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This study introduces the Synchro-Reassigning Transform (SRT), a cutting-edge method 

developed for high-resolution time-frequency analysis of power quality (PQ) disturbances. 

The research assesses the performance of SRT in comparison to other established 

techniques such as Short-Time Fourier Transform (STFT), Wavelet Transform (WT), 

Synchro-Squeezing Transform (SST), and Synchro-Extracting Transform (SET). 

Specifically, the study focuses on the identification and categorization of various PQ 

issues, including voltage sags, swells, interruptions, harmonics, and inter-harmonics. The 

analysis reveals that SRT excels in detecting harmonics and inter-harmonics, providing 

much clearer and more detailed time-frequency representations by minimizing cross-term 

interference, which is a limitation often observed in other methods. The results highlight 

SRT’s ability to offer more accurate and reliable signal interpretations, leading to 

enhanced precision in PQ analysis. Overall, this technique represents a significant 

advancement in power quality monitoring, delivering greater reliability and improving the 

accuracy of PQ disturbance detection. 
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1. INTRODUCTION

The world has rapidly industrialized during the last two 

decades. The use of sensitive equipment with non-linear loads 

is on the rise in industries as well as commercial sectors [1]. 

The increasing use of such equipment as well as the integration 

of renewable energy sources into the power system are some 

of the primary reasons for PQ disturbances [2]. The presence 

of harmonics, inter-harmonics, voltage sag, swell, flickers, and 

distortion in power signals is known as PQ disturbance. It may 

damage equipment, reduce process and product quality, 

interrupt production, and cause safety issues [1, 3]. As per the 

PQ survey of industrial customers conducted in the US in 

2000. It was reported that the most adversely impacted 

equipment are computers and microprocessor-based 

equipment (43%), variable speed drives (13%), lighting 

equipment (8%), motors (5%), relays (1%), and other 

equipment (30%) [4]. PQ disturbance should be mitigated to 

avoid financial and physical losses. With the help of modern 

signal processing tools identification and localization of PQ 

disturbances can be easily done [5]. In this regard, much 

research has been done, and a brief history and review of those 

methods are presented here. 

The problem of identifying power quality disruptions has 

been extensively studied using various signal processing 

techniques, including STFT, WT, S-transform (ST), Wigner-

Ville distribution (WVD), Gabor-Wigner transform (GWT), 

Hilbert-Huang transform (HHT), and Synchro-squeezing 

transform (SST) [5-12]. The traditional STFT method converts 

a one-dimensional time-domain signal into a two-dimensional 

time-frequency (TF) plane. This is done by segmenting a non-

stationary signal into smaller, quasi-stationary segments using 

a window function. The frequency spectrum for each segment 

is then determined through the Fourier transform. However, a 

significant limitation of this method is that the TF resolution 

is dependent on the window size. A smaller window provides 

better time resolution, while a larger window offers better 

frequency resolution. Thus, achieving an optimal balance 

between temporal and frequency resolution necessitates the 

careful selection of the appropriate window size, a process that 

can be particularly challenging and laborious. 

The WT uses the adjustable window size to circumvent this 

shortcoming of STFT [13-15]. The TF plane produced by this 

method is blurry due to the Heisenberg uncertainty principle. 

Apart from this, the TF resolution depends on the selection of 

the mother wavelet [16, 17]. The lower orders of Daubechies’s 

wavelets are good at detecting fast transients, while the higher 

orders are good at detecting slow changes [8]. 

In PQ analysis, fast and slow changes were identified; this 

method may not be suitable for this purpose. Further, lifting-

based wavelet filters (LBWT) were proposed for the analysis 

of PQ events in reference [17], where it was demonstrated that 

LBWT is more suitable for hardware implementation than 

traditional WT [18]. A teager energy operator (TEO) based 

algorithm for PQ event detection has been introduced in 

reference [19]. The TEO-based method is shown to be quick 
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and reliable in detecting voltage disturbances. 

The WVD is one of the widely used methods in digital 

signal processing applications. It offers good TF resolution for 

mono-frequency signals, but its application is constrained by 

the presence of cross-terms in the TF plane, which hinders the 

detection of harmonics and inter-harmonics components 

present in the PQ signal. Pei and Ding [8] proposed GWT to 

investigate PQ disturbance events and through numerical 

analysis proved that it has better TF resolution than that of GT 

and WVD [20]. To improve TF resolution, S-transform is 

introduced in reference [4], which is formed by combining 

STFT and WT. Although ST improves TF resolution; 

however, its resolution is limited when the Gaussian window 

is used [7]. In reference [21], PQ disturbance analysis was 

carried out using STFT, SST, and SET methods and reported 

that SET has the least Renyi entropy and the sharpest TF 

resolution among all. Motivation and organization of the 

paper. 

