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In the digital age, the internet plays a pivotal role in shaping consumer perceptions, with 

vast amounts of data, particularly images and videos, being utilized by organizations for 

beneficial and deceptive purposes. In the facial health sector, forged facial images are 

increasingly used in advertising, misleading consumers into purchasing ineffective beauty 

products. To address this issue, we propose an automated system for the credibility 

diagnosis of facial images in online advertisements. Our approach employs an ensemble 

of state-of-the-art deep learning models—ResNet50V2, MobileNetV2, and InceptionV3—

which achieved an ensemble score of 79%, outperforming individual model accuracies of 

80% (ResNet50V2), 76% (MobileNetV2), and 75% (InceptionV3). Furthermore, stacked 

ensembling yielded 79% accuracy, showing a marked improvement over individual 

models. We also integrate Explainable AI techniques, where Score-CAM demonstrated 

the best performance with a 32.9% average drop and a 31.4% increase in confidence, 

providing interpretable visual explanations for the detected forgeries, thereby enhancing 

transparency and trustworthiness. By training our models on a curated dataset of real and 

fake facial images, we achieve robust detection and provide users with an interpretable 

analysis of non-credible images. This novel system not only advances the field of 

automated image credibility assessment but also contributes to the development of 

responsible AI systems that protect consumers from deceptive practices. 
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1. INTRODUCTION

We surely live in a time when we are experiencing a lot of 

visual imagery data from online sources. While we may have 

had faith in the purity of this imagery in the past; modern 

digital technology has begun to weaken that faith. Our mind 

has a tendency to trust what we're persuaded of. Altered 

visuals are emerging more often and with greater intricacy in 

sensationalist magazines, the fashion sector, prominent news 

outlets, scholarly periodicals, political endeavors, legal 

proceedings, and deceptive images arriving via email. The 

primary contributors to the dissemination of bogus 

photographs are social media, blogs, websites and hence these 

distortion helps brands to promote their product easy and 

convincible way specially in the field of health information. 

These falsified photographs undermine the legitimacy of 

online information in the eyes of the general public, prompting 

consumers to utilize items in the hopes of getting results 

similar to those shown in the Figure 1. 

1.1 Image credibility analysis 

Because of technological advancement and globalization, 

electronic devices are available widely and affordably 

available. As an outcome, cameras have increased recognition. 

There are numerous cameras near us, and apply it to take a 

significant number of images.  Various documents that must 

be filed online require soft copies of their visuals [1], and every 

day huge images are shared on social media. Illiterate people 

take glance of photographs and take information from them, 

which is incredible. Hence the way individuals currently 

receive news has changed. To quickly learn more, they 

primarily use social media sites to search for a condensed 

version of the news [2]. In order to determine credibility, there 

are many aspects of it as shown in Figure 2. Hence, delving 

into the reasons behind the identification of an image as 

fraudulent proves valuable, as it can introduce fresh insights 

and information that might have been previously undiscovered, 

even among experts. 

Figure 1. Fake vs real images 
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Figure 2. Image credibility assessment framework 

 

1.2 Importance of visualization in image credibility 

analysis   

 

In the context of AI ethics and performance, explainability 

refers to methods that clarify how an AI system reaches its 

conclusions [3], while interpretability focuses on how easily 

humans can understand the model’s logic. For image forgery 

detection, especially in advertising, it is not enough to merely 

identify manipulated images; understanding why the model 

flagged an image as fake is crucial for building trust [4]. In 

Figure 3, each term invisible to the human eye, are explained. 

By integrating Explainable AI (XAI), this study aims to 

combat deceptive practices in facial health advertising, restore 

consumer confidence, and foster responsible AI use.The study 

contribution is mentioned in section D of the Introduction. 

 

 
 

Figure 3. Impact of credibility 

 

This transparency helps auditors grasp the key factors 

behind the AI’s decisions, ensuring that even subtle 

manipulations, invisible to the human eye, are explained. By 

integrating Explainable AI (XAI), this study aims to combat 

deceptive practices in facial health advertising, restore 

consumer confidence, and foster responsible AI use. The study 

contribution is mentioned in section D of the Introduction. 

 

1.3 Contribution of paper 

 

Following is the contribution of the paper 

● In literature, there is a lack of real and forged images 

which can’t be differentiated by the naked eyes, 

authors have proposed their dataset consisting of 

300+ images that are real as well as fake for 

implantation purposes 

● After surveying Authors found that as per their 

knowledge very few works were done in the field of 

explaining the prediction in image credibility 

detection hence authors proposed a method in a user 

understandable format. 

● Authors have visualized the credibility of image 

authors using 3 different explainable AI tools and did 

comparative analysis on 3 CNN models as well as 

their ensembled model. 

