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 In decision science and engineering, multi-objective optimization is crucial for the 

understanding of real-world systems. The recently proposed colonial competitive 

algorithm (CCA) is a successful method in mono-objective optimization. Nevertheless, 

CCA cannot handle simultaneously the conflicting objectives in multi-objective problem. 

In addition, its performance diminishes as the dimension of problem increases. In order to 

deal with these situations, in this work, an improved CCA, named multi-objective 

improved colonial competitive algorithm (MICCA) is proposed. To enhance the MICCA 

effectiveness in achieving the global optima, a new approach for the colonies movement 

toward the imperialists, named enhanced assimilation, is incorporated. Moreover, in 

contrast to CCA, the Pareto dominance approach is implemented into this algorithm to 

allow it to tackle problems that involve conflicting objectives. To assess the MICCA 

efficiency, computational time, convergence and diversity metrics are used. Extensive 

simulation studies are carried out on standard unconstrained, constrained and multi-criteria 

engineering design problems. The obtained results are compared to the outcomes of 

existing CCA variants and other algorithms using the same metrics. The comparative 

results illustrate that for a wide variety of challenges and engineering applications, the 

proposed MICCA outperforms other known algorithms in terms of computational time, 

convergence and global search capabilities. 
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1. INTRODUCTION 

 

Multi-objective optimization is a decision-making method 

that takes into account the simultaneous optimization of real-

world engineering difficulties that have multiple objective 

functions. Three key challenges must be overcome in order to 

tackle real-world multi-objective difficulties. These key 

challenges include exploitation, exploration, and multi-

objectivity. 

Firstly, exploitation is the capacity to conduct local searches 

in and around attractive research areas, which promotes strong 

convergence toward the global optimum. Secondly, 

exploration is the process of thoroughly investigating the 

promising regions of the research area, which produces a wide 

variety of optimum solutions. Thirdly, there are several 

conflicting targets for optimizing simultaneously in many 

multi-objective engineering design issues. To address these 

challenges, a multi-objective optimization strategy should be 

used. 

Developing a multiobjective algorithm that balances 

exploitation and exploration is a difficult undertaking. 

Optimization methods are often categorized as stochastic or 

deterministic ones. The majority of deterministic methods are 

grounded on the gradient approach. They could be bothersome 

with multimodal functions as well as functions having flat 

sections with low gradient. Unlike deterministic algorithms, 

stochastic ones can eschew local optimum, particularly with 

many conflicting objective challenges [1]. Differential 

evolution method is considered by the study [2]. Enhanced 

particle swarm optimization (PSO) is investigated by the 

studies [3, 4]. Many genetic optimizer variants are applied to 

optimize multiobjective issues [5-8]. 

The CCA, inspired by imperialist countries' social-political 

conduct, is established [9] and applied in various challenges. 

The CCA has been utilized for well predicting oil rates using 

fuzzy logic [10]. mining data [11], routing of vehicles [12], 

optimizing the design of a mechanism able to of reproducing 

the motion of the knee joint [13], improving solar collector 

thermal efficiency [14], Stirling engine simulation [15], 

traveling salesmen [16, 17], optimizing the design of sewing 

machine [18, 19], composite structures [20, 21] as well as 

various engineering design challenges. With a focus on 

engineering fields, Hosseini and Al Khaled [22] highlighted 

the fundamental theories that led to the development of CCA 

and also its implementation in several engineering disciplines. 

The CCA method has several advantages, including the 

simplicity of executing neighborhood movement, less reliance 

on starting solutions, and a shorter computation time [9, 22]. 
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Nevertheless, the CCA method has drawbacks. One of the 

drawbacks of the CCA is competition among empires. If the 

quality improvement approach for empires is not strong 

enough, competition occurs too often, and weak empires get 

eliminated quickly. In this condition, population diversity 

quickly degrades, and consequently, the algorithm is trapped 

in local optima due to the loss of diversity. These negative 

points may cause premature convergence toa local optimum 

position. Adding a technique for enhancing empires quality 

can improve the algorithm's effectiveness to reach the location 

of the globally optimal target in the search space. Moreover, 

in challenges involving multiple conflicting objectives, CCA 

is unable to tackle them all simultaneously [22-25]. Until 

recently, despite its efficiency in mono-objective optimization, 

and to our best of knowledge, the literature does not contain 

any work dealing with the application of the original CCA to 

solve multi-objective optimization problems. 

