 

representation learning [32]. While deep learning excels at 

extracting complex patterns from unstructured or raw data, 

XGBoost is more adept at handling structured features [33, 

34]. The hybrid model's precision is critical for accurate 

intrusion detection in autonomous vehicles, enabling a prompt 

response and effective mitigation of potential cyber risks by 

precisely identifying and categorizing hostile activities within 

the in-vehicle network [35]. Moreover, the XGBoost-deep 

learning model benefits from the ensemble learning 

capabilities of XGBoost and the deep representation learning 

of deep neural networks, enhancing accuracy and resilience 

[36]. It introduced an XGBoost-DNN model for IDS in 

network security. The model combines the XGBoost algorithm 

for feature selection and a DNN stand for deep neural network 

for classification. It outperforms other shallow ML algorithms 

by using various performances metric such as F1 Score, recall, 

precision and accuracy by considering the NSL-KDD dataset 

[37]. The XGBoost-deep learning approach is the best strategy 

for enhancing cyber security in autonomous vehicles, offering 

higher and more reliable accuracy compared to conventional 

algorithms [38, 39]. The model's capacity to efficiently 

evaluate and categorize complex patterns and relationships 

contributes to the overall security and dependability of 

autonomous vehicle systems. Ongoing research efforts will 

continue to strengthen the hybrid model ensuring the ongoing 

defense of autonomous vehicles against potential cyber risks 

[40]. 

 

 

2. RELATED WORKS 

 

Hataba et al. [41] examined the security challenges and 

privacy concerns associated with AVs. They adopted a layered 

approach to analyze various attacks and provided a four-

layered model to represent the AV architecture [41]. Thakkar 

et al. [42] discussed the value of current datasets for evaluating 

IDS stand for intrusion detection systems and specifically 

highlighted the CSE-CIC-IDS-2018 and CIC-IDS-2017 

datasets, which present novel attack categories and features. 

Hossain et al. [43] introduced an IDS stand for intrusion 

detection systems based on LSTM stand for Long Short-Term 

Memory for identifying and countering threats in the CAN bus 

system. Their LSTM model achieved excellent detection 

accuracy of 99.995% when trained on a customized dataset. 

Aldhyani et al. [22] developed a high-performance system that 

protects autonomous vehicle networks from cyber threats. 

Their approach utilizes deep learning techniques (CNN-

LSTM) to identify and classify message attacks in the 

controller area network bus, achieving an impressive accuracy 

of 97.30% with various attack types in a real-world dataset. 

We presented a model using XGBoost on the NSL-KDD 

dataset to evaluate network data parameters and ensure 

accurate prediction while maintaining data integrity. Hossain 

et al. [10] conducted a relative assessment of several machine 

learning methods in Intrusion Detection Systems (IDS). Their 

study focused on areas such as 5G networks, smart cities, big 

data, IoT and fog computing. They utilized the KDD-CUP 

dataset to estimate the effectiveness of ML techniques, 

including Random Forest, LDA stand for (Linear Discriminant 
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Analysis) and CART stand for (Classification and Regression 

Trees), Linear Discriminant Analysis (LDA), Classification 

and Regression Trees (CART), and Random Forest [44]. Islam 

et al. [45] proposed a GGNB stand for graph-based Gaussian 

naive Bayes intrusion detection technique for automotive 

systems. Their approach accurately and efficiently identifies 

various attacks, surpassing other machine-learning techniques 

on both real and synthetic datasets. Lampe and Meng [46] 

developed an IDS for CAN as an Android app to strengthen 

the security of modern cars utilizing the CAN bus technology. 

The app monitors CAN bus traffic detects suspicious activity 

and notifies the user when necessary. Mohiuddin et al. [47] 

inspected a protected architecture for the Internet of Vehicles 

(IoV). They discussed the issues of security and privacy in IoV 

through a comprehensive review of previous research. Parekh 

et al. [48] analyzed the various domains and technologies 

essential for advancing autonomous vehicles. They emphasize 

the need for accurate positioning technologies to ensure 

reliable and safe intelligent transportation systems. Kukkala et 

al. [5] shed light on the importance of fortifying cyber security 

measures to protect autonomous vehicles from cyber-attacks. 