Authors have used 3 different CNN for classification 

followed by their ensemble hence making the model more 

stable. 

 

 

2. LITERATURE REVIEW 

 

The literature has suggested several strategies to combat 

picture counterfeiting [5] define fake images as images in 

posts that do not accurately represent the events that they refer 

to. But they didn’t explain why the images were not credible. 

First, we will describe various techniques used in image 

forgery and then move to explainable ai used in nearby areas. 

Wagle et al. [6] developed the NLP model to detect an image 

as fake or real. Jin et al. [7] suggested a domain-transferred 

CNN model that might utilize information from the auxiliary 

set and progressively apply it to the intended job. Mayer and 

Stamm [8] provided a statistical model that reflects the 

discrepancy between global and local LCA estimations. Then, 

they applied this model to formulate the problem of forgery 

detection as a hypothesis testing one and arrived at a detection 

statistic, which they demonstrated is the best under specific 

circumstances. Dua et al. [9] illustrated an approach 

employing JPEG compression. An image block, divided into 

discrete 8×8 pixel blocks, undergoes individual assessment of 

discrete DCT coefficients. 

The statistical attributes of the AC components of these 

block DCT coefficients alter upon the failure of a JPEG 

compressed image. Using SVM, the recovered feature vector 

distinguishes authentic from counterfeit images. In the study 

[10], forged images were categorized into 'active,' termed non-

blind, and 'passive,' termed blind. In the study [11], methods 

like SIFT (Scale Invariant Feature Transform), SURF (Speed 

Up Robust Features), GLOH, ORB (Oriented FAST), and 

others were applied to enhance outcomes. For detecting copy-

move forgeries [12], BusterNet was proposed. A fusion 

module resides within a dual-branch architecture. Both 

branches employ visual cues to detect potential manipulation 

areas and visual similarities to identify copy-move regions. 

Wu et al. [13] employed a CNN to extract block-like features 

from an image, compute inter-block self-correlations, identify 

matching points via a point-wise feature extractor, and 

reconstruct forgery masks using a deconvolutional network. 

Wu et al. [14] introduced the fully convolutional network 

ManTra-Net, adaptable to various image sizes and forgery 

types such as copy-move, augmentation, removal, splicing, 

and unknown forms. These techniques were also extended to 

the medical domain for image forgery detection. 

In 2020 cloud environment was used and a big data 

analytics engine, Ali et al. [15] proposed a novel healthcare 

monitoring framework to precisely analyze and store data of 

healthcare, and to enhance classification accuracy.  

Ontologies, data mining techniques, and bidirectional long 
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short-term memory (Bi-LSTM) are used in the proposed big 

data analytics engine. Also, using ensemble deep learning and 

feature fusion, Ali et al. [16] proposed a smart healthcare 

system for predicting disease in heart. The proposed system is 

evaluated and compared to standard classifiers based on 

feature fusion, feature selection, and weighting approaches 

using heart disease data. The suggested approach outperforms 

existing systems with accuracy of 98.5%. The study [17] 

suggested a unique two-tier structure in which the first tier 

differentiates between normal and tumour MRI, and the 

second tire localizes tumor regions. According to their 

experimental results, the proposed framework achieved 97% 

accuracy for classification tasks using GoogleNet and 83% 

accuracy for localization tasks using pretrained YOLO v3 

models after fine-tuning. Dash et al. [18] have used a fast and 

a matched filter vessel extraction for measuring the 

performance. They did an extension of the matched filter 

methodology by integrating a filter having fast-guide along 

with a matched filter to enhance fundus images. Also, they 

proposed combining hysteresis thresholding, mean-C 

thresholding, and Otsu thresholding for extraction of vessel, 

and is evaluated on DRV and CDB data sets. The high-volume 

dataset's attribute set was reduced in this research by a new tri-

stage feature selection method that involves choosing a subset, 

crucial features [19]. It used four filter methods (MI, CS, RFF, 

and XV) at Phase 1 along with three classification algorithms 

(KNN, SVM, and NB) in order to select every feature that is 

most accurate regardless of the filter method or classification 

algorithm used. Srinivasu et al. [20] performed automatic 

segmentation of CT scan images to detect anomalies in the 

human liver using a effective in computation AW-HARIS 

method. In contrast to supervisory methods that demand 

substantial computational resources for training, the proposed 

approach achieves superior issue detection accuracy without 

the need for training. The study [21] employed Long Short-

Term Memory (LSTM) combined with a multimodal 

multitasking Deep Learning (DL) approach, utilizing data 

from 47 patients to anticipate Length of Stay (LOS) and 

readmission. Within this multimodal DL model, the patient's 

readmission status is precisely classified, yielding a mean 

square error of 0.025 and root mean square error of 0.077, with 

an impressive accuracy of 94.84%. Similarly, the study [22] 

introduced an ensemble learning framework that integrates 

heterogeneous base learners into a unified model via the 

stacking technique. Leveraging multimodal time-series data, a 

4-class ensemble classifier is constructed to forecast the 

progression of Alzheimer's disease 2.5 years into the future. 