Accurate detection and classification of PQ disturbances are 

vital for maintaining the reliability of electrical grids. TF 

analysis methods like Short-Time Fourier STFT, GT, and WT 

are limited by their reliance on precise window size selection 

and the Heisenberg uncertainty principle, which restricts 

resolution [22]. While the SET improves TF resolution, it still 

struggles with nonlinear signals and cross-term interference, 

resulting in unclear representations. 

This study introduces the SRT as an innovative solution for 

detecting and classifying PQ disturbances, especially in 

environments with nonlinear signals and noise. SRT excels by 

reducing cross-term interference and delivering precise TF 

representations, surpassing traditional methods like STFT, 

WT, and SET in various PQ scenarios and across different 

signal-to-noise ratios (SNRs). The lower Renyi entropy of 

SRT underscores its superior TF resolution, establishing it as 

a robust tool for PQ disturbance analysis [23]. 

The structure of this paper is as follows: Section 2 reviews 

the TF methods utilized in this research. Section 3 explores the 

mathematical foundation of Renyi entropy and its importance 

in evaluating TF techniques. Section 4 presents the results of 

our analysis, and Section 5 concludes the study with key 

findings and implications. 

2. TIME-FREQUENCY APPROACH

This section offers a thorough overview of various TF 

techniques. Furthermore, it delves into the underlying 

principles, algorithms, and essential components of each 

method, providing a comprehensive understanding of their 

functioning. 

2.1 STFT 

STFT, which is also known as a windowed FT, was first 

introduced by Dennis Gabor in 1946 to overcome the 

constraints of FT. In this technique, the signal is converted 

from a one-dimensional space into a two-dimensional time-

frequency plane, where each box is referred to as a Heisenberg 

box. Changing the window functions can change the time-

frequency resolution. Various kinds of window functions 

evolved to divide the signal into smaller portions. Each 

window function has pros and cons of its own. The resolution 

is significantly influenced by the window width, FFT size, and 

time shift (also known as the hope number) [13]. 

The mathematical representation of STFT is expressed as: 

𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡) = ∫ 𝑓(𝑢)𝑤(𝑢 − 𝑡)𝑒−𝑗𝜔(𝑢−𝑡)𝑑𝑢
∞

−∞

(1) 

where f(𝑢) is a time-domain signal, w(u) is a window function 

and t indicate the position of the window. Eq. (1) provides a 

time-frequency representation of the windowed signal. 

2.2 SET 

SET, introduced by Yu et al. [24], offers a more energy-

concentrated time-frequency representation compared to other 

techniques. This method operates on the assumption that 

multicomponent signals are composed of a sum of several non-

stationary modes. 

𝑓(𝑡) = ∑ 𝑎𝑘(𝑡)𝑒𝑖𝑚𝑘(𝑡)
𝑛

𝑘=1
(2) 

where the instantaneous amplitude and instantaneous phase 

are denoted by a(t) and m(t), respectively. These modes are 

distinct and separated by a certain distance. 

𝑚𝑘+1
′ (𝑡) − 𝑚𝑘

′ (𝑡) > 2∆ (3) 

STFT is further expressed in the discrete domain, 

𝑆𝑇𝐹𝑇(𝑡, 𝜔) = ∑ 𝑎𝑘(𝑡)𝑔(𝜔 − 𝑚𝑘
′ (𝑡))𝑒𝑗𝑚𝑘(𝑡)

𝑛

𝑘=1
(4) 

Furthermore, the instantaneous frequency can be 

represented as follows: 

𝑚′(𝑡, 𝜔) = −𝑖
𝜕𝑡𝑆𝑇𝐹𝑇(𝑡, 𝜔)

𝑆𝑇𝐹𝑇(𝑡, 𝜔)
(5) 

Most of the smeared signals on the time-frequency plane are 

effectively eliminated by SET, allowing the expression to be 

defined as follows: 

𝑆𝐸𝑇(𝑡, 𝜔) = 𝑆𝑇𝐹𝑇(𝑡, 𝜔). 𝜕(𝜔 − 𝑚′(𝑡, 𝜔)) (6) 

Further, the above equation can be expressed. 

