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Modernization of agriculture is associated with increased use of energy and inputs 

(fertilizers, plant protection products, water), which today need to be better managed for 

optimization purpose and to limit risks for people and the environment. This issue has given 

rise to smart agriculture, a relative new approach to farming based on the integration of 

information and communication technologies, particularly Artificial Intelligent (AI) and 

Internet of Things, in which the environment (soil, relief, air, etc.) represents potential data 

source that should be exploited. In this work, we propose a service of smart agriculture that 

based on plant image recognition. A robust and simple Convolutional Neural Network 

(CNN) model called Kamagate, Kopoin and Dagou Neural Network (KKDNet) is 

developed for plant image classification. For our first experiment, we focused on tomato 

cultivation, which is very demanding in terms of energy and inputs. The proposed model 

KKDNet with less layer than other CNN architecture achieves approximately the same 

performance in metric like accuracy. As concerning the execution time, the other models 

use more execution time. we need to multiply KKDNet’s execution time by a coefficient 

ranging from 25 to 52 to match the time required for the other architectures discussed in 

this study. 
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1. INTRODUCTION

Aiming to increase both quantity and quality, agriculture 

has undergone many technological advancements and changes 

over the years. However, this field still encounters significant 

obstacles in terms of quantities to cover global needs, as shown 

in the June 2017 United Nations report [1]. 

To effectively meet this need to sustain a growing and more 

selective society, the modernization of agriculture combined 

with increased use of energy and inputs is therefore necessary. 

However, such a practice can adversely affect the natural 

ecosystem. One way for mitigating the adverse impacts of 

productive yet intensive agriculture consists of using solutions 

offered by Artificial Intelligence (AI) [2] and the Internet of 

Things (IoT) [3], thereby implementing smart agriculture [3, 

4]. 

Smart agriculture using AI and IoT techniques goes through 

various phases. These include the acquisition of environmental 

data from sensors, the recognition of acquired data for analysis, 

the data analysis phase and the decision-making phase. One of 

the foundations of smart agriculture is the use of computer 

vision and deep learning for pattern recognition and 

classification. Through these methods, relevant information 

such as plant species, presence of diseases, and presence of 

harmful species can be extracted [4]. In this context, image 

recognition can distinguish weeds from crops, thereby 

promoting targeted application of herbicides and reducing 

chemical usage. Furthermore, fruit recognition allows for 

determining the optimal harvesting time, which can enhance 

yields and fruit quality. It also enables rapid identification of 

fruits affected by diseases or pests, facilitating timely 

corrective actions to minimize crop losses and damages. 

Additionally, in production and distribution chains, fruit 

recognition facilitates sorting and removal of defective or 

lower-quality products, ensuring that only the best fruits reach 

the market. 

This work focuses on the recognition and analysis of 

captured data, specifically the classification of plant images. 

Convolutional Neural Networks are typically used for this task 

[5-8]. They are a form of Deep Learning (DL) model [9, 10] 

(see Figure 1). Originally presented by LeCun et al. [11] and 

enhanced by LeCun et al. [12], they design is based on the 

architecture of the biological neurons [11]. 

Indeed, LeCun et al. [12] created a Convolutional Neural 

Network known as LeNet-5, specifically designed for 

classifying handwritten digits. Its architecture and training 

principles are discussed in more detail by Hecht-Nielsen [13]. 

However, LeNet-5 is not equipped to handle more complex 

challenges, such as extensive image and video classification 

tasks, due to the constraints of training data and computational 

resources at that time. However, since 2006, numerous CNN 

methods have been developed that overcome these problems 
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[6, 7, 14, 15]. 

Krizhevsky proposed a classical CNN architecture called 

Alexnet [5] which showed good performance. Numerous 

studies such as ZFNet [16], VGGNet [17] and GoogleNet [14] 

have been suggested to increase its results. 