However, all these techniques didn’t deliver user a self-

explanatory reason of the claim of forged images. These works 

showed different methods to detect image credibility however 

no work was shown to explain why the image is not credible. 

While some work of XAI in medical imaging analysis was 

done by models discussed on single image modality, which 

conforms with image explanation settings [23] numerate 

numerous requirements as proxies for actual results to direct 

the development and assessment of XAI algorithms, including 

correctness and robustness. Singh et al. [24] studied 13 XAI 

algorithms for classifying eye disorders were studied. 

Utilizing retinal scans, they asked 14 medical professionals to 

assess the heatmaps with relation to their clinical utility 

(plausibility). The study [25] assessed five gradient-based XAI 

algorithms for early cancer classification from endoscopic 

images. They evaluated the consistency between heatmaps and 

the actual annotations of localized lesions using computational 

measures (plausibility). The gradient approach performed 

better than the other four algorithms that best match the 

ground-truth annotations made by clinicians. Table 1 shows 

strengths and weakness of XAI models used in medical 

domain. As no work is done is field of facial credibility, we 

propose our XAI system which also cover all the limitations 

of methods used here.  

 

Table 1. Previous work done in association with XAI AND CNN 

 
Reference XAI Model Used Dataset Used Strengths Limitations 

[23] Lime 
Freddie Mac 

dataset 

A sole dataset is altered by adjusting 

feature values, and the subsequent 

influence on the output is observed 

suffers from labels and data shifts, 

explanations dependent on the choice 

of hyperparameters 

[24] 
Shapley value 

sampling 

3D MNIST and an 

MRI dataset 

It calculates rewards for every feature, 

accounting for potential variations in 

individual contributions among players 

It uses feature dependencies, leading 

to confusion when interpreting SHAP 

plots. 

[25] Lime and Shapley 

Own dataset 

consisting of 

bleeding and non-

bleeding images 

These both determined feature 

contributing using one feature, which is a 

friendly way 

They lead to self-discrepancies and 

many times different results 

 

 

3. PROPOSED METHODOLOGY 

 

From the extensive literature review it was very clear that 

the Explainable AI was not used in case of forged images 

specially in facial health section field in which authors have 

identified a potential gap and have proposed a methodology, 

which was never created in such fashion. Authors proposes, to 

create a dataset and then use ensembling of unique 

combination of CNN [26] and among which the best 

performed combinations results will be explained by 

explainable ai. To cover in brief methodology is divided into 

further sub sections as follows as shown in Figure 4. 

 
 

Figure 4. Proposed methodology architecture 
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3.1 Dataset preparation 

 

In the dataset preparation process, a total of 600 images 

were curated, comprising 300 real and 300 fake images. As the 

authors conducted a survey, they found that 50-60% of health 

web blogs advertising products like “Get Glow in 7 days” or 

“Remove acne in 30 days” used before-after images to gain 

users' trust. These images, often used to showcase product 

results, attract consumers as the forgery is imperceptible to the 

naked eye. To address this problem, the authors scraped 300+ 

freely available images online portraying skincare issues such 

as acne, pimples, and dark spots. Using a face-editing 

application, the images were photoshopped to create fake 

versions where the forgery was not visible. This balanced 

dataset was then split into 70% for training, 15% for validation, 

and 15% for testing, ensuring effective training and robust 

model evaluation. 

 

3.2 Image processing 

 

Authors after creating the dataset, applied image processing 

techniques on it. Since every image was of different size it was 

necessary to make sure that image size was same so that 

amount of visual data and pixels are same and will not hamper 

the model. Image was resized into 224 × 224 using OpenCV 

and then the image was normalized so that the pixel intensity 

value is reduced such that the computation required gets 

reduced. 

 

3.3 Deep learning and ensemble 

 

Ganaie et al. [27] have decided to use deep learning model 

and ensemble learning technique in the proposed methodology. 