Several studies incorporate CCA with other methods to 

address multiobjective engineering challenges. To improve 

the power system's electric power planning, Ghasemi et al. [24] 

suggested an enhanced algorithm by incorporating the 

Gaussian bare-bones method with the CCA optimizer. 

Ghasemi et al. [25] introduced a hybrid algorithm by coupling 

the CCA and the teaching learning (TLA) method to tackle the 

optimum power flow problem with non-smooth cost functions. 

To solve the profit-based unit commitment problem, an 

upgraded colonial competitive method (CICA3-LCM) is 

developed and used [26]. Armaghani et al. [27] proposed an 

intelligent system by combining artificial neural networks and 

colonial competitive algorithm to predict rate of underground 

boring machinery penetration. 

Bilel et al. [28] suggested a multiobjective version of CCA 

named MOICA. However, the shortcoming of CCA in terms 

of convergence to the local optimal result remains persists in 

this method. Bilel et al. [29] proposed an extended version of 

CCA by incorporating the variable neighborhood search 

(VNSA) technique in the CCA algorithm. Nevertheless, the 

VNSA approach used [29] altered the coefficient of 

assimilation, which can enhance only the global search 

capability without taking the algorithm's exploration 

capability into account. 

The main goal of this study is to expand the CCA algorithm 

to solve multi-objective optimization problems by developing 

a multi-objective improved colonial competitive algorithm 

(MICCA) based on the Pareto front concept. We implement 

also a new approach named enhanced assimilation, in the 

assimilation step, in order to improve the performances of the 

algorithm to reach the global optimal position. The 

performances of MICCA are tested through well-known 

unconstrained, constrained multi-objective problems, and 

several multi-criteria engineering design challenges. 

Compared with the existing CCA variants and other well-

known evolutionary algorithms, experimental results 

demonstrate that the proposed method (MICCA) can 

effectively handle simultaneously the conflicting objectives in 

multi-objective design problem, converge towards the global 

optimum, and operate promising areas of the search space. 

 

 

2. THE CCA OPTIMIZER 

 

The CCA is a worldwide search method proposed [9] that 

draws inspiration from either the sociopolitical human 

evolution. Figure 1 illustrates the CCA flowchart. This method 

is made up of four basic phases, which are listed below. 

 

 
 

Figure 1. The CCA flowchart 

 

Phase 1 - Initialization 

The first phase of CCA method is to form the initial 

countries at random. The country's cost is determined by 

evaluating the country's performances. Countries are classified 

as "imperialists" or "colonies" according to their costs. The nth 

imperialist's normalized cost (Cn) and normalized power (Pn) 

are determined by: 

 

 n i n
i

C max Cost Cost= −  (1) 

 

n
n

i

i

C
P

C
=


 (2) 

 

Costi denotes the ith imperialist’s cost. Each imperialist has 

a number of colonies under its control according to its 

normalized power. So, an empire is defined by the associated 

colonies and its relevant imperialist. 

Phase 2 - Assimilation phase 

After initializing empires, colonies move toward their 

imperialists to growth more power. Eq. (3) illustrates this 

movement's mathematical relationship [9]. 

 

 P P v ( P) = +  −  (3) 

 

P' denotes the new position of the colony. β represents a 

coefficient exceeding one. v is a randomly vector utilized to 

present motion deviations for better use. ℓ  and P are 

imperialist and colonial positions, respectively. Figure 2 

depicts the colonial to imperialist movement. Z and θ 

generated randomly by the uniform distribution within, 

respectively, the bounds of U (0, β×e) and U (-δ, δ). δ and e 

are a random angle and a colony distance to imperialist. 

 

 
 

Figure 2. Colonial to imperialist movement 
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Assimilation can lead to a situation in which a colony 

outperforms its imperialist. In this situation, the colonies' and 

imperialists' positions are exchanged. 

Phase 3 - Empire's total cost 

The empire's total cost is computed by adding the cost of 

the imperialist to a percent of the cost of the colonies based on 

Eq. (4): 

 

( )n n col, nTC Cost mean Cost and 0 1= +    (4) 

 

The empire's normalized cost is computed by: 

 

 n i n
i

NTC max TC TC= −  (5) 

 

Phase 4 - Competition among empires 

During this phase, the powerful empires acquire weak 

colonies based on its possession likelihood (Figure 3). The 

possession likelihood is determined based on Eq. (6): 

 

n

n
p

i

i

NTC
P

NTC
=


 (6) 

 

As weak empires collapse, powerful empires gradually 

seize control of all their colonies. The most powerful empire 

remains after multiple competitions. This situation 

corresponds to the CCA stop condition.  