 

 
 

Figure 1. Subfields of artificial intelligence 

 

Huang et al. [18] proposed DenseNet, in which every layer 

is directly connected to all preceding layers. In this 

architecture, each layer processes the attribute from all earlier 

layers as separate inputs, while its own attribute is given as 

inputs to all next layers. This scheme reaches optimal results 

on CIFAR-10/100 [19], whether or not data augmentation is 

applied. On the extensive dataset, DenseNet gets the same 

results to ResNet [20], when using less than half of the 

parameters. Traore et al. [21] proposed a CNN model for the 

classification of epidemic pathogens. The proposed CNN 

model comprises six convolution layers with the same 

architecture. 

Guo et al. [6] introduced a straightforward Convolutional 

Neural Network. Authors (They) used the ReLU function [22] 

as the activation function and the dropout [23] as the 

regularization technique). The ReLU function leaves the value 

becomes 0 if the output value is less than 0; if not, it retains 

the initial values. Thus, it can be used to force certain data to 

zero. Compared to some existing CNN models, such as those 

suggested by authors in references [24-26], the model 

proposed by Guo et al. [6] demonstrates inferior performance. 

However, the Guo et al. [6] model achieves relatively good 

recognition capabilities, benefits from a simple architecture, 

and requires minimal memory space for its parameters. 

Although several CNN models have been proposed in the 

image classification context, architectures vary depending on 

the context of each study, which makes it difficult to establish 

a general architecture applicable to all domains. Additional 

issue is accessing extensive datasets such as ImageNet [5], 

encompassing approximately 14,000,000 images, and the 

MNIST database [27], which comprises 60,000 training 

images and 10,000 test images. This paper presents a robust 

and computationally efficient Convolutional Neural Network 

designed for the classification of tomato images. 

 

 

2. CLASSIFICATION WITH CNN 

 

2.1 CNN and visual data 

 

Convolutional Neural Networks (CNNs) are highly 

effective for assignment that require the analysis of visual 

information, for example identifying images, detecting objects, 

and segmenting images. CNNs have the ability to learn 

hierarchical representations of visual data, allowing them to 

recognize intricate patterns and make precise predictions 

based on both low-level and high-level features. 

 

2.2 Different layers of the CNN 

 

A CNN typically comprises multiple layers (see Figure 2), 

every one serving a distinct function within the network (A 

CNN generally consists of several layers (Figure 2), each with 

a specific function in the network). According to some authors 

[28-30], several key types of layers in Convolutional Neural 

Networks should be. Table 1 shows these layers and their 

function in the network. 

 

 
 

Figure 2. The different phases of the CNN [28] 
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Table 1. CNN layers (adapted from Krichen [29]) 

 
Layer Function 

Convolution 

layer 

Generate feature maps by applying a 

convolution operation. 

Pooling layer 
Reduce the size of feature maps while 

retaining the most important information. 

Activation layer Introduce non-linearity in the model. 

Full connected 

layer 

Links each neuron in the preceding layer to 

every neuron in the current layer. 

 

2.2.1 Convolutional layer 

Considered as the heart of CNN [28, 29], convolution is a 

mathematical operation that combines two signals to generate 

a third signal, representing the effect of one signal on the other, 

modulated by the shape of the second signal. It can be 

calculated as follows: 

 

(𝑝 × 𝑞)[s] = ∑ 𝑝[𝑟]𝑞[𝑠 − 𝑟]∞
𝑟=−∞  (1) 

 

where, 𝑝  and 𝑞  are functions that can be either discrete or 

continuous, and 𝑠  is the position of the output signal. For 

discrete signals, the equation above transforms to: 

 

(𝑝 × 𝑞)[s] = ∑ 𝑝[𝑟]𝑞[𝑠 − 𝑟]∆𝑟∞
𝑟=−∞  (2) 

 

with ∆𝑟  the sampling interval. For continuous one, the 

equation takes the form: 

 

(𝑝 × 𝑞)[𝑢] = ∫ 𝑝(𝜎)𝑞(𝑢 − 𝜎)𝒹𝜎
∞

−∞
 (3) 

 

Here, 𝑢 is the position of the output signal. 

Convolution is used to extract various features. The primary 

layer identifies basic characteristics such as contours, edges 

and angles. The upper layers, on the other hand, extract 

features more advanced (Figure 3). In the case presented in 

Figure 3, the input dimensions are: 𝑁 × 𝑁 × 𝐷. It is convolved 

with H filters, which size is 𝑘 × 𝑘 × 𝐷. Each operation on the 

input with a kernel produces a single output feature, and using 

H independent kernels results in H unique features. 