In order to employ deep learning model pretrained ImageNet 

TensorFlow model was taken. A specific list of CNN was 

chosen which amounted to total 6 CNN namely ResNet50V2, 

MobileNetV2 DenseNet121, VGG19, EfficientNetB0 and 

InceptionV3. ResNet50V2 and DenseNet121 would be more 

efficient, with the ability to learn a complex feature hierarchy 

that captures fine details in forged images. Then, 

MobileNetV2 and EfficientNetB0 provide computational 

efficiency, so the ensemble would be suitable for real 

applications. Finally, VGG19 and InceptionV3 ensure 

consistent performance while detecting multi-scale features 

for robust analysis of images. The varying lightweight and 

deep models together improve the ensemble's generalization 

capacity, thus making it a more accurate and efficient detector 

for subtle forgeries of facial images in diverse scenarios. These 

models were trained by dataset created by the authors and have 

been tested on unseen images. After training these models, 

their weights were saved and was used to employ stacked 

ensembling method by using three deep learning model CNN. 

ResNet50V2, MobileNetV2, and InceptionV3 models are 

trained separately, and then fed their prediction for meta-

learner, learned to optimally combine the predictions from 

these base models. The stacking method enables the ensemble 

to leverage the strengths of each individual model, which 

ultimately yields better output than either simple or weighted 

averaging. This approach, in particular, is useful for retaining 

complementary information from different CNN architectures. 

Since there was no study which has applied explainable ai with 

combination of stacked ensemble technique and the fact that 

using stacked method that accepts sub-model outputs as input 

and attempts to learn how to best combine the input 

predictions to get a superior output prediction. Hence it was 

decided that among the trained and tested model of CNN has 

been used a good combination of CNN has to be employed to 

gain highest accuracy or ensemble score. In order to gain a 

good ensemble, score a combination of 3 CNN at a time was 

taken such that the resulting ensemble score is highest, the 

results associated with this is shown in Table 2. 

 

Table 2. Ensemble score of unique combination of CNN 

 
Experiment No. CNN Combination Ensemble Score 

1 

ResNet50V2 

MobileNetV2 

InceptionV3 

79 

2 

MobileNetV2 

InceptionV3 

DenseNet121 

78 

3 

ResNet50V2 

InceptionV3 

DenseNet121 

77 

4 

ResNet50V2 

DenseNet121 

VGG19 

76 

5 

MobileNetV2 

DenseNet121 

VGG19 

75 

6 

InceptionV3 

DenseNet121 

VGG19 

74 

7 

VGG19 

MobileNetV2 

InceptionV3 

73 

8 

DenseNet121 

EfficientNetB0 

ResNet50V2 

70 

9 

EfficientNetB0 

ResNet50V2 

MobileNetV2 

70 

11 

EfficientNetB0 

InceptionV3 

DenseNet121 

68 

12 

EfficientNetB0 

MobileNetV2 

InceptionV3 

67 

13 

DenseNet121 

VGG19 

EfficientNetB0 

66 

14 

VGG19 

EfficientNetB0 

ResNet50V2 

66 

15 

ResNet50V2 

VGG19 

EfficientNetB0 

66 

16 

MobileNetV2 

VGG19 

EfficientNetB0 

65 

17 

InceptionV3 

VGG19 

EfficientNetB0 

64 

 

In order to come up with such a combination it was decided 

that two same CNN model will not be repeated in a 

combination of 3 Ensemble CNN model and every CNN used 

in a combination of 3 will be unique in nature. Using this logic, 

a stacked ensemble technique was employed where every 

CNN is stacked onto one another. Since the models are stacked 

onto another generalization ensemble happens which can 

utilize the collection of predictions as a context and 

conditionally decide how to weight the input predictions, 
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perhaps leading to higher performance.   

The time complexity [28] of these ensemble learning 

methods is evaluated under both pruned and unpruned 

conditions. Assuming this model is employed to train the 

foundational algorithms (mbase), the time complexity for 

making predictions on new, unseen data (unknown instances) 

is represented as O (m x train), where train signifies the 

average time taken to train the model using one method, and 

test indicates the average time needed to test the model using 

one technique. The overall training time complexity for the 

ensemble learning model, excluding the pruning process, 

stands at O(m x test). The aggregate space required by an 

algorithm to function across diverse input sizes is termed its 

space complexity, essentially reflecting the amount of space 

needed for its execution. In this specific scenario, the space 

complexity amounts to n (n = number of photos). 

The ensemble of CNN models in this study was constructed 

using a stacked ensemble approach, leveraging the strengths 

of multiple Convolutional Neural Networks (CNNs) to 

improve overall prediction accuracy. We employed six pre-

trained CNN architectures—ResNet50V2, MobileNetV2, 

DenseNet121, VGG19, EfficientNetB0, and InceptionV3—

each fine-tuned on our custom dataset of forged and real facial 

images. These architectures were chosen for their varying 

depth, parameterization, and suitability for image 

classification tasks.  