𝑆𝐸𝑇(𝑡, 𝜔) = {
𝑆𝑇𝐹𝑇(𝑡, 𝜔)  𝜔 = 𝜔0

0,  𝜔 ≠ 𝜔0
(7) 

Finally, the mathematical expression for SET can be 

represented as follows: 

𝑆𝐸𝑇(𝑡, 𝜔)|𝜔−∑ 𝑚𝑘(𝑡)=0𝑛
𝑘=1

 

= 𝑆𝑇𝐹𝑇(𝑡, 𝜔)|𝜔−∑ 𝑚𝑘(𝑡)=0𝑛
𝑘=1

 
(8) 

2.3 WT and its variant SST 

The term wave denotes that the function is oscillatory, while 

the word wavelet refers to a small wave. By keeping the 

window width constant, Morlet observed that the STFT 

approach did not perform well. In the studies [22, 25], to 

address the limitations of STFT, the wavelet transform concept 

was developed, incorporating methods of scaling and shifting 

window functions. The mathematical expression for the 
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wavelet transform is as follows: 

 

𝑊𝑇𝑠(𝑠, 𝑏) =
1

√𝑠
∫ 𝑓(𝑢)∅∗ (

𝑢 − 𝑏

𝑠
) 𝑑𝑢 (9) 

 

The wavelet response of the signal often results in blurred 

information across the time-frequency plane, potentially 

leading to misleading results. To mitigate this blurring effect, 

Daubechies et al. [26] proposed a synchro-squeezing 

algorithm. This algorithm reduces the blurring and determines 

the instantaneous frequency (s, b) by computing the derivative 

of the wavelet transform 𝑊𝑇𝑠(𝑠, 𝑏) with respect to b. 

 

𝜔𝑠(𝑠, 𝑏) =
−𝑖

2𝜋𝑊𝑇𝑠(𝑠, 𝑏)

𝜕𝑊𝑇𝑠(𝑠, 𝑏)

𝜕𝑏
 (10) 

 

The operation of every point (𝑠, 𝑏) reassigning to (𝑏, 𝑊𝑠 (𝑠, 

𝑏)) is known as synchro squeezing. Define frequency divisions 

𝜔𝑙 ∈ [0, ∞), where 𝜔0 > 0 and 𝜔𝑙+1 > 𝜔𝑙. 

 

𝑇𝑠(𝑤𝑙 , 𝑏) = ∫ 𝑊𝑇𝑠(𝑠, 𝑏)𝑠
−3
2 𝑑𝑠

 

{𝑠:𝑤𝑠(𝑠,𝑏)∈𝐹𝑙}

 (11) 

 

The response computed from SST is highly concentrated on 

the time-frequency plane, but cross-terms can still be observed 

in the results. 

 

2.4 SRT 

 

The STFT is the first fundamental TF method in which the 

signal is decomposed into different segments and the fast FT 

of each chunk is computed at each time interval. It can be 

expressed as  

 

𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡) = ∫ 𝑓(𝑢)𝑤(𝑢 − 𝑡)𝑒−𝑗𝜔(𝑢−𝑡)𝑑𝑢
∞

−∞

 (12) 

 

where, f(𝑢) is a time-domain signal, w(u) is a window function 

and t indicate the position of the window. Fourier transform is 

computed for a certain part of the window with a time centre. 

 

𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡) = ∫ 𝑓(𝑢)𝑤(𝑢 − 𝑡)𝑒−𝑗𝜔(𝑢−𝑡)𝑑𝑢
𝑡+∆𝑢

𝑡−∆𝑢

 (13) 

 

where, ∆𝑢 is half of the window length. 

 

𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡) = 𝑅𝑒(𝑆𝑇𝐹𝑇𝑥) + 𝐼𝑚(𝑆𝑇𝐹𝑇𝑥) (14) 

 

Eq. (14) is further simplified and obtains the magnitude of 

 

𝑃 = |𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡)| = √𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)2 + 𝐼𝑚(𝑆𝑇𝐹𝑇𝑥)2 (15) 

 

The first order derivative of Eq. (15) with respect to ω. 