 

 
 

Figure 3. Graphical representation of the convolution 

process (adapted from Hijazi et al. [31]) 

 

Beginning at the top left corner of the input, each core shifts 

to the right, one element at a time. When it reaches the top 

right corner, the core moves down one element and then 

resumes moving left to right, processing one element at a time. 

This procedure persists as far as the kernel reaches the bottom 

right corner. While N equal to 32 and k equal to 5, the kernel 

can occupy 28 distinct positions horizontally and 28 distinct 

positions vertically. As a result, each element of the output will 

contain 28×28 elements. 

In a sliding window process, at each position of the core, the 

elements k×k×D are multiplied, then accumulated element by 

element. Thus, to create a characteristic output element, 

k×k×D elementary multiplications and accumulations are 

required. 

 

2.2.2 Pooling layer 

The pooling layer is designed to diminish the spatial 

dimensions of the feature maps generated by the convolutional 

layer [6, 28]. It helps to improve the robustness of feature 

extraction and reduces the likelihood of overfitting. 

Typically placed in the middle of convolutional layers, the 

size of the feature maps in the pooling layer is influenced by 

the stride of the kernels. Commonly used pooling operations 

include average pooling, which mathematically corresponds to 

𝑓(𝑥) =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  and max pooling, which mathematically 

corresponds to 𝑥𝑖𝑖
𝑚𝑎𝑥  [32]. Max pooling, one of the most 

frequently adopted methods, divides the image into 

rectangular areas, returning only the maximum value found in 

each area. A common maximum pooling size is 2×2. An 

essential element of pooling, aimed at reducing the complexity 

of the upper layers, is subsampling, which can be likened to a 

reduction in resolution in image processing. The number of 

filters is not altered by pooling. As illustrated in Figure 4, 

using pooling on 2-by-2 blocks in the top left corner shifts 

focus to the top right corner, with a shift of two steps. Thus, a 

step of 2 is used for pooling. It is possible, but not very 

common, to use a step of 1 to avoid under sampling. Here, 

APG means the average of the window in green and maxG the 

maximum of the window in green. 

 

 
 

Figure 4. Pooling layers (adapted from Taye [28]) 

 

2.2.3 Activation layer 

Activation functions are an essential element of CNNs, as 

they introduce nonlinearity [28, 33]. This non-linearity is 

essential as it allows the model to capture the intricate and non-

linear patterns present in many real-world situations. 

In the literature, activation functions frequently employed 

in CNNs are the rectified linear unit (ReLU), the sigmoid 

function, and the hyperbolic tangent function (tanh). The 

ReLU is particularly popular in contemporary CNNs because 

of its simplicity and its effectiveness in mitigating the 

vanishing gradient issue during training. Mathematically, the 

ReLU function is defined as follows: 

 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) (4) 
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x represents neuron's input. This function calculates the 

maximum between 0 and 𝑥 , which neutralizes negative values 

while preserving positive values unchanged. ReLU helps 

Convolutional Neural Networks (CNNs) learn complex 

features, and helps avoid neuron saturation during learning. 

Given its simplicity, several derivatives of the ReLU 

activation function have been proposed to improve it. 

Examples include ELU, LeakyReLU, SELU and ReLU6 [30, 

33]. This function is often used in neural networks for specific 

tasks where activation is required but where it is also desirable 

to limit the output range, according to the study by Jiang et al. 

[33]. 

 

2.2.4 Fully connected layer 

The fully connected layer is a type of layer where each 

neuron is connected to every neuron in the previous layer [34, 

35]. In neural network architectures, they are typically 

employed in the last stages to generate the ultimate output. 

Here are some of the main roles of the fully connected layer, 

it is in charge of integrating features extracted from input data 

by previous layers. Fully connected layers can also learn non-

linear combinations of input features, allowing them to capture 

intricate relationships between different variables. Once 

features have been appropriately combined, the fully 

connected layer produces outputs that are used for 

classification (classification tasks) or for the prediction of 

continuous values (regression tasks). 