The models were trained individually using the Adam 

optimizer with an initial learning rate of 0.001, categorical 

cross-entropy loss, and a batch size of 32. Each model was 

trained for 50 epochs, with early stopping criteria based on 

validation loss to prevent overfitting. 

After individual training, the ensemble was constructed by 

stacking the top three performing CNNs based on validation 

accuracy. The stacked ensemble takes the predictions of the 

individual models as input and combines them using a meta-

learner, which learns how to best combine these predictions to 

produce a superior output. The final layer of the stacked 

ensemble was a fully connected layer with a softmax 

activation function to output the classification probabilities. 

To ensure diversity in the ensemble, the same CNN model was 

not repeated across multiple combinations, and each ensemble 

contained unique CNN architectures. 

Hyperparameters for each model were fine-tuned using grid 

search, varying the learning rates (0.0001, 0.001, 0.01), batch 

sizes (16, 32, 64), and dropout rates (0.2, 0.5). The best 

ensemble configuration was selected based on its ability to 

generalize on unseen data, and its performance was evaluated 

using metrics such as accuracy, precision, recall, and F1-score. 

This stacked ensemble approach ensured that the strengths of 

individual CNN models were captured, leading to a more 

robust detection system for identifying forged facial images. 

 

3.4 Explainable AI 

 

An understanding of why a model made a particular choice 

is critical to the process of detecting Image credibility. A fact-

checker is provided with the information deemed most 

relevant to the conclusion that the content was fraudulent by 

the disclosure of the reasons it was deemed fraudulent. Here, 

Explainable AI provides users with the reasoning behind the 

model's decisions, which helps build trust in the model. The 

three stages of Explainable AI (XAI) from the study [29] are 

illustrated in Figure 5. Using these stages we implemented 3 

methods GradCam, GradCam++ and ScoreCam on different 

CNN models and generated heat maps to visualize which areas 

are forged or photoshopped contributing to models decision as 

fake. 

These 3 methods of XAI have been explained accordingly, 

which is also illustrated in Figure 6, where the image, when 

fed into an XAI system, goes through various convolutional 

layers where then the final layer is back propagated till the last 

convolutional layer for each of the XAI systems i.e. GradCam, 

GradCam++, and ScoreCam which then gives the final image 

representing areas of forgery. 

 

 
 

Figure 5. Working of explainable AI 

 

 
 

Figure 6. Explainable AI architecture 

 

GradCam: Grad-CAM [30] employs gradient information 

from CNN's final convolutional layer to assign priority values 

to each neuron for a specific option. Obtain the class-

discriminative localization map for any class C of width u and 

height v. 

 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝐶 ∈ 𝑅𝑢 𝑋 𝑣 (1) 

 

The authors of this study [30] first calculate the gradient of 

the score for class c, yc of a convolutional layer's feature Map 

Activation Ak (before the softmax). 

 
𝜕𝑦𝑐

𝜕𝐴𝑘  (2) 

 

The neuron significance weights (indexed by i and j, 

respectively) are calculated using the global average of the 

gradients across the width and height dimensions. 

 

ak
c =  

1

z
 ∑ ∑

∂yc

∂Aij
kji   (3) 

The real amount of computation to successive weight matrix 

products and gradient to activation functions matrix products 

up until the final convolution layer to which the gradients are 

transmitted while backpropagating gradients to activations and 

computing ack. This weight ack thus captures the 'importance' 
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of feature map k for a target class c by partially linearizing the 

deep network downstream from A. 

Authors perform a weighted combination of forwarding 

activation maps and follow it by a ReLu to obtain, 

 

LGrad−CAM
C = ReLu(∑ ak

c Ak
k )  (4) 

 

Because they are only concerned in parts that have a bigger 

impact on the image's emotional content, such as pixels whose 

intensity should be increased, the authors use a ReLu to boost 

yc. Brighter pixels are more likely to be visible in an image 

with fewer affecting or contributing factors. The final results 

using GradCam are comparable to one done in a recent study 

[30]. As one might expect, localization of maps without this 

ReLu occasionally shows darker regions than emotion 

recognition features. 

GradCam++: Grad-CAM cannot correctly locate the 

objects when there are several instances of a particular class in 

a single image. This is a significant issue since there are 

frequently multiple instances of an object in the real world. 

The localization may not always be needed for the complete 

item but rather for portions of it, which is another effect of 

using an average of unweighted using partial derivatives. 

Grad-notion CAMs of deepening a CNN's transparency may 

be compromised. Since each pixel in a CNN's feature map 

directly affects the outcome, the authors of this study [31] 

employed the Gradcam plus model, which was developed in 

this manner. The authors, in particular, have transform Eq. 1 

by explicitly coding the composition of the weights w_kc. 