 
𝜕𝑃

𝜕𝜔
= 

𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)
𝜕𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)

𝜕𝜔
+ 𝐼𝑚(𝑆𝑇𝐹𝑇𝑥)

𝜕𝐼𝑚(𝑆𝑇𝐹𝑇𝑥)
𝜕𝜔

|𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡)|
 

(16) 

 

Now, compute the first derivative of Eq. (13) with respect 

to ω. 

𝑆𝑇𝐹𝑇′
𝑥,𝜔(𝜔, 𝑡) =

𝜕𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡)

𝜕𝜔
 (17) 

 

𝑆𝑇𝐹𝑇′
𝑥,𝜔(𝜔, 𝑡) = 𝑅𝑒{(𝑆𝑇𝐹𝑇}′

𝑥,𝜔) + 𝐼𝑚 𝑗{(𝑆𝑇𝐹𝑇}′
𝑥,𝜔) (18) 

 

By implementing a similar operation on Eq. (18), we obtain 

 

𝑆𝑇𝐹𝑇′
𝑥,𝜔(𝜔, 𝑡) =

𝜕𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)

𝜕𝜔
+ 𝑗

𝜕𝐼𝑚(𝑆𝑇𝐹𝑇𝑥)

𝜕𝜔
 (19) 

 

Comparing Eq. (18) and Eq. (19): 

 
𝜕𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)

𝜕𝜔
= 𝑅𝑒{(𝑆𝑇𝐹𝑇}′

𝑥,𝜔) (20) 

 
𝜕{𝐼𝑚(𝑆𝑇𝐹𝑇}𝑥)

𝜕𝜔
= 𝐼𝑚 {(𝑆𝑇𝐹𝑇}′

𝑥,𝜔) (21) 

 

From Eq. (20) and Eq. (21), Eq. (16) is modified. 

 
𝜕𝑃

𝜕𝜔
= 

𝑅𝑒(𝑆𝑇𝐹𝑇𝑥)𝑅𝑒(𝑆𝑇𝐹𝑇′
𝑥,𝜔

) + 𝐼𝑚(𝑆𝑇𝐹𝑇𝑥)𝐼𝑚 (𝑆𝑇𝐹𝑇′
𝑥,𝜔

)

|𝑆𝑇𝐹𝑇𝑥(𝜔, 𝑡)|
 

(22) 

 

𝑃′(𝑎, 𝑏) =
𝜕𝑃

𝜕𝜔
= 

𝑅𝑒(𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏))𝑅𝑒(𝑆𝑇𝐹𝑇′
𝑥,𝜔

(𝑎, 𝑏))

+𝐼𝑚(𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏))𝐼𝑚 (𝑆𝑇𝐹𝑇′
𝑥,𝜔

(𝑎, 𝑏))

|𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏)|
 

(23) 

 

where, a is the discrete frequency center, a=0,1,2,…,𝐿, L is 

the length of the window function, b is the discrete-time 

center, STF𝑇𝑥 (𝑎, 𝑏) is a discrete form of Eq. (12), and 𝑆𝑇𝐹𝑇𝑥, 

ω′ (a, b) is a partial derivative of STF𝑇𝑥 (𝑎, 𝑏). 

To compute the Synchro-Reassigning Transform, the 

following conditions must be satisfied. 

 

{
|𝑆𝑇𝐹𝑇𝑥(𝑎 − 1, 𝑏)| ≤ |𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏)|

|𝑆𝑇𝐹𝑇𝑥(𝑎 + 1, 𝑏)| ≤ |𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏)|
} (24) 

 

{

|𝑃′(𝑎, 𝑏)| < 𝑒𝑐𝑎𝑙

|𝑃′(𝑎, 𝑏)| ≤ |𝑃′(𝑎 − 1, 𝑏)|

|𝑃′(𝑎, 𝑏)| ≤ |𝑃′(𝑎 + 1, 𝑏)|
} (25) 

 

{
𝑃′(𝑎, 𝑏) < 𝑃′(𝑎 − 1, 𝑏)

𝑃′(𝑎, 𝑏) > 𝑃′(𝑎 − 1, 𝑏)
} (26) 

 

The Eqs. (24)-(26) are utilized to calculate local maxima 

that re-assign the new coefficients and evolved a new time-

frequency transform called SRT [23]. 