 

 

3. PROPOSED CNN MODEL 

 

When observing the development of a CNN in depth, 

evidence suggests that the capacity for expression increases 

with the network's depth. However, as the network becomes 

deeper, its memory consumption increases and there is a risk 

that its performance will not improve [6, 18]. 

With this in mind, we proposed a novel architecture of CNN 

called Kamagate, Kopoin and Dagou Neural Network 

(KKDNet), which is intended to be robust and does not rely on 

layer depth. Unlike many Convolutional Neural Networks 

(CNNs), which place great emphasis on network depth, our 

approach with KKDNet focuses more on the quality of 

extracted features and the stability of the model in different 

situations. The choice not to base our model on layer depth 

stems from several considerations. Firstly, a shallower 

architecture can reduce the model's complexity and hence its 

sensitivity to overlearning, while enabling faster convergence 

during training. Furthermore, by focusing on features that are 

relevant and meaningful to the given task, our approach aims 

to promote efficient generalization, even using a limited 

network depth. 

In developing KKDNet, we focused on building an 

architecture that leverages the power of Convolutional Neural 

Networks while avoiding the pitfalls associated with excessive 

depth. By judiciously adjusting hyperparameters and using 

appropriate regularization techniques, we sought to create a 

model capable of competing with deeper architectures while 

retaining high efficiency and generalizability. 

 

3.1 Architecture of KKDN 

 

3.1.1 Convolutive part 

KKDNet's architecture is a classic CNN with 4 convolution 

layers and 4 pooling layers (see Figure 5). We experimented 

with different architectures and selected the one with 4 

convolutional layers (see Table 2), because starting from this 

number of layers, the accuracy reaches its maximum value. 

Therefore, there is no need to go beyond this number of layers. 

Moreover, adding additional layers does not improve 

performance but could rather increase execution time. The 

same reasoning led us to choose the 3×3 kernel. We utilized a 

pooling layer with 2×2 filters and a stride of 2. The goal is to 

reduce the input to a quarter of its initial size. This allows the 

image to be scaled by a factor of ½, which means that a 

window of 2×2 is used and the height of the output 

corresponds to half the height of the input. 

The first layer is a convolutional layer that uses 16 filters of 

size. Each filter here corresponds to a matrix of 3 pixels by 3 

pixels. In this layer, we applied max pooling with a 2×2 filter 

and a stride of 2, ensuring that the pooled regions do not 

intersect. The second layer applies 32 sizes 3×3 filters, 

producing 32 activation maps. We applied the same type of 

maximum grouping to this layer as to the first layer, shape 2×2 

and stride 2. The third one applies 64 filters of 3×3, followed 

by another layer of maximum shape pooling 2×2 and stride. 

The four max pooling layers decrease the dimensions of the 

display by a factor of 32. This layer feeds two other fully 

connected layers with 1024 and 512 inputs respectively. Using 

3×3 filters allow the model to capture local patterns and details 

in the input image. Fundamental features like edges and 

textures are efficiently extracted. 

 

 
 

Figure 5. Convolution part of KKDNet 

 

3.1.2 Fully connected architecture 

In a fully connected layer, each neuron is connected to all 

the outputs of the previous layer. Note that the operations 

carried out in a fully connected layer are analogous to those in 

a convolutional layer, making it possible to transition between 

the two. Loss layers are employed to penalize the network 

when it produces an output different from that expected, and 

are usually located at the last stage of the network. Different 

loss functions exist, for example the SoftMax function, which 

is used to predict one class from a set of disjoint classes. In this 

study, we have also concentrated on the fully connected 

portion [36], which makes the network more robust. For 

greater efficiency in discriminating features extracted in the 

convolutional phases, the fully connected part is learned under 

two distinct sub-networks (Figure 6). 

The first subnetwork has 1024 neurons as input, followed 

by 512, 256 and 128 neurons respectively in the next three 

layers. The second subnetwork has 512 neurons as input, 

followed by 128 neurons in each of the three successive layers. 