 

 
 

Figure 3. Competition among empires 
 

 

3. MICCA ALGORITHM 

 

In the following, the MICCA algorithm, as a variant of the 

original CCA, is suggested (Figure 4). 

 

 
 

Figure 4. MICCA flowchart 

On the original CCA, two major changes are implemented:  

·Incorporation of an enhanced approach for assimilation 

to enhance the algorithm's global search and to boost its 

exploration capabilities. 

· Integration of the sorting non dominated approach 

(SNDA) to determine Pareto optimum solutions for numerous 

conflicting functions. 

In what fellow, the additional phases in the original CCA 

are going to be explained. 

 

3.1 Enhanced assimilation phase 

 

Following the usual assimilation stage, countries are 

undergoing an enhancement assimilation phase. All countries 

turn toward the finest imperialist when it is identified. As a 

result, the population seems to converge in a certain part of a 

search space field that is the finest imperialist neighborhood. 

The country's newfound position can be expressed as: 

 

  bestP P v (P P )   = +   −  (7) 

 

The best positions for imperialist and country are indicated 

by Pbest and P', respectively. 

 

1
1

P

 
 = +   

 (8) 

 

When we compare the movements of countries in enhanced 

assimilation phase (provided by Eq. (7)) to those in usual 

assimilation phase (defined by Eq. (3)), we can see two 

distinctions. First, during the phase of enhancing assimilation, 

all countries advance toward the best imperialism in each 

iteration, improving their positions, particularly those of the 

imperialists, acquired through the assimilation stage and 

causing them to converge on the best solution established in 

that iteration. Second, in enhanced assimilation, β' is regarded 

as a variable coefficient (Eq. (8)), allowing the algorithm to 

cover the convergence region accurately and look for more 

solutions in the search space. 

 

3.2 Generation of pareto front 

 

The SNDA technique (Figure 5) is used for representing the 

most appropriate solutions on a Pareto front [7]. This 

technique begins on the first iteration with the choosing of the 

N imperialist. A counter variable (nI) is assigned to each 

imperialist. Each time, an imperialist (Ii) is compared against 

the other imperialists (Rj). When this imperialist is dominated, 

its counter variable (nIi) rises. nIi=0 for the non dominated 

imperialist. 

 

 
 

Figure 5. Sorting non dominated (SNDA) approach 
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At every comparison, the non dominated imperialist will be 

archived to form the Pareto front. Following N comparisons, 

this Pareto front is able to be formed. 

All subsequent iterations will compare all other imperialists 

to the prior Pareto front solutions. 

4. PERFORMANCES EVALUATION FOR 

BENCHMARK FUNCTIONS

4.1 Performance metrics 

To assess the MICCA performances, the following 

indicators will be utilized: 

· Convergence indicator ϒ: it measures the distance

between the obtained non-dominated solutions and the true 

Pareto front, corresponding to the exact solutions [7]. 

N

mini 1
d

N

= =
 (9) 

where, N represents the number of non-dominated solutions 

provided by the respective test functions; dmin denotes the 

minimal Euclidean distance that separates the MICCA Pareto 

front's non-dominated ith solution from its closest on the true 

Pareto front. 

·Diversity indicator Δ: it assesses the nature and variety of

solution distribution on the Pareto front [7]: 

N 1

f l ii 1

f l

d d d d

d d (N 1)d

−

=
+ + −

 =
+ + −


(10) 

where, di represents the Euclidean distance that separates the 

resulting non-dominated front's successive solutions and �̄� 

designates the mean of these Euclidean distances. Df and dl 

indicate the Euclidean distance separating the boundary 

outcomes of the acquired non-dominated front and the most 

extreme outcomes of a true Pareto front. 

·Computational Time (CT): this metric measures the

runtime of an algorithm for different challenges. 

·Standard deviation (STD) calculated over the outcomes

of 10 runs. 

( )
2R

ii 1

1
STD( ) P P

R =
 = − (11) 

where, R and Pi are the number of runs and the performance 

indicator's value, respectively. 

4.2 Benchmark functions 

To assess the MICCA performances to handle multi-

objective challenges, different benchmark problems are used. 

These challenges are divided into two groups [30-34]: 

·Unconstrained multi-objective problems: KUR, FON,

SCH1, SCH2 and ZDT1 – ZDT4. 

·Constrained multi-objective problems: DTLZ8, DTLZ9,

BINH2, OSY, CONSTR, TNK, SRN and KITA. 