 

wk
c =  ∑ ∑ aij

kc. relu (
∂Yc

∂Aij
k)ji   (5) 

 

where, relu is the activation function for the Rectified Linear 

Unit. The idea is that wk
c symbolizes the importance of certain 

maps of activation Ak. Positive gradients are critical in 

constructing saliency maps for a given convolutional layer in 

previous attempts at pixel-space visualization, such as 

Deconvolution and Guided Backpropagation. An activation 

map with a positive gradient at (i, j). 

𝐴𝑘 signifies that increasing the pixel intensity (i,j) has a 

positive effect on the class score 𝑌𝑐 . Thus, a linear 

combination of the positive partial derivatives with respect to 

each pixel in an activation map is obtained, and the relevance 

of that map for class c is revealed. Because of this structure, 

the weights wk
c are a weighted average of the gradients rather 

than a global average. 

ScoreCam: Variations of GradCAM, like GradCAM++, 

exhibit distinctions primarily in the combinations of gradients 

employed to characterize a_k^c. Their objective is to make 

models without global pooling layers more universally 

applicable. The overarching contribution, functioning as a 

bridge between perturbation-based and CAM-based 

techniques for the relevant input features, encodes the 

activation map values instead of the local sensitivity 

measurement, also known as gradient information. This 

representation in Score-CAM [32] offers a more intuitive 

interpretation of the weight of activation maps. Unlike earlier 

approaches, the authors incorporate the increased confidence 

value within the gradient information that contributes to the 

final convolutional layer, emphasizing the importance of each 

activation map's relevance. 

 

LScore−CAM
C = ReLu(∑ ak

c Al
k

k )  (6) 

4. RESULTS AND DISCUSSION 

 

4.1 Deep learning 

 

As discussed in the proposed methodology section C, 

multiple unique combinations of CNN were taken in a group 

of 3 using a specified logic by not repeating CNN in a 

particular combination and not repeating the same CNN in a 

combination. This enabled the creation of a set of huge results, 

among which the best was taken and studied further in detail. 

This result was mapped in Table 2, which shows how 

Experiment No. 1, which had a combination of ResNet50V2, 

MobileNetV2, and InceptionV3, performed the highest. In 

contrast, Experiment No. 17 performed lowest using 

InceptionV3, VGG19, and EfficientNetB0.  

Among the best-performed Experiment No. 1 in Table 2 

was taken and then was further studied in detail as to how this 

group of CNN performed individually by recording metrics 

such as Precision, Recall, F1Score and Accuracy using Keras 

AI library mapped in Table 3. 

Table 3 shows how the individual CNN has performed on 

validated data, in which three pre-trained ImageNet CNN were 

used, namely ResNet50 V2, MobileNet V2, and Inception V3. 

The dataset was split into 80:20 rations in two sections: 

Testing and Validation. In such dataset distribution, the model 

used was trained, and then later stacked ensembling was done 

on it, which can be seen in Table 4, where many CNN indicates 

the CNN stacked onto one another and their associative results. 

These stacked CNNs are the same CNNs that, as a group, have 

achieved the highest ensemble score in Table 2.  

 

Table 3. Model wise individual metrics 

 
Model used Accuracy % Precision Recall F1 Score 

ResNet50 V2 0.80 0.81 0.81 0.81 

MobileNet V2 0.76 0.78 0.77 0.76 

Inception V3 0.75 0.77 0.76 0.75 

 

Table 4. Stacked ensembling accuracy 

 
Number of CNN Stacked Ensemble Accuracy % 

1 0.81 

2 0.78 

3 0.79 

 

From Table 4, we can see how stacked ensembling accuracy 

has performed; from this table, it is observed how an 

increasing the number of CNNs used for ensembling affects 

the accuracy. By using three CNN stacked ensembles, the 

accuracy recorded was 79%, which is greater than the average 

accuracy of all three CNN.  The reason why ensembling 

accuracy is more than the average accuracy is that the 

predictive results accuracy increases as the stacking of one 

CNN onto another broadens the scope of the learned 

parameters. At the same time, training since every CNN has 

its own unique architectural designs, which lead to varied 

performance metrics. However, no matter how CNN 

architecture differs, authors have used a generalized approach 

to use multiple CNNs rather than making custom changes on 

every CNN. This was because to reach the perfect metrics are 

obtained using AI libraries offered by Keras. Using these 

combinations of specific CNN, which can give maximum 

accuracy, several combinations of different numbers of CNN 

models were tried, among which models used in Table 2 

Experiment No. 1 have recorded the highest accuracy.  To give 
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fair parametric learning across all models, the same epoch and 