Both subnetworks have an identical number of fully connected 

layers and They outputs are concatenated in the fourth layer 

to extract the most discriminating features learned. This 

distribution makes it possible to search for high-

dimensionality features across two different architectures. 

Each fully connected layer performs complex calculations to 
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transform inputs and produce meaningful outputs, 

contributing to the its ability to learn and generalize from 

training data. The final layer is a SoftMax loss layer with 128 

inputs. 

We should point out that several architectures were tested 

in this work. For example, architectures with more than 4 

layers gave slightly better performance results than the one we 

adopted. However, the execution time was a little longer for 

no great difference. 

 

 
 

Figure 6. Fully connected part of KKDNet 

 

Table 2. Different CNN architectures 

 
Name Interval Recommendation 

Convolution 

layers 
3, 4, 5, 6, 7, 8 4 

kernel (3 × 3), (5 × 5), (7 × 7) (3 × 3) 
Stride 1 × 1, 2 × 2 2 × 2 

Activation 

function 

ReLU, Sigmoid, Softmax, 

Tanh 
ReLU 

 

3.2 Network optimization 

 

Optimizing convolutional networks is one of the most 

important tasks in setting up such a system. The weights of the 

Convolutional Neural Network must be optimized with the 

gradient descent algorithm. Throughout this iterative process, 

it is crucial to fine-tune key parameters, such as the base 

learning rate. To achieve better validation accuracy in a 

reduced number of epochs, we used the cyclic learning rate 

method [37], which involves varying the learning rate within 

a range of values for a specific number of iterations. In our 

case, the Adadelta optimizer with a learning rate whose values 

are between 1. 𝑒−1 and 1. 𝑒−6 was applied. The factor 𝜌 = 0.5 

was used to reduce the learning rate. 

 

Table 3. Core KKDNet network parameters and 

recommended settings 

 
Name Interval Recommendation 

Epoch 16, 25, 32, 64, 50 25 

Batch-size 25, 50, 75, 100 50 

Per-parameter 

adaptive learning 

rate methods 

SGD, RMSprop, 

Adagrad, Adadelta, 

Adam, Adamax, Nadam 

Adadelta 

Dropout rate 0.1, 0.2, 0.3, 0.4 0.1 

 

As far as the other hyperparameters are concerned, it has to 

be said that the selection of the best hyperparameters depends 

on the data and the application, requiring the formation of 

models with different configurations and the evaluation of 

their performance on a validation set. It is almost impossible 

to try them all, given the exponential number of configurations 

and hyperparameters. Some authors [36] instead recommend 

optimizing hyperparameters, such as learning rate and batch 

size, by experimenting with various values while keeping the 

other hyperparameters fixed. Next, the specified 

hyperparameter space can be explored in more detail through 

random sampling, and the parameters yielding the best results 

on the validation set can be selected. Based on this principle, 

we have listed the other hyperparameter values used in the 

network in Table 3. 

 

 

4. EXPERIMENTATION AND RESULTS 

 

4.1 Dataset 

 

The image dataset we utilized is 'Fruits-360', derived from 

the work by Muresan and Oltean [38]. 'Fruits-360' is a 

comprehensive dataset of fruit images that has been employed 

in various studies to assess the proposed models [39-41]. The 

images were captured by filming the fruit as it was rotated by 

a motor. The fruits were positioned along the motor's axis at a 

low speed (3 rpm), and a brief 20-second video was recorded. 

To obtain the background images, a diffusion fill algorithm 

was employed. Initially, all pixels along the edges of the image 

are marked, as well as any pixels in close proximity to these 

marked pixels, provided the color distance is below a specified 

threshold. This process is repeated until no additional pixels 

can be marked. The marked pixels are identified as the 

background, while the remaining pixels are classified as part 

of the object. The maximum allowable distance between 

neighboring pixels is a parameter of the algorithm, adjusted 

through trial and error for each video. The fruits were resized 

to fit a 100×100 pixel image. This dataset includes 90,483 

images of fruits and vegetables, categorized into 131 different 

classes. In this study, we focused primarily on tomato images, 

which are classified into 9 types: Tomato 1, Tomato 2, Tomato 

3, Tomato 4, Cherry Red Tomato, Heart Tomato, Brown 

Tomato, Unripe Tomato, and Yellow Tomato (see Figure 7). 