For the sake of comparison, the number of function 

evaluations is set to 25000 and the MICCA parameters are set 

as (β=1.2 and ζ=0.02). 

4.3 Obtained results 

Figures 6 and 7 show the outcomes of the MICCA approach 

and their related true Pareto fronts for both unconstrained and 

constrained issues. Tables 1-6 provide the statistical findings 

achieved by MICCA and other well-known algorithms. The ϒ, 

Δ and CT metrics are used to present the findings. Moreover, 

the minimum performance improvement (MPI) of MICCA 

results, in terms of (ϒ, Δ and CT) metrics, compared to other 

literature methods are highlighted in Tables 1-6. 

From Figures 6 and 7, the MICCA method's high 

convergence and solution diversity skills can be shown in all 

test issues. The MICCA non-dominated solutions are, in fact, 

extremely close to the true Pareto front. 
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(d) 

 
(e) 

 
(f) 

 

Figure 6. True and MICCA Pareto fronts of unconstrained 

functions: a) KUR; b) FON; c) SCH1; d) SCH2; e) ZDT1; f) 

ZDT3 

 

From Tables 1-6 and Figures 8 and 9, the small ϒ, Δ and 

CT values are obtained by MICCA for all unconstrained and 

constrained problems. Moreover, from the MPI results, 

reported in Tables 1-6, one can note that the MICCA algorithm 

is capable of finding reliable and best solutions for all multi-

objective optimization problems compared to other literature 

methods. Furthermore, when compared to the variances 

(determined based on STD) acquired by the other methods, the 

variance values achieved by the MICCA are quite tiny in all 

circumstances. 

MICCA surpasses the other algorithms in all measures (ϒ, 

Δ, CT and STD), demonstrating its high convergence, 

diversity, robustness with small computational time values for 

nearly unconstrained and constrained benchmark problems. 
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(e) 

 
(f) 

 

Figure 7. True and MICCA Pareto fronts of constrained 

issues: a) SRN; b) CONSTR; c) TNK; d) OSY; e) DTLZ8; f) 

DTLZ9 

 
 

Figure 8. Comparing computational time between MICCA 

and MOCCA for ZDT4 problem 

 

 
 

Figure 9. Comparing computational time between MICCA 

and MOCCA for DTLZ8 problem 

 

Table 1. Mean and STD values ϒ on unconstrained challenges 

 

Function 
MOCCA 

[29] 

NSGWO 

[30] 

MOCBO 

[31] 

MOAAA 

[32] 
MOSGA [33] 

MOSOS 

[31] 
MICCA 

MPI of 

MICCA 

(%) 

KUR N/A 
0.0073 ± 

0.0026 

0.0083 ± 

0.0062 

1.59E−04 ± 

8.1E−06 

1.967E−04 ± 

1.160E−05 

0.0075 ± 

0.0042 

7.929E-05 ± 

4.701E-06 
50.13 

FON 
0.001185 ± 

0.00000 

0.0017 ± 

0.0001 

0.0022 ± 

0.0003 

2.82E−04 ± 

1.0E−05 

1.922E−04 ± 

6.272E−06 

0.0019 ± 

0.0002 

6.438E-05 ± 

3.233E-06 
66.5 

SCH1 
0.00046 ± 

0.000001 

0.0072 ± 

0.0006 

0.0031 ± 

0.0032 

3.13E−02 ± 

2.3E−02 

1.995E−04 ± 

1.125E−05 

0.0028 ± 

0.0024 

8.102E-05 ± 

1.061E-05 
59.38 

SCH2 N/A 
0.0489 ± 

0.0017 

0.0932 ± 

0.0228 
N/A N/A 

0.0705 ± 

0.0215 

3.277E-04 ± 

8.816E-04 
99.1 

ZDT1 N/A 
0.4568 ± 

0.0654 

0.3337 ± 

0.0319 

2.30E−04 ± 

9.8E−06 

1.846E−04 ± 

8.510E−06 

0.3325 ± 

0.0256 

6.011E-05 ± 

1.772E-06 
67.43 

ZDT2 N/A 
0.0700 ± 

0.0008 

0.0729 ± 

0.0005 

2.38E−04 ± 

1.4E−05 

1.902E−04 ± 

6.674E−06 

0.0731 ± 

0.0010 

5.904E-05 ± 

5.707E-06 
68.96 

ZDT3 
0.00019 ± 

0.000004 

0.0867 ± 

0.0451 

0.0982 ± 

0.5007 

1.58E−04 ± 

9.7E−06 

7.695E−03 ± 

1.916E−05 

0.1022 ± 

0.5187 

2.103E-04 ± 

1.825E-05 
N/A 

ZDT4 
0.00012 ± 

0.000000 

0.4785 ± 

0.0001 

0.5078 ± 

0.0013 

2.40E−03 ± 

2.9E−03 

5.868E−05 ± 

2.819E−06 

0.5015 ± 

0.0006 

1.468E-05 ± 

2.095E-06 
74.97 

N/A=Not Available. MPI of MICCA=Minimum performance improvement of MICCA 

 