batch were used, which can be observed in Table 5 

Table 5 shows that the epochs used for all three CNN are 20, 

and the batch size used is 32. The batch size 32 was selected 

because, in terms of computation power used fits perfectly to 

the resources available at the time of study by the authors also 

another reason why batch size apart from 32 was not taken is 

that if we took less batch size, it would mean each step in the 

gradient might lead to less accuracy as only small portion of 

the dataset which might be lead to a local minimum rather than 

an overall lowest minima in the gradient graph. A similar vice 

versa reason can be applied that with the greater batch size, the 

computation power would also increase and may also lead to 

skipping of overall lowest minima in terms of gradient descent 

graph while training. Since the 32 batch size is neither small 

nor too big, it makes a good parametric value, leading to high 

hopes of getting good accuracy. Now, although the parameters 

used among all three CNNs were the same, the size of the 

computation power would also increase. It may lead to 

skipping of the overall lowest minima in terms of gradient 

descent graph while training. Since the 32 batch size is neither 

small nor too big, it makes a good parametric value, leading to 

high hopes of getting good accuracy. Now, although the 

parameters used among all three CNN were the same, however, 

the CNN used are still different and have their own individual 

plus points as compared to other CNN because of their 

architectural designs. Although the architecture for every 

CNN may differ, a generalized approach was taken, which can 

be observed in Table 6. 

 

Table 5. Models used parameters 

 
CNN Used Epoch Used in Dataset Batch Size Pretrained ImageNet Weights Used Additional Weights Used 

ResNet50 V2 20 32   

MobileNet V2 20 32   

Inception V3 20 32   

 

Table 6. CNN model layer distribution 

 
Layers Detail Layers Filters Units Kernel Size Stride Activation 

1 Input Data - - - - - 

2 Pretrained ImageNet CNN - - - - - 

3 Dense_1 - 128 - - ReLu 

4 Dense_2 - 128 - - ReLu 

5 Dense_3 - 2 - - Sigmoid 

 

4.2 Explainable AI 

 

In this part, we run experiments to see how effective the 

proposed explanation approach is. Explainable AI is employed 

on this individual stacked CNN used for ensemble learning to 

determine how they perceive and label the credibility of an 

image. To achieve this, the authors qualitatively evaluate three 

explainable models—Grad-CAM, Grad-CAM++, and Score-

CAM—by presenting heatmaps on three different CNN 

models and assessing their results. Figure 7 illustrates the 

increasing order of feature-contributing colors, where red 

indicates the least contribution and yellow indicates the 

highest contribution. Figure 8 displays the saliency map for 

sample unseen images. The heatmap images use colors to 

indicate the extent of contribution from each area, helping to 

identify which areas are most photoshopped and which are 

least or not altered, thereby determining the reasons for the 

image's lack of credibility. 

 

 
 

Figure 7. Explanation AI color range 

 

In Figure 8, colors in the heatmap are more visible, implying 

the highest accuracy in the scorecard following GradCam ++ 

and GradCam. In this, the yellow colors are highlighted on the 

facial area, where the dark spots or pimples are removed using 

photoshopping or editing, followed by red, which shows that 

little or no editing has been done on that area. Figure 7 and 

Figure 8 together show which area is most edited, contributing 

to the forging of that image. In this way, users get a clear 

explanation of why the model predicts the image as fake / non-

credible. 

 

 
 

Figure 8. Heatmap visualizations by XAI techniques 

 

4.3 Evaluation of explainable AI models 

 

We evaluate the faithfulness of the explanations generated 

by all the explainable Ai models namely Grad-CAM, Gradcam 

++ and ScoreGrad we studied the performance with two 

different metrics: (1) Average drop %; (2) % increase in 

confidence which is described below. 

1) Average Drop The regions that are most important 

for making decisions should be highlighted on an 

explanation map for a class. As opposed to when the 

entire image is provided as input, it is anticipated that 

deleting portions of an image will decrease the 

model's confidence in its judgement. Using this, we 

investigate the effectiveness of the explanation maps 

produced by Score Grad, Grad-CAM++, and Grad-
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CAM. This suggests that the visual explanation of 

GradCAM++ includes more of what is relevant (be it 

the object or the context) for a correct decision. 

Average Drop is expressed in equation 7 where Yc
i is 

the predicated score for class c on image i and O C
i is 

the predicated score for class c with the explanation 

map region as input. The average of this value 

throughout the entire dataset is calculated for each 

image. 