They provide a comprehensive overview by examining 

significant automotive cyber-attacks and solutions that 

influence artificial intelligence. Algarni and Thayananthan 

[49] presented an intelligent cyber security model for 

autonomous vehicles (AVs) using sixth-generation (6G) 

technology. The study underscores the significance of 

integrating intelligent cyber security measures to protect AVs 

from emerging threats. The model incorporates novel design 

elements and employs algorithms to enable proactive decision-

making and rapid response to cyber threats. 

 

 

3. MATERIALS AND METHODS 

 

As self-driving cars advanced quickly, many businesses 

encountered problems safeguarding the CAV system from 

intrusions, which directed to several problems on the street. 

Although some research has examined security measures for 

systems, there is still a need for a high-performance algorithm. 

On actual CAV datasets, we applied deep learning-XGBoost 

techniques in this study. 

 

3.1 Dataset 

 

The dataset CAV analyzed-piled from real CAN traffic data 

that included benign packets as well as flooding, replaying and 

spoofing attacks. The dataset is formed by constructing an 

OBD-II port for CAN communication out of a real CAV and 

in transferring messages injecting different types of attacking 

messages. The OCTANE stand for Open Car Testbed and 

Network Experiments for CAN packet generator was 

employed. The injection of intrusion for every three to five 

seconds for CAV traffic analysis taken for about 30 to 40 

minutes, the characteristic of the data set is as mentioned in 

Table 1. 

 

Table 1. Dataset characteristics 

 
Feature Description 

Information [0-7] Byte representation of data value 

DLC 0 to 8 recognizing the data bytes 

Controlled area 

network ID 

CAN message is identified in HEX 

Timestamp TS Time recorded (s) 

3.2 Data pre-processing 
 

The dataset comprises eleven features, including data from 

0 to 8 bytes, an arbitration ID structure in hexadecimal, DLC, 

data and timestamp in seconds. For simpler numerical 

representation, we transformed the hexadecimal Arbitration ID 

values into integers. We also changed the string data in 

columns "data 0" through "data 8" into numerical values, 

replacing non-convertible values with NaN. We normalized 

the numerical features using Min-Max scaling to achieve 

consistency in feature scaling. We used the Simple Imputer to 

handle any missing values in the dataset, which substituted 

NaNs with the mean of each relevant column. 

The formula for Min-Max scaling is  

 

𝑦𝑛 =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

(𝑁𝑒𝑤𝑚𝑎𝑥𝑧
− 𝑁𝑒𝑤𝑚𝑖𝑛𝑧

) + 𝑁𝑒𝑤𝑚𝑖𝑛𝑧  (1) 

 

where, zmin = data minimum value, zmax = data maximum value, 

𝑁𝑒𝑤𝑚𝑎𝑥𝑧
 = the maximum value (1), 𝑁𝑒𝑤𝑚𝑖𝑛𝑧

 = the minimum 

value (0). 

 

3.3 Proposed system – DeepXG 

 

In this study, we used DeepXG model which is made up of 

two parts: an XGBoost model and a model of deep learning. 

The XGBoost model is trained on the dataset so that to extract 

features and produce significant features. The XGBoost 

algorithm was used, with parameters such as the objective 

(multi-SoftMax), maximum depth, and learning rate defined. 

The XGBoost model was successful in collecting complex 

patterns and correlations in the data. The XGBoost (Extreme 

Gradient Boosting) model helps learn nonlinear relationships 

and interactions between the raw input features. The deep 

neural network then leverages these learned representations to 

detect anomalies and intrusions. This allows the model to take 

advantage of both XGBoost's feature learning and the ability 

of deep networks to learn complex patterns. The three 

important aspects of XGBoost are objective function 

regularization for generalization, over fitting prevention by 

column subsampling and shrinkage then additive training by 

gradient tree boosting. This boosting algorithm is used to 

improve performance by combining the outputs of weak 

learners. It utilizes regression trees, classification, and 

integrates them using the gradient boosting method. XGBoost 

is a collaborative learning method based on decision trees and 

gradient boosting. It is widely used for both regression and 

classification tasks due to its high performance and scalability. 

 

3.3.1 Feature selection 

It is a critical task in information categorization. It offers 

several benefits, including reducing computational complexity, 

improving data understanding and generalization, enhancing 

the algorithm's learning performance and removing redundant 

information. To accomplish this, we adopt the powerful 

XGBoost technique, tree boosting by a scalable machine-

learning model that has received widespread recognition in 

various machine-learning challenges and data mining. By 

utilizing the technique of XGBoost, we apply the feature 

importance score to select the most relevant features. 