Table 2. Mean and STD values Δ on unconstrained challenges 

 

Function 
MOCCA 

[29] 

NSGWO 

[30] 

MOCBO 

[31] 

MOAAA 

[32] 
MOSGA [33] 

MOSOS 

[31] 
MICCA 

MPI of 

MICCA (%) 

KUR N/A 
0.0271 ± 

0.0001 

0.0357 ± 

0.0236 

4.98E−01 ± 

1.9E−02 

5.74E−01 ± 

2.27E−02 

0.0295 ± 

0.012 

7.641E-03 ± 

9.836E-05 
71.82 

FON 
0.00818 ± 

0.000014 

0.3578 ± 

0.0478 

0.3955 ± 

0.0068 

2.89E−01 ± 

2.2E−02 

3.80E−01 ± 

2.74E−02 

0.3875 ± 

0.006 

6.282E-03 ± 

4.009E-03 
23.20 

SCH1 0.00704 ± 0.5000 ± 0.5302 ± 6.43E−01 ± 3.52E−01 ± 0.5295 ± 1.505E-03 ± 78.62 
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0.000281 0.0124 0.1356 2.8E−01 2.19E−02 0.131 1.071E-02 

SCH2 N/A 
0.7589 ± 

0.0166 

0.8010 ± 

0.0832 
N/A N/A 

0.7821 ± 

0.051 

5.794E-01 ± 

9.882E-03 
23.65 

ZDT1 N/A 
0.3651 ± 

0.0068 

0.3825 ± 

0.0125 

6.40E−01 ± 

5.1E−02 

3.53E−01 ± 

2.34E−02 

0.380 ± 

0.0122 

2.615E-01 ± 

5.013E-03 
26.05 

ZDT2 N/A 
0.0405 ± 

0.0758 

0.4316 ± 

0.0007 

6.79E−01 ± 

6.5E−02 

3.24E−01 ± 

1.32E−02 

0.430 ± 

0.0007 

4.839E-02 ± 

1.392E-04 
N/A 

ZDT3 
0.00974 ± 

0.000019 

0.6887 ± 

0.2164 

0.6532 ± 

0.0020 

8.08E−01 ± 

2.4E−02 

7.85E−01 ± 

1.24E−02 

0.6537 ± 

0.005 

3.949E-03 ± 

1.057E-03 
59.45 

ZDT4 
0.06208 ± 

0.000008 

0.4256 ± 

0.0124 

0.4795 ± 

0.0079 

5.85E−01 ± 

1.7E−01 

3.82E−01 ± 

3.52E−02 

0.4585 ± 

0.007 

1.248E-02 ± 

4.153E-04 
79.89 

 

Table 3. Mean and STD values CT on unconstrained challenges 

 

Function 
MOCCA 

[29] 

NSGWO 

[30] 

MOCBO 

[31] 

MOPSO 

[30] 

NSGAII 

[30] 
MOSOS [31] MICCA 

MPI of 

MICCA (%) 