 

𝑆𝑅𝑇(𝑎, 𝑏) = {
𝑆𝑇𝐹𝑇𝑥(𝑎, 𝑏);

𝐼𝑓 𝐸𝑞𝑠. (24) − (26) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 
0;                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (27) 

 

The effectiveness of SRT in PQ analysis stems from its 

unique properties. It enhances time-frequency resolution by 

redistributing energy to its correct time-frequency coordinates, 

which leads to a more accurate and concentrated 

representation. This capability is crucial for analyzing 

disturbances that exhibit rapid changes or non-stationary 
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behavior. Additionally, SRT’s reduction of cross-term 

interference ensures that the time-frequency representations 

remain sharp and clear, particularly when dealing with signals 

that have closely spaced frequencies. These characteristics 

make SRT particularly well-suited for PQ analysis, where 

precision is essential. 

 

 

3. STATISTICAL ANALYSIS OF TIME-FREQUENCY 

METHOD: RENYI ENTROPY 

 

In many cases, visual inspection may not provide consistent 

results, prompting the need for an objective evaluation method 

to determine the best time-frequency approach. This research 

work employs Renyi entropy for identifying the appropriate 

time-frequency method. Renyi entropy was introduced by 

Rényi [27], it provides insights about how information is 

distributed inside a system. In the field of signal processing, it 

is the most employed measure to quantify the TF resolution of 

the TF analysis schemes [14, 24, 28]. The Reyni entropy can 

be written as 

 

𝑅𝛼 =
1

1 − 𝛼
𝑙𝑜𝑔 ∫ ∫ 𝜌𝛼

𝑛𝑜𝑟𝑚
(𝑡, 𝑓)𝑑𝑡𝑑𝑓

+∞

−∞

+∞

−∞

 (28) 

 

Here 𝛼 = 3 is selected for analysis, 𝜌𝛼 is normalized time-

frequency distribution can be expressed as: 

 

𝜌𝑛𝑜𝑟𝑚(𝑡, 𝑓) =
𝜌(𝑡, 𝑓)

∫ ∫ 𝜌(𝑡, 𝑓)𝑑𝑡𝑑𝑓
+∞

−∞

+∞

−∞

 (29) 

 

Renyi entropy is used in this study to objectively compare 

different TF analysis methods. Subtle variations in TF 

representations can be challenging to assess visually, making 

it difficult to determine which method is most effective. Renyi 

entropy provides a numerical measure of how concentrated the 

energy is in the time-frequency plane, with a lower value 

indicating a clearer and more focused representation. In this 

research, Renyi entropy serves as a critical metric for 

evaluating and distinguishing between TF methods, with the 

approach yielding the lowest entropy identified as offering the 

most accurate time-frequency analysis. 

 

 

4. RESULT AND ANALYSIS 

 

This section compares the effectiveness of several TF 

analysis techniques using a variety of well-documented PQ 

disturbance events, such as voltage sag, swell, interruption, 

harmonics, and inter-harmonics simulated in MATLAB. In 

subsections 4.1 to 4.4, mathematical equations for each PQ 

disruption event are mentioned. For simplicity of analysis, 

generated input signals are normalized at the input stage. 

For the sake of simulation, we have considered a window 

size of 64 samples, a sinusoidal voltage of 50 Hz, and a 

sampling frequency of 103 Hz. Unless otherwise stated, these 

parameters are used for numerical analysis throughout the 

study. 

 

4.1 Voltage sag 

 

The equation for instantaneous voltage sag is described in 

Eq. (30) and shown in Figure 1(a), where the voltage 

magnitude temporarily decreases by a factor of 𝛽 resulting in 

an amplitude reduction to (1−𝛽) = 0.5, indicating 50% voltage 

drop. The voltage sag is sustained for 0.1 seconds. 

 
(𝑓𝑠(𝑡) =  [1 − βu(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)] sin(ωt)) (30) 

 

where, 0.1 ≤ β ≤ 0.9 and 𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇. 

In this equation, 𝑡1 represents the moment when the voltage 

begins to decline from its normal level, initiating the voltage 

sag. Conversely, 𝑡2 marks the point when the voltage recovers 

back to its original level. The time interval between 𝑡1 and 𝑡2 

specifies the duration of the sag, which, for this case, is set at 

0.1 seconds. The normalized waveform and the corresponding 

TF analysis results are depicted in Figures 1 and 2. In these 

figures, the voltage sag is observable as a lighter segment 

between 0.4 seconds and 0.5 seconds, where the voltage is 

lower than the normal level. This event is classified as a 

voltage sag. The TF resolution, shown in ascending order of 

clarity in Figure 1(b)-Figure 2(c), illustrates how different TF 

methods capture this disturbance, with the SRT method 

providing the most precise representation. 