Essentially, the model of XGBoost comprises a group of 

decision trees working in synergy to produce robust results. 
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𝑦𝑖�̂� = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 (2) 

 

where, 𝑦𝑖�̂� is the expected score or likelihood of sample i fitting 

to class j in the multi-class classification problem, K decision 

trees number (boosting rounds) in the XGBoost model and 

𝑓𝑘(𝑥𝑖) represents the prediction made by the kth decision tree 

for the i-th sample xi. 

We train the model by optimizing the loss function. The 

multi-classification loss function is 

 

Lossmulti(𝑦, �̂�) = ∑ [∑ 𝑦𝑖𝑗

𝑚

𝑗=1

log(1 + exp(−𝑦𝑖�̂�)) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

]

𝑛

𝑖=1

 (3) 

 

where, y true labels of the data represented, ŷ represents the 

predicted scores or probabilities from the XGBoost model, 

dataset samples, m classes number(groups) in the multi-class 

classification problem, 𝑦𝑖𝑗 indicator variable which is used to 

represent the value 𝛺(𝑓𝑘) is the regularization term for the k-th 

decision tree, when sample i does not belongs to class j, and 

otherwise 1. 

The regularization term formula is 

 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 (4) 

 

where, f represents an individual decision tree (boosting round) 

in the ensemble, T represents the number of leaves in the 

decision tree f. Each leaf node in the tree represents a specific 

prediction value, γ is the L1 regularization term or the L1 

regularization parameter. It controls the L1 regularization 

penalty applied to the leaves of the tree. Higher values of γ 

increase the strength of regularization, leading to a simpler tree 

structure with fewer leaves, λ is the L2 regularization term or 

the "L2 regularization parameter." It controls the L2 

regularization penalty applied to the weights of the leaves in 

the tree. Higher values of λ increase the regularization strength, 

encouraging smaller weights and smoother predictions, Wj 

represents the weight associated with the jth leaf in the tree f. 

These weights are learned during the training process and 

determine the influence of each leaf to the final prediction. 

The objective of the model is to be minimized during the 

training process. It represents the overall cost or loss of the 

model, which is a combination of the specific loss function and 

the regularization term. The objective is: 

 

𝑂𝑏𝑗 = 𝐿𝑜𝑠𝑠 +  𝛺 (5) 

 

XGBoost utilizes the mean and variance to perform 

optimizes the objective function and gradient descents. The 

expression for the objective function during each step of the 

optimization process is as follows: 

 

Objective function =
1

2
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

+ Ω(𝑓) (6) 

 

3.3.2 XGBoost working 

XGBoost constructs decision trees for a present number of 

iterations (n) until they reach their maximum depth. Every 

node in the decision tree represents a single dataset 

characteristic. To construct the decision tree, XGBoost uses 

the training data to determine the appropriate splitting point for 

each node. It gives weights to the two new leaves that resulted 

after the split. After building the decision trees, XGBoost 

computes the feature relevance score for every characteristic 

in the dataset. The importance of feature score indicates how 

important each feature is in producing correct predictions. The 

feature significance score is calculated by counting the number 

of times, each feature is utilized to partition the training data. 

In the CAN bus network, XGBoost is used as an individual 

model of classification for intrusion detection. Experiments 

with varying thresholds for picking features based on their 

relevance score are used to test the accuracy of the XGBoost 

model. The experiment begins with all 11 features available 

and gradually picks subsets of features based on their 

relevance value. The execution of the XGBoost model is tested 

for each group of characteristics, and the accuracy is recorded 

for comparison. The model's performance may fluctuate as the 

number of specified features lowers. There is a trade-off 

between the number of features and the test set accuracy. The 

elite group of features is identified by performing tradeoff 

between the test set accuracy and number of features then sent 

to the deep learning model. 

 

3.3.3 Deep learning model classification 

A DL model constructed with TensorFlow is used for 

categorization. In TensorFlow, the DL model is built as a 

Sequential model, which allows us to stack layers one after the 

other. The input layer is the model's initial layer, and it receives 

the features retrieved by the XGBoost model as input. The 

number of input nodes in this layer is governed by the number 

of XGBoost model features extracted. The deep learning 

model has hidden layers and a set number of nodes. In hidden 

layers, the Rectified Linear Unit (ReLU) activation function is 

utilized, which imparts nonlinearity to the model and aids in 

capturing complicated patterns in the input. 