 

∑ =𝑵
𝒊=𝟏  

𝒎𝒂𝒙(𝟎,𝒀𝒊  
𝒄 − 𝑶𝒊

𝒄)

𝒀𝒊
𝒄 x 100  (7) 

 

2) Increase % in Confidence: Furthermore, to the prior 

metric, it is expected that there will be cases were 

using only the explanation map region as input 

(rather than the complete image) increases the 

prediction's level of confidence (particularly when 

the context is distracting). This metric counts the 

number of times the model's confidence increased 

when only the explanation map regions were 

provided as input. Formally, the higher % Confidence 

metric is defined as in equation 8 where 1Y is an 

indicator function that returns 1 when the argument 

is true. All other notations are as defined for the 

previous metric. 

 

∑ =𝑵
𝒊=𝟏  (

𝟏𝒀𝒊
𝒄<𝑶𝒊

𝒄

𝑵
) 100  (8) 

 

According to Table 7, Score-CAM beats alternative 

perturbation- and CAM-based approaches on a wide scale, 

achieving an average reduction and increase of 32.9% and 

31.4%, respectively. A strong performance shows that Score-

CAM, rather than only discovering what humans think is 

essential, can successfully identify the target object's most 

easily identifiable location. Compared to earlier methods, task 

results show that Score-CAM could more faithfully disclose 

the original CNN model's decision-making process.  

 

Table 7. Explainable AI metrics 

 
Method GradCam GradCam++ ScoreCam 

Average 

Drop % 
57.9 46.3 32.9 

Average 

Increase % 
22.5 19.2 31.4 

 

 

5. CHALLENGES  

 

This method of visualizing image credibility predictions of 

health blogs in a user-friendly way delivers essential 

information. According to an extensive literature analysis, 

most effort in picture credibility is done solely to identify these 

faked images. Even though the initial phase of identifying 

ways to help consumers understand the explanation of image 

credibility was consuming time, the findings were given as 

significant. The key applicability of the work is the visual 

description of the blog's image believability. This paper offers 

software-based reasons for the predictions made. According to 

the authors, very little equivalent work is done in healthcare. 

Authors encountered the following limits and obstacles: 

1. A lack of studies on explainable AI algorithms in picture 

credibility hampered the project's initial research effort.  

2. Due to a shortage of publicly available datasets, this 

project's dataset must be produced from scratch utilizing face 

editing tools. 

3. The strategies used in this experiment were exclusively 

applied to facial photos from health blogs that were hosted 

online. 

 

 

6. FUTURE SCOPE 

 

Although this study is devised to address the challenge of 

image forgery detection in health-related advertisements for 

facial care products, there are several limitations prevailing. 

The method heavily relies on the availability of static image 

datasets, thereby eliminating the chance of its applicability 

toward more complex forgeries such as video-based 

manipulations. Further extension of this method toward video 

forgery detection has matured into an extremely relevant 

online marketing concept. Combining other XAI methods, like 

SHAP or LIME, can help generate even deeper understanding 

in the decisions of the model. A more challenging and diverse 

dataset should be used to benchmark the framework, along 

with extending the framework for other related medical 

applications, such as hair treatment or weight reduction. 

Reinforcement learning and one-shot learning will enhance the 

adaptability of the model toward changing data. In addition, 

federated learning integration will ensure privacy on sensitive 

user data, and the system will be more secure and scalable for 

real-world applications. 

 

 

7. CONCLUSION  

 

From the extensive literature review, we came to know the 

need for image credibility visualization and potential gaps, 

which were covered by our proposed methodology. Also, the 

available datasets were not useful as they were fake to the 

naked eye. Hence a new dataset was made where user with the 

naked cannot recognize whether the image is fake or not. 

Authors use an ensemble of state-of-the-art CNN models and 

have achieved an accuracy of 79% by training our model from 

the dataset created from these trained model 3, models of 

explainable ai were successfully implemented on them, which 

determines the sub-sections of the images, which are forged 

by color visualization offered by explainable ai techniques 

such as GradCam, GradCam++ and SoftGrad. This 

explainable approach, along with ensembling, will make the 

online consumer audience more alert from such products, 

which are marketed on forged images, enabling better 

accountability from the facial health/beauty product claiming 

companies. This approach will help the users to identify 

whether the claim made by the companies using before-after 

images in their advertisement to influence people to use their 

product is actual or not; hence, they will be able to know why 

the claim is not true. Also, with this real advertisements will 

gain trust of people will be able to reach more people without 

their marketing. This approach can also be used in the future, 

not only in facial but also in the full body, which will indicate 

more awareness of the treatments provided on the internet, like 

reducing weight in 10 days showing before and after photos, 

which can indicate areas of photoshopping. Hence, with this 

approach, a user will be able to decide whether the treatment 

or medicine is mentioning the claims true or not. 
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