Note that the tomato whose scientific or popular name has not 

been found is labelled with numbers: tomato 1, tomato 2, 

tomato 3, tomato 4. 

The total number of tomato images (data set 1) is 6810, of 

which 5103 used for training consist of sets of each tomato 

type, and 1707 used for testing. We also observed that in each 

training set, one-fifth of the images for each tomato type were 

allocated for validation, while the remaining four-fifths were 

used for training. 

To address the issue of small data sizes, the image data 

augmentation technique known as 'Augmentor' [42] was 

employed. This involved using a pipeline-based approach to 

stochastic image augmentation. This method allows the user 

to chain operations such as shears, rotations and crops, and 

pass images through this pipeline to create new data. All 

pipeline operations are applied randomly, both in terms of the 

probability of operations being applied to each image as it 

passes through the pipeline, and in terms of the parameters of 

each operation, which are also chosen randomly from user-

specified ranges. This makes it possible to sample from a 

distribution of possible images, generated by the pipeline at 

runtime. To create data set 2, comprising 10,000 images, we 

used the ‘Augmentor’ tool package available in Python. The 

main parameters selected include a random rotation of images 

between -5 degrees and +5 degrees, horizontal flipping with a 

probability of 50%, and random zooming with a 50% 
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probability, enlarging or reducing the image within an area 

representing 80% of its original size. For vertical flipping, a 

probability of 50% has been set. 

Elastic distortions allow you to distort an image while 

maintaining its proportions. Table 4 shows the number of 

training images from data sets 1 and 2, as well as the test 

images for each type of tomato. 

 

 
 

Figure 7. Image of each tomato by category 

 

Table 4. Number of images of each tomato for each training 

set 

 

Tomato Type 
Training  

Set 1 

Training  

Set 2 

Testing 

Set 

Tomato 1 738 1440 246 

Tomato 2 672 1316 225 

Tomato 3 738 1419 246 

Tomato 4 479 938 160 

Tomato Cherry Red 492 989 164 

Tomato Maroon 367 788 127 

Tomato Heart 684 1325 228 

Tomato Not Ripened 474 895 158 

Tomato Yellow 459 890 153 

Total 5103 10000 1707 

 

4.2 Results for the “fruits-360” dataset 

 

4.2.1 Results on tomatoes dataset 

Here are experimental results carried out on a core i7 

computer and 16GB RAM with python packages like Scikit-

learn, Keras. Experimental results are relative to our proposed 

architecture KKDNet and other CNN architecture like 

GoogLeNet, ShuffleNet, ResNet and DenseNet. The main 

metrics performance we look for are accuracy both in training 

phase and test phase, we also look for the execution times. 

Figure 8 shows the validation and training loss curves for 

our model. We trained our model with 8.1 million parameters 

for 25 epochs and a batch size of 50 images. As illustrated in 

Figure 8, our model quickly (before epoch 5) achieves higher 

validation accuracy, with much lower validation loss, thanks 

to the cyclic learning rate we applied. Before epoch 12, we 

could say that we were under learning, since the validation loss 

curve was below the training loss curve. From this point 

onwards, a higher cyclic learning rate was applied, reducing 

the gap between the two curves, which subsequently tend to 

decrease together towards 0. At the end of the 25 epochs, we 

have obtained a validation accuracy of 100%, while our 

learning accuracy is also equal to 100%, reflecting an effective 

level of learning and generalization of our model. 

In the following, we evaluate the achievement of our 

KKDNet model against several models from the literature, 

such as GoogLeNet [43], ShuffleNet [44], ResNet [20], and 

DenseNet-121 [39], which we have implemented. 

It should be noted that all these networks have been trained 

with the hyperparameter values that give the best performance. 