ReLU Activation Function:  

 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) (7) 

 

If the input value is negative, it returns zero otherwise the 

function returns it. The ReLU function introduces nonlinearity 

and aids in training by answering the vanishing gradient 

problem. The number of nodes in the deep learning model's 

output layer equals the number of classes (types of incursions) 

in the dataset. Softmax activation function is utilized in the 

output layer because the problem involves a multi-class 

classification. For each class, the Softmax function is utilized 

to turn raw predictions into probability values. It accepts an 

array of logits (raw predictions) and generates a probability 

distribution for all classes. 

The Softmax function is defined as follows for class j in the 

output layer: 

 

soft max(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (8) 

 

Here, Zj is the logit value (raw prediction) for class j and K 

is the total number of classes. 

Then, during training, the Adam optimizer is employed to 

efficiently minimize the loss function. It combines the 

advantages of the AdaGrad and RMSProp optimizers to give 

adjustable learning rates for every parameter. To measure the 

learning rate for each parameter, the Adam optimizer retains a 

running average of the second moments of the gradients. 

The Adam update rule requires that the model's parameters 
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be updated throughout the training stage to minimize the loss 

function and improve the model's performance. The update 

rule adjusts the learning rate for each parameter independently 

based on the historical gradients, allowing it to change the 

learning rate for each parameter adaptively during training 

based on the observed gradients. Here are their formulas. 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (9) 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
22 (10) 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
𝑚𝑡 (11) 

 

where, mt, vt- First and second-moment estimates, gt- Gradient 

at time t, θt- Model parameters at time t, η- Learning rate, β1, 

β2- Exponential decay rates, ϵ- Small constant for stability. 

So by combining both the XGBoost and deep learning we 

built a DeepXG model which classifies and detects the types 

of attacks with an accuracy of 99.90 and algorithm of the 

DeepXG model is given below. 

 

3.3.4 Algorithm 

⚫ Step 1: Data cleaning is applied to the input data. 

⚫ Step 2: Convert all columns with categorical values 

to numerical values. 

⚫ Step 3: Normalize the dataset using Min-Max scaling 

and encode the labels. 

⚫ Step 4: Divide the dataset into testing and training 

data. 

⚫ Step 5: Train the XGBoost model. 

⚫ Step 6: Extract features from the XGBoost model. 

⚫ Step 7: Define the deep learning model using 

TensorFlow, compile and train the deep learning 

model. 

⚫ Step 8: Evaluate the model of deep learning on the 

test data. 

 

# Pseudocode for DeepXG Algorithm 

def deepxg_train(X_train, y_train): 

    # Feature Extraction with XGBoost 

    xgboost_model = XGBoost() 

    xgboost_model.fit(X_train, y_train) 

    feature_importance_scores = 

xgboost_model.feature_importances_ 

   # Select Important Features 

    selected_features = 

select_features(feature_importance_scores) 

    X_train_selected = X_train[selected_features] 

    # Train Deep Learning Model 

    deep_model = 

DeepLearningModel(input_shape=X_train_selected.shape[

1]) 

    deep_model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

    deep_model.fit(X_train_selected, y_train, epochs=50, 

batch_size=32, validation_split=0.2) 

    return deep_model, selected_features 

def deepxg_predict(model, X_test, selected_features): 

    X_test_selected = X_test[selected_features] 

    predictions = model.predict(X_test_selected) 

    return predictions 

 

Cyber-attacks in our study are classified based on specific 

characteristics such as unusual message patterns, timing 

anomalies, and payload inconsistencies. Each attack type was 

defined with clear operational criteria, and data were labeled 

accordingly. For instance, spoofing attacks were identified by 

their deviation from expected message identifiers, while 

flooding attacks were detected by their high message 

frequency. This detailed operationalization ensures the validity 

and reliability of our attack detection methods as shown in 

Figure 2. 

 

 

 

Figure 2. Representation of DeepXG model working 

 

Performance Evaluation Metrics: For the safety and 

dependability of self-driving systems, it is imperative to 

evaluate the performance of intrusion detection systems (IDS) 

in autonomous vehicles. In this part, we outline the evaluation 

measures that were utilized to measure the execution of our 

suggested IDS approach in comparison to three cutting-edge 

algorithms. 

(AUC-ROC) Area under the Receiver Operating 

Characteristic Curve, F1 Score, Specificity, Recall, Precision 

and Accuracy are some of the evaluation criteria used in our 

study. Each statistic provides unique insights into the IDS's 

performance and helps identify its advantages and 

disadvantages in terms of detecting intrusions. 