 

 
 

Figure 1. (a) For voltage sag (b) STFT (c) WT 

 

 
 

Figure 2. For voltage sag (a) SST (b) SET (c) SRT 
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Among all the TF techniques, STFT and WT exhibit lower 

TF resolution due to their susceptibility to the Heisenberg 

uncertainty principle. Consequently, they experience a 

"blurring" or 'smearing out' effect in their TF representation 

[24, 29]. In contrast to STFT and WT, SST offers improved 

TF resolution. It is categorized as a special reassignment 

method that compresses WT coefficients along the IF 

trajectory in the frequency direction exclusively. Additionally, 

the TF resolution can be further enhanced by utilizing SET. 

The improved energy concentration of the TF representation 

in SET results from retaining the maximum value of STFT's 

TF coefficient to generate a new TF representation. Unlike 

SST, which compresses the TF coefficients, SET extracts the 

maximum TF coefficients, leading to its distinct advantage. 

In this study, SRT is employed to improve the TF resolution 

of PQ disturbance events. SRT utilizes derivatives of the 

constructed amplitude function and a three-step selection rule 

to dynamically identify TF coefficients along the IF 

trajectories in the time-frequency plane. These coefficients are 

then reassigned to a new TF plane. Consequently, SRT allows 

for more accurate IF estimation, leading to enhanced time-

frequency resolution. 

 

4.2 Voltage swell 

 

The mathematical expression for instantaneous voltage 

swell is given in Eq. (31). The instantaneous voltage swells 

with magnitudes (1+𝛽)=1.8 (i.e., the magnitude of 80%) and 

time duration of 0.15 seconds is analysed using various TF 

approaches, like, STFT, WT, SST, SET, and SRT. 

 

𝑓𝑤(𝑡) =  [1 + 𝛽 𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)]𝑠𝑖𝑛(𝜔𝑡) (31) 

 

where, 0.1 ≤ β ≤ 0.8 and 𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇. 

 

 
 

Figure 3. (a) Voltage swell (b) STFT (c) WT 

 

The time domain of the normalized waveform and the figure 

for TF results are shown in Figure 3, and Figure 4, 

respectively, where the darker part starts at 0.3 second and end 

at 0.45 second, which indicates that the instantaneous voltage 

level is higher than the normal voltage level during the 

mentioned period (from 0.3 to 0.45sec), identifying this PQ 

event as voltage swells. The Renyi entropy plot and the TF 

graphs in Figures 3 and 4 show that SRT has the best TF 

resolution, making it the best tool for locating voltage sag 

occurrences. 

 

 
 

Figure 4. For voltage swell (a) SST (b) SET (c) SRT 

 

4.3 Voltage interruption 

 

The expression for instantaneous voltage interruption is 

mentioned in Eq. (32). In this subsection, the TF analysis of 

the instantaneous voltage interruption with zero magnitudes 

and a time duration of 0.2 seconds is carried out with STFT, 

WT, SST, SET, and SRT. 

 

𝑓𝑡(𝑡) =  [1 − 𝛽𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)]𝑠𝑖𝑛(𝜔𝑡) (32) 

 

where, 0.9 ≤ β ≤ 0.1 and 𝑇 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇.  

 

 
 

Figure 5. (a) Voltage interruption (b) STFT (c) WT 

 

The figures for voltage interruption and the TF analysis 

results are shown in Figure 5 and Figure 6, respectively. In the 

TF figure, the blank part starts at 0.3 second and ends at 0.5 
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second, which shows the voltage interruption, classifying this 

PQ disturbance event as voltage interruption. By carefully 

examining the Renyi entropy shown in Figure 7 and the figures 

for various TF analyses displayed in Figures 5 and 6, it is 

observed that all the observations mentioned in the preceding 

subsection for SRT also hold for this case. As a result, we can 

say that it is the best TF approach for classifying voltage 

interruption events. 