GoogLeNet, consisting of 22 convolution layers and it is based 

on the inception architecture [45]. It employs inception 

modules, allowing the network to choose from various sizes of 

convolutional filters within each block. An inception network 

stacks these modules sequentially, occasionally incorporating 

maximum pooling layers with a stride of 2 to halve the grid 

resolution. ShuffleNet is particularly designed for mobile 

devices with very limited processing capabilities. Its 

architecture uses two process point-group convolution and 

channel shuffling, to significantly decrease computing costs 

while maintaining accuracy. 

 

 
 

Figure 8. KKDNet training and validation loss curves 

 

Regarding the calculation of complexity, it should be noted 

that pooling layers and activation functions generally have 

negligible complexity and are therefore not taken into account. 

The algorithmic complexity here is primarily determined by 

the number of operations required to perform the convolutions, 

which is the most computationally expensive part [46]. Let 𝐶 

denote the complexity, it can be calculated as follows: 

 

𝐶 = (∑𝐾𝑙 × 𝐾𝑙 × 𝐼𝑙 × 𝐻𝑙 ×𝑊𝑙 × 𝑆𝑙

𝐿

𝑙=1

) + 𝑃 (5) 

 

where, L represents the total number of convolutional layers in 

the network, K denotes the filter size, I stand for the number 

of input channels, H indicates the height of the feature map, W 
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signifies the width of the feature map, S refers to the number 

of output channels, and P represents the number of model 

parameters. The computation of algorithmic complexity can 

be expressed in FLOPs (Floating Point Operations), which is 

the total number of floating-point operations needed to execute 

a model. Table 5 presents the parameters and algorithmic 

complexities of the various models. 

We also compare our model with KKDNet-one, which 

retains the same architecture as KKDNet but has a single fully 

connected layer. The KKDNet-one architecture thus consists 

of 4 convolutional layers with filters 3×3 and a shape 2×2 

stride. For the fully connected part, we have a first layer of 

1024 neurons, followed by 512, 256 and 128 neurons in the 

next three layers, the last layer being the output layer with 9 

neurons. 

The training performance results obtained from training set 

1, composed of tomato images, on different models are 

presented in Table 6. Table 7 presents similar results obtained 

on training set 2. In addition, we have included in these tables 

a column relating to computational complexity, corresponding 

to the results in Table 5. 

What we can say about the results shown in Table 6 and 

Table 7 is that for all models overall, the training performance 

values in the accuracy metric are very close to the test ones, 

and in addition they are above 94%. This shows that all models 

are able to extract and learn features efficiently. We have the 

Resnet, DenseNet and our KKDNet models, which show 

100% performance in the accuracy metric on both the 

validation and test sides. This shows that all three models have 

learned the features well and are able to generalize to new data 

accurately. Regarding the accuracy metric (Table 6), the 

GoogLeNet model shows a validation performance of 98.61% 

and a test performance of 99.05%. The ShuffleNet model has 

a training performance of 95.07% and a test performance of 

95.80%. As for KDDNet-one, performance was 95.90% in 

training and 96.09% in test. With the data set 2. 

We observe on both two table (Table 6 and Table 7) that 

KKDNet achieves similar or even better performance than the 

GoogLeNet, ShuffleNet, and ResNet architectures, both in 

training and testing. The advantage is that these performances 

are achieved with a significantly lower computation time 

compared to the other architectures. Indeed, computation time 

is closely related to complexity, evaluated in FLOPS. For 

example, it takes GoogleNet 25 times longer than KKDNet to 

achieve the same results. ShuffleNet takes 51 times longer 

than KKDNet. 

 

4.2.2 Others result 

We conducted further experiments using the remaining 

images from the "Fruits-360" database, excluding the tomato 

images, to evaluate KKDNet's generalization capability. The 

"Fruits-360" dataset comprises around 80 types of fruits across 

131 classes, including avocados, bananas, pineapples, and 

mangoes. By excluding the tomato classes, we retained 83,643 

images across 122 classes. KKDNet achieved an accuracy of 

98.20%, compared to 97.50% for GoogleNet, 96.53% for 

ShuffleNet, 99.58% for ResNet, and 99.10% for DenseNet. 

Notably, KKDNet demonstrates strong generalization with an 

accuracy above 94% and outperforms GoogleNet, ShuffleNet, 

and DenseNet in this aspect, though ResNet achieves slightly 

higher accuracy. Additionally, KKDNet offers a superior 

execution time advantage (Table 5). 