⚫ Accuracy: The section of correctly classified 

instances (TP and TN) out of the total number of 

instances. 

⚫ Precision: The section of TP among the instances 

expected as positive (measures the system's ability to 

avoid false positives). 

⚫ Recall (True Positive Rate or Sensitivity): The 

section of TP correctly recognised by the system out 

of all positive instances actually. 

⚫ F1 Score: The harmonic mean of recall and precision, 

provide a steady evaluation of the system's execution. 

⚫ True Negative Rate (Specificity): The proportion of 

TN correctly identified by the system out of all 

negative instances actually. 

⚫ AUC-ROC stands for Area Under the Receiver 

Operating Characteristic Curve: A graphical 

representation of the classifier's performance, 

especially useful for imbalanced datasets. 

 

Accuracy =
(TP + TN)

T
  

 

Precision =
TP

TP + FP
  

 

R =
TP

TP + FN
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F1 Score =
2 × P × R

P + R
  

 

AUC-ROC = ∫ Sensitivity (R)
∞

−∞

× Specificity 𝑑False Positive Rate 

 

 

where, P = precision, R = Recall, TP = True Positive, FP = 

False Positive, TN = True Negative, FN = False Negative, T = 

Total Number of Samples. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The dataset consists of 11 features, with 3665770 instances. 

The data set is preprocessed and cleaned to overcome the 

problem of over fitting and for better accuracy. The total 

dataset is divided into 30% percent for testing and 70% percent 

for training i.e. 2566039 instances for training and 1099731 

instances for testing. These instances are used to build Ml 

models and results of different models are recorded. 

Random Forest: The Random Forest model's accuracy was 

83.85%. This indicates that the model accurately classified 

about 83.85% of the cases in the dataset. The Random Forest 

model had a 90.7% precision. This shows that the model was 

roughly 90.7% accurate when it anticipated an infiltration, the 

model had a 99.6% recall rate. This indicates that 99.6% of the 

actual intrusions in the dataset were correctly recognized by 

the model. The Random Forest model's F1 Score was 94.99%. 

This statistic strikes a compromise between precision and 

recall by taking both into account. A more F1 Score indicate 

that both parts of the model's performance were strong. 

The Random Forest model performed well in detecting 

intrusions, getting a high recall score. However, when 

compared to other models, its accuracy and F1 Score were 

considerably lower, implying that it may have misclassified 

some non-intrusion cases as intrusions as shown in Figure 3. 

Ada Boost: 83.34% accuracy was attained by the AdaBoost 

model. This shows that the model classified about 83.34% of 

the examples correctly, which is comparable to Random Forest 

performance. AdaBoost's model had an accuracy rate of 84.3%. 

It means that, on average, 84.3% of the time, the model's 

predictions of intrusions were accurate. The AdaBoost model 

had a 97.5% recall rate. This shows that 97.5% of the actual 

intrusions in the dataset were correctly recognized by the 

model. The AdaBoost model received an F1 Score of 90.70%. 

Similar to XGBoost, the F1 Score shows stability between 

recall and precision because it is marginally less than accuracy. 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Confusion matrix of random forest classifier; 

(b) ROC-AUC of Random Forest classifier 

 

AdaBoost exhibited a relatively lower accuracy compared 

to XGBoost but showed higher recall and F1 Score than 

Random Forest. It performed well in identifying most 

intrusions but had a slightly higher false positive rate as shown 

in Figure 4. 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Confusion matrix of Ada Boost classifier; (b) 

ROC-AUC of Random Forest classifier 

 

XGBoost: The XGBoost model was 95.30% accurate. This 

means that the model outperformed Random Forest, correctly 

categorizing around 95.30% of the cases in the dataset. The 

XGBoost model had a precision of 90.7%. In a similar vein to 

Random Forest, this means that when the model predicted an 
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intrusion, it was correct approximately 90.7% of the time. The 

XGBoost model had a 99.6% recall rate. It indicates, like 

Random Forest, the model appropriately recognized 99.6% of 

real intrusions in the dataset. The XGBoost model received an 

F1 Score of 94.90%. It is slightly lower than the accuracy, 

demonstrating a good balance of precision and recall. 

XGBoost outperformed Random Forest in terms of F1 Score 

and accuracy, implying that it can distinguish between 

intrusions and non-intrusions. It also had a good recall, 

meaning that it spotted the majority of the incursions in the 

sample. 