 

 
 

Figure 6. For voltage interruption (a) SST (b) SET (c) 

SRT 

 

 
 

Figure 7. The Renyi entropy values of the TFR generated 

by STFT, WT, SET, SRT, and SST under different noise 

levels of the voltage interruption 

 

4.4 Harmonics and inter-harmonics 

 

In Eq. (33), a voltage waveform with a third harmonic of 

150 Hz and an inter-harmonic of 100 Hz is mentioned. The 

signal in Eq. (33) is analysed with STFT, WT, SST, SET, and 

SRT, respectively for a window length of 128 samples. Here, 

the window length is increased to account for harmonics and 

inter-harmonic components. 

 

𝑓ℎ(𝑡) = 𝑠𝑖𝑛(2π𝑓𝑡) + 

𝑢(𝑡 − 𝑡1)[β1𝑠𝑖𝑛(2π3𝑓) + β2𝑠𝑖𝑛(2π2𝑓)] 
(33) 

 

where, 𝛽1 = 0.3, 𝛽2 = 0.1, and 𝑡1 = 0.5. 

The time domain and TF plot of Eq. (33) are shown in 

Figures 8 and 9.  

 

  
 

Figure 8. (a) Harmonics and Inter-harmonics (b) STFT (c) 

WT 

 

 
 

Figure 9. For Harmonics and Inter-harmonics (a) SST (b) 

SET (c) SRT 

 

 
 

Figure 10. The Renyi entropy values of the TFR generated 

by SET, SRT, and SST under different noise levels of the 

voltage harmonics and inter-harmonics 
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From the figures, it can be observed that the TF resolution 

of SRT is better than the rest. The Renay entropy shown in 

Figure 10 also substantiates the claim. From Figure 9 we can 

observe that in the case of SET Figure 8(b), TF resolution of 

harmonic and inter-harmonic is not as sharp as compared to 

SRT (i.e., Figure 9(c)). Thus, we can claim that SRT is the best 

TF approach to identify harmonics and inter-harmonics in PQ 

disturbance analysis. 

 

4.5 Performance analysis of TF methods under 

disturbances 

 

To test the performance of various time-frequency methods, 

additive white Gaussian noise with different SNR values is 

also added to the test signal to consider the effect of the field 

environment, and the Renyi entropy was calculated for each 

SNR value. The Renyi entropy is used as a performance 

indicator in this paper to assess the energy concentration of TF 

results. The higher the Renyi entropy value, the less energy is 

concentrated in the TF plane. The Renyi entropy for PQ 

disturbance signals with varying SNRs is calculated and 

plotted in Figure 9-12.  

 

 
 

Figure 11. The Renyi entropy values of the TFR generated 

by STFT, WT, SET, SRT, and SST under different noise 

levels of the voltage sag 

 

 
 

Figure 12. The Renyi entropy values of the TFR generated 

by STFT, WT, SET, SRT, and SST under different noise 

levels of the voltage swell 

 

According to the figures, a lower value indicates a more 

energy-concentrated time-frequency representation. The 

Renyi entropy values increases as the noise strength increases. 

Irrespective of the SNR value and PQ disturbance signal, the 

SRT has minimum Renyi entropy, indicating that the SRT has 

higher energy concentration characteristics among all TF 

methods. 

 

 

5. LIMITATIONS AND FUTURE RESEARCH 

DIRECTIONS 

 

One limitation of SRT is its relatively high computational 

complexity, which can be a hindrance in real-time 

applications, especially within large-scale power systems 

where quick analysis is crucial. The processing demands of 

SRT may restrict its use in situations requiring immediate or 

near-instantaneous results. 

Future research should explore ways to streamline the 

computational process of SRT. This could involve developing 

more efficient algorithms or leveraging parallel computing to 

speed up the time-frequency analysis. By addressing these 

computational challenges, SRT could be more effectively 

utilized in real-time power quality monitoring and 

management, broadening its practical applications. 

 

 

6. CONCLUSIONS 

 

This study establishes SRT as a highly effective tool for the 

detection and classification of PQ disturbances. Through a 

comparative analysis with methods such as STFT, WT, SST, 

and SET, SRT has proven to be particularly adept at 

identifying issues like voltage sags, swells, interruptions, 

harmonics, and inter-harmonics. Its ability to minimize cross-

term interference leads to clearer and more accurate time-

frequency representations. These outcomes suggest that SRT 

can play a crucial role in enhancing the precision and 

reliability of PQ analysis, which is essential for improving 

power quality monitoring and the overall management of 

power systems. 
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