KUR 
7.7013 ± 

0.1502 

7.68719 ± 

0.39875 

7.9531 ± 

0.58234 

8.0532 ± 

0.621 

20.4368 ± 

3.102 

10.7413 ± 

0.82246 

5.18401 ± 

0.10546 
32.56 

FON 
7.8935 ± 

0.3201 

9.7895 ± 

0.45897 

8.6606 ± 

0.88622 

8.732 ± 

0.9134 

22.0323 ± 

4.522 

11.4013 ± 

1.14004 

4.82353 ± 

0.10972 
38.89 

SCH1 
4.9692 ± 

0.1094 

11.8500 ± 

1.21458 

5.4845 ± 

1.13208 

5.5721 ± 

1.133 

17.9121 ± 

2.162 

8.2135 ± 

1.12122 

3.56902 ± 

0.09104 
28.17 

SCH2 
5.0117 ± 

0.2194 

5.77985 ± 

0.12447 

5.9751 ± 

0.28216 

6.0272 ± 

0.582 

18.421 ± 

2.1802 

8.7015 ± 

0.45322 

3.87040 ± 

0.09273 
22.77 

ZDT1 
3.4507 ± 

0.0168 

5.45345 ± 

0.00295 

3.1435 ± 

0.0193 

3.7533 ± 

0.006 

11.2681 ± 

0.364 

8.2351 ± 

0.0204 

1.49195 ± 

0.00101 
52.53 

ZDT2 
6.4711 ± 

0.1006 

3.13452 ± 

0.03000 

3.1502 ± 

0.0130 

3.6113 ± 

0.014 

11.2811 ± 

0.024 

8.2345 ± 

0.0457 

1.07933 ± 

0.00728 
65.56 

ZDT3 
5.0163 ± 

0.1172 

10.6325 ± 

0.32245 

6.2846 ± 

0.1059 

8.3764 ± 

0.231 

14.3406 ± 

0.144 

13.4567 ± 

0.12984 

4.00121 ± 

0.02711 
20.23 

ZDT4 
4.9602 ± 

0.0914 

7.11523 ± 

0.45698 

6.6922 ± 

0.1440 

8.8203 ± 

0.218 

14.8102 ± 

0.170 

13.9022 ± 

0.12110 

4.10480 ± 

0.03170 
17.24 

 

Table 4. Mean and STD values   on constrained challenges 

 

Function NSGWO [30] MOSGA [33] 

paε-

ODEMO 

[34] 

NSGAII 

[34] 
MOSOS [31] MICCA 

MPI of 

MICCA (%) 

BINH2 
1.66E-01 ± 

5.97E-03 

7.00E-05 ± 

5.78E-06 
N/A N/A 

1.43E-01 ± 

6.24E-03 

3.929E-05 ± 

9.701E-08 
43.87 

CONSTR 
4.89E-01 ± 

1.80E-02 

2.05E-04 ± 

7.018E-06 
N/A N/A 

5.16E-01 ± 

2.14E-03 

6.134E-05 ± 

1.328E-07 
70.07 

KITA N/A 
2.19E-04 ± 

9.26E-06 

0.0196 ± 

0.0014 

0.0719 ± 

0.0764 

3.68E-02 ± 

8.30E-03 

8.102E-05 ± 

4.960E-07 
63 

SRN 
6.98E-02 ± 

1.78E-02 

9.49E-05 ± 

7.17E-06 

0.0657 ± 

0.0088 

0.2397 ± 

0.0345 

9.88E-02 ± 

1.47E-03 

3.277E-05 ± 

2.816E-07 
65.46 

TNK 
1.47E-01 ± 

3.35E-03 

2.25E-04 ± 

1.34E-05 

0.0014 ± 

2.28E-4 

0.002 ± 

3.59E-4 

1.50E-01 ± 

4.04E-03 

3.510E-05 ± 

1.772E-06 
84.4 

OSY 
0.10002 ± 

0.0005 
N/A 

1.3183 ± 

0.1635 

1.5614 ± 

0.2231 
0.1196 ± 0.0031 

7.904E-05 ± 

3.707E-05 
99 

DTLZ8 N/A N/A 
0.0098 ± 

7.86E-4 

0.0354 ± 

0.0059 
N/A 

5.403E-04 ± 

8.825E-05 
94.4 

DTLZ9 N/A N/A 
0.0201 ± 

0.0057 

0.0253 ± 

0.0035 
N/A 

1.468E-04 ± 

2.995E-04 
99 

N/A=Not Available. MPI of MICCA=Minimum performance improvement of MICCA 

 
Table 5. Mean and STD values   on constrained challenges 

 

Function NSGWO [30] MOSGA [33] 

paε-

ODEMO 

[34] 

NSGAII 

[34] 

MOSOS 

[31] 
MICCA 

MPI of 

MICCA (%) 

BINH2 
4.879E-01 ± 

8.965E-02 

4.369E-01 ± 

3.265E-02 
N/A N/A 

0.4288 ± 

0.0625 

1.641E-01 ± 

2.936E-03 
61.73 

CONSTR 
6.598E-01 ± 

5.69E-04 

4.263E-01 ± 

1.824E-02 
N/A N/A 

0.7122 ± 

0.0072 

2.002E-01 ± 

1.449E-04 
53.03 

KITA N/A 
3.754E-01 ± 

5.987E-02 

0.29728 ± 

0.0324 

0.8106 ± 

0.14839 

0.6832 ± 

0.0072 

6.175E-02 ± 

8.717E-04 
79.22 

SRN 
2.001E−01 ± 

6.5E−04 

3.892E-01 ± 

3.142E-02 

0.15080 ± 

0.0163 

0.3906 ± 

0.04516 

0.2295 ± 

0.0017 

8.794E-02 ± 

7.992E-04 
41.68 

TNK 9.955E-02 ± 7.425E-01 ± 0.3674 ± 0.8480 ± 0.1206 ± 4.415E-02 ± 55.65 

1343



 