 

Table 5. Parameters number and computational complexity of the models 

 
Models Parameters Number Computational Complexity (FLOPs) 

GoogleNet 6,056,505 1,221,195,310 

ShuffleNet 968,337 2,450,507,844 

ResNet 23,606,153 6,347,705,993 

DenseNet 7,052,617 3,212,015,689 

KKDNet -one 5,507,385 44,924,217 

KKDNet 8,064,441 47,704,745 

 

Table 6. Performance comparison on data set 1 

 
Models Computational Complexity (FLOPs) Training Accuracy (%) Test Accuracy (%) 

GoogleNet 1,221,195,310 98.61 99.05 

ShuffleNet 2,450,507,844 95.07 95.78 

ResNet 6,347,705,993 100 100 

DenseNet 3,212,015,689 100 100 

KKDNet -one 44,924,217 95.80 96.09 

KKDNet 47,704,745 100 100 

 

Table 7. Performance comparison on data set 2 

 
Models Computational Complexity (FLOPs) Training Accuracy (%) Test Accuracy (%) 

GoogleNet 1,221,195,310 99.79 100 

ShuffleNet 2,450,507,844 98.69 99.88 

ResNet 6,347,705,993 99.89 100 

DenseNet 3,212,015,689 100 100 

KKDNet -one 44,924,217 98.92 100 

KKDNet 47,704,745 100 100 

 

 

5. DISCUSSION 

 

This study intends to present a CNN network model that 

offers good performance without being computationally 

intensive or having many layers. Our proposed CNN network, 

named KKDNet, features just 4 convolutional layers, with a 
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kernel size of 3×3, a stride of 2×2, and utilizes the ReLU 

activation function, as outlined in its architecture in Table 2. 

In addition, with the use of cyclic learning rate in training 

phase achieve approximately same performance in training 

and test accuracy as shown in Table 6 and Table 7. We believe 

that using a cyclic learning rate, which periodically increases 

the learning rate, helps explore a larger portion of the 

parameter space and avoid local minima, thereby facilitating 

the discovery of better global solutions more quickly. 

Concerning the execution time based on the number of 

operations in FLOPS, as presented in Table 5, we observed 

that we need to multiply its execution time by a coefficient 

ranging from 25 to 52 to match the time required for the other 

architectures discussed in this study. This efficiency is 

primarily due to the use of 4 layers and the 3×3 kernel size, 

which require less computation time and maintain similar 

performance like other mentioned CNN architectures. 

However, we note that for other classes in the Fruits 360 

database, our model (KKDNet), as well as the GoogLeNet, 

DenseNet, and ResNet models, exhibit error rates between 1% 

and 2%. Indeed, these errors could result from the variety of 

classes and the fact that some classes are less represented in 

the database. Regularization techniques such as L1/L2 could 

address this issue and help the model generalize better. We 

could also add the batch normalization technique, which, 

although not strictly a regularization technique, can help 

achieve a more generalizable model. 

 

 

6. CONCLUSION 

 

In this research, we introduced the KKDNet model, an 

efficient CNN network model, while being enhanced for 

computational effectiveness. Experiments were performed on 

tomato image datasets from the "fruits 360" database. The 

results obtained showed that our KKDnet model offers 

comparable performance to recent models in the literature, 

while requiring less computation time to run. It should be 

noted that we applied techniques such as the cyclic learning 

rate, which not only accelerated learning but also made the 

model more efficient. Ultimately, the results showed that our 

KKDNet model with fewer layers achieved superior 

performance in the identification and classification of tomato 

images, and could therefore serve as a general system for smart 

categorization of plant images in practical use. We presume 

that our model because of using cyclic learning rate will 

perform well in generalization. 

In the future, to make our model even more robust, we plan 

to test it on other types of image datasets such as MNIST 

dataset. We also intend to employ regularization techniques 

like L1/L2 regularization and batch normalization to enhance 

the model's generalizability. Additionally, we plan to integrate 

the model into a software application for use in agriculture. 
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