DeepXG: The proposed DeepXG approach obtained an 

astounding 99.90% accuracy. This is a huge improvement over 

all previous models, correctly categorizing nearly all cases in 

the dataset. The DeepXG model had a precision of 98.5%. This 

suggests that the model was correct roughly 98.5% of the time 

when it anticipated an intrusion. The DeepXG model had a 

99.7% recall rate. It means that, like XGBoost and Random 

Forest, the model correctly recognized 99.7% of the real 

intrusions in the dataset. The DeepXG model received an F1 

Score of 97.60%. The F1 Score, like previous models, is 

somewhat lower than accuracy, demonstrating a balance 

between precision and recall as shown in Figure 5.  

We can observe that initially there is a high loss and 

gradually it decreased over the epochs in Figure 6. The metrics 

used to validate loss are sparse categorical cross-entropy. From 

the accuracy graph, we can observe that the correctness of the 

model is increasing exponentially over the epochs. 

 

 
(a) 

 
(b) 

 

Figure 5. (a) Confusion matrix of XG Boost classifier; (b) 

ROC-AUC of XG Boost classifier 

 
(a) 

 
(b) 

 

Figure 6. (a) Model loss; (b)Model accuracy 

 

DeepXG performed admirably, earning near-perfect 

accuracy and a high F1 Score. It outperformed all other models, 

proving its robustness in detecting intrusions with few false 

positives as shown in Figure 7. 
 

 
 

Figure 7. The AUC-ROC curve of the algorithm 

 

The experimental findings demonstrated that the proposed 

DeepXG methodology performed admirably in the context of 

IDS for autonomous vehicles. It has obtained maximum 

precision, F1 Score, recall and accuracy of several of the model 

tested, indicating that it has the potential to be an excellent 

intrusion detection solution in real-world applications as 

shown in Table 2. DeepXG's higher performance seems to be 

aided by the combination of feature extraction from XGBoost 

and representation learning from deep learning models, giving 
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it a potential method to improve the security and safety of 

autonomous cars as shown in Figure 8.  

For instance, benchmark tests show that DeepXG reduces 

false positives by 20% and improves detection rates by 15% 

over standalone deep learning models as shown in Figure 9. 

 

Table 2. Results comparison 

 
Algorithm Accuracy Precision Recall F1 Score 

Random Forest 83.85 90.7 99.6 94.99 

AdaBoost 83.34 84.3 97.5 90.70 

XgBoost 95.30 90.7 99.6 94.90 

DeepXG 

(Proposed) 
99.90 98.5 99.7 97.60 

CNN-LSTM 97 93 95 93 

 

 
 

Figure 8. Comparing accuracy of different algorithms 

 

 
 

Figure 9. Comparing evaluation metrics of different 

algorithms 

 

The primary methodological limitations of our study 

include the dependency on labeled data for training and the 

high computational requirements for model training and 

inference. These limitations may affect the generalizability of 

our results to different vehicular systems or new attack types. 

To address these issues, future work could explore 

unsupervised or semi-supervised learning approaches to 

reduce the reliance on labeled data and optimize the model for 

more efficient real-time performance. 

 

 

5. CONCLUSION 

 

We addressed the essential issue of autonomous vehicles 

regarding cyber security in this study by creating DeepXG, a 

hybrid XGBoost-deep learning technique for intrusion 

detection in the CAN system. To achieve extraordinary 

accuracy in intrusion detection, we combine the capability of 

XGBoost's feature extraction with deep learning's 

representation learning capabilities. DeepXG displayed 

amazing performance in classifying network intrusions 

through rigorous tests and evaluation utilizing the real-time 

CAN traffic dataset, obtaining an accuracy of 99.90%. The 

XGBoost feature relevance score enabled us to identify critical 

features and reduce computational complexity, making our 

model efficient and scalable. Our DeepXG algorithm beats 

multiple existing intrusion detection methods, making it an 

important influence to the field of cyber security in 

autonomous vehicle. DeepXG can improve the reliability and 

safety of autonomous vehicles on the street by successfully 

identifying and blocking cyber breaches in the CAN bus. 

Looking ahead, we feel DeepXG has a lot of potential for 

additional research and real-world application in autonomous 

car systems. We intend to integrate DeepXG into vehicle cyber 

security frameworks as technology progresses, thereby helping 

to the mainstream deployment of safe and secure autonomous 

vehicles. 
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