2.568E-02 2.750E-02 0.04221 0.10055 0.0423 5.013E-03 

OSY 
0.65897 ± 

0.06779 
N/A 

0.8010 ± 

0.07555 

0.7481 ± 

0.08818 

0.5354 ± 

0.0616 

3.129E-01 ± 

1.392E-03 
41.55 

DTLZ8 N/A N/A 
0.3484 ± 

0.02166 

0.5842 ± 

0.03546 
N/A 

3.520E-01 ± 

4.977E-03 
N/A 

DTLZ9 N/A N/A 
0.7459 ± 

0.02456 

0.7863 ± 

0.03416 
N/A 

3.087E-01 ± 

1.307E-03 
58.61 

 

Table 6. Mean and STD values CT on constrained challenges 

 

Function MOCCA [29] 
NSGWO 

[30] 

MOCBO 

[31] 

paε-

ODEMO 

[34] 

NSGAII 

[34] 

MOSOS 

[31] 
MICCA 

MPI of 

MICCA (%) 

BINH2 2.7305±0.0952 
8.5685 ± 

0.06895 

9.1544 ± 

0.0420 
N/A N/A 

16.2664 ± 

0.054 

0.8417 ± 

0.0052 
69.17 

CONSTR 3.0835±0.1756 
12.895 ± 

0.00711 

5.2252 ± 

0.0028 
N/A N/A 

10.0112 ± 

0.003 

0.9282 ± 

0.0019 
69.89 

KITA 1.0112±0.1044 N/A 
10.3245 

0.10168 

0.11532 ± 

0.00767 

0.1734 ± 

0.0100 

14.3821 ± 

0.12046 

0.1059 

±0 .0071 
8.16 

SRN 1.2507±0.0194 
7.2440 ± 

0.00119 

7.3251 ± 

0.0082 

0.14470 ± 

0.00697 

0.2218 ± 

0.0141 

12.3254 ± 

0.01274 

0.1194 ± 

0.0028 
17.48 

TNK 3.0413±0.0618 
9.1156 ± 

0.05899 

11.0104 ± 

0.052 

0.42648 ± 

0.02604 

0.4993 ± 

0.0215 

15.1286 ± 

0.06332 

0.4151 ± 

0.0013 
2.74 

OSY 1.9711±0.1006 
16.4698 ± 

0.02018 

12.2104 ± 

0.030 

0.64000 ± 

0.02640 

0.7264 ± 

0.0236 

20.2124 ± 

0.03242 

0.6023 ± 

0.0092 
6.25 

DTLZ8 2.6920±0.1132 N/A N/A 
2.03898 ± 

0.07374 

2.7562 ± 

0.1868 
N/A 

1.7949 ± 

0.0097 
11.97 

DTLZ9 3.0591±0.0904 N/A N/A 
2.09844 ± 

0.05457 

2.5643 ± 

0.1225 
N/A 

1.2480 ± 

0.0057 
40.52 

 

 

5. PERFORMANCE EVALUATION FOR MULTI-

CRITERIA ENGINEERING CHALLENGES 

 

The MICCA technique will be used to tackle multi-criteria 

engineering design challenges in this part. After that, the 

collected outcomes will be compared to literature. 

 

5.1 Bi-objective speed reducer issue 

A speed reducer is part of the gear box of mechanical system, 

and it is used in many other types of applications. The 

challenge of speed reducer design (Figure10) is a well-known 

bi-objective problem in the area of mechanical engineering, in 

which the weight (F1) (includes both the weight of the gears as 

well as the weight of the shafts) and the stress (F2) of a speed 

reducer should be minimized, simultaneously. 

There are seven design variables: gear face width (x1), teeth 

module (x2), number of teeth of pinion (x3 integer variable), 

distance between bearings 1 (x4), distance between bearings 2 

(x5), diameter of shaft 1 (x6), and diameter of shaft 2 (x7) as 

well as eleven constraints. The problem can be stated as 

follows [34, 35]: 
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Figure 10. Speed reducer design 

 

5.2 Tri-objective vehicle crashworthiness issue 

 

The vehicle crashworthiness design problem (Figure 11) 

can be formulated as the structural optimization on the frontal 

structure of vehicle for crash-worthiness [36]. Thickness of 

five reinforced members ti (i=1…5) around the frontal 

structure are chosen as the design variables, while mass of 

vehicle f1, deceleration during the full frontal crash f2 and toe 

board intrusion in the offset-frontal crash f3 are considered as 

three objectives (Eqs. (15) and (16)). More detailed 

mathematical formulation can be found in [36]. The 

optimization problem can be stated as follows [35, 36]: 
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( )isubject to 1 t i 1..5 3 =   (16) 

 

 
 

Figure 11. Crashworthiness design 

 

5.3 Results and discussion 

 

Figures 12 and 13 show the Pareto fronts that represent the 

optimization outcomes of the MICCA algorithm formulti-

criteria engineering design challenges. 

 

 
 

Figure 12. True Pareto Front and MICCA speed reducer 

design findings 

 

 
 

Figure 13. True Pareto Front and MICCA vehicle 

crashworthiness design findings 

 

Table 7. ϒ, Δ and CT metrics findings 

 

Algorithms 
    CT 

Mean STD Mean STD Mean STD 

Speed Reducer Design       

NSGAII [35] 1.5301E-01  8.43E-03 6.4010E-01  1.65E-02 6.4719  5.27E-01 

MOSMA [36] 2.4403E-02 2.26E-02 6.9187E−01 1.19E−02 7.0924E-01 2.41E-02 

paε-ODEMO [34] 2.69281 0.24051 0.84041 0.20085 0.42500 0.00671 

MOEO [35] 1.5567E-01  1.16E-02 7.2463E-01  1.44E-03 5.7312  4.40E-01 

MICCA 7. 0143E-03 1.21E-04 4.1652E-01  1.01E-03 0.3072 0.00095 

MPI of MICCA (%) 71.25 34.92 29.12 

Car Crashworthiness       

NSGAII [35] 1.2407E-02  1.73E-03 7.0033E-01  9.47E-02 6.7597  6.49E-01 

MOSMA [36] 1.1583E-02 3.68E-04 4.6747E-01 1.31E-01 6.2795E-01 4.27E-03 

MOEO [35] 8.6479E-03  1.97E-03 8.2143E-01  1.49E-02 5.9990  3.85E-01 

MICCA 8.0031E-04 2.56E-04 6.1205E-02  8.93E-03 0.6197 0.00105 

MPI of MICCA (%) 90.73 86.9 1.31 

MPI of MICCA=Minimum performance improvement of MICCA 
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The non dominated solutions provided by MICCA are near 

to the true Pareto fronts, as shown in Figures 12 and 13. This 

demonstrates that the MICCA method shows evidence of 

convergence to true Pareto-optimal solutions with great 

diversity. 

The results of MICCA will be compared to [34-36]. Table 

7 highlights the findings of the MICCA method as well as 

those found in the literature. Moreover, the minimum 

performance improvement (MPI) of MICCA results, in terms 

of (ϒ, Δ and CT) metrics, compared to other literature methods 

are highlighted in Table 7. One can note that the MICCA has 

outperformed other methods in all metrics (ϒ, Δ and CT), 

demonstrating its exploratory skills to find reliable solutions 

for all multi-criteria engineering design challenges. 

In this study, we have analyzed the variance of findings for 

evaluating MICCA's robustness. In future studies, the 

influence of setting parameters on algorithm performance will 

be examined. 

 

 

6. CONCLUSIONS 

 

In this work, the competitive colonial algorithm (CCA) was 

expanded to handle multi-objective engineering design 

challenges. The proposed method is called the multi-objective 

improved competitive colonial algorithm (MICCA). The 

original CCA was modified to include the Pareto concept in 

order to tackle the conflict of the objective functions. 

Moreover, to ameliorate the quality of non-dominated 

solutions, the assimilation step of CCA was equipped with a 

new approach named enhanced assimilation. The suggested 

algorithm's efficiency was tested on unconstrained, 

constrained multi-objective issues and multi-criteria 

engineering design difficulties. Experimental studies were 

carried out to evaluate the MICCA's performance compared to 

other well-known methods. Convergence, solution diversity, 

computational time, and robustness metrics were used to 

evaluate the performance of the different methods. 

These experiments have shown that the MICCA yielded 

better results compared to those reported in the literature for 

unconstrained, constrained multi-objective issues and 

engineering design challenges. 
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