
A Robust Convolutional Neural Network Model for Fruit Image Classification

Beman Hamidja Kamagate1* , N’Diffon. Charlemagne Kopoin1 , Dagou Dangui Augustin Koffi1 ,

Olivier Pascal Asseu2

1 Department of Computer Science, Ecole Supérieure Africaine des TIC (ESATIC), Abidjan 18 BP 1501, Côte d’Ivoire
2 Department of Electrical and Electronic Engineering, Institut National Polytechnique Félix Houphouët-Boigny (INPHB),

Yamoussoukro BP 1093, Côte d’Ivoire

Corresponding Author Email: beman.kamagate@esatic.edu.ci

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290504 ABSTRACT

Received: 22 April 2024

Revised: 7 July 2024

Accepted: 1 August 2024

Available online: 24 October 2024

Modernization of agriculture is associated with increased use of energy and inputs

(fertilizers, plant protection products, water), which today need to be better managed for

optimization purpose and to limit risks for people and the environment. This issue has given

rise to smart agriculture, a relative new approach to farming based on the integration of

information and communication technologies, particularly Artificial Intelligent (AI) and

Internet of Things, in which the environment (soil, relief, air, etc.) represents potential data

source that should be exploited. In this work, we propose a service of smart agriculture that

based on plant image recognition. A robust and simple Convolutional Neural Network

(CNN) model called Kamagate, Kopoin and Dagou Neural Network (KKDNet) is

developed for plant image classification. For our first experiment, we focused on tomato

cultivation, which is very demanding in terms of energy and inputs. The proposed model

KKDNet with less layer than other CNN architecture achieves approximately the same

performance in metric like accuracy. As concerning the execution time, the other models

use more execution time. we need to multiply KKDNet’s execution time by a coefficient

ranging from 25 to 52 to match the time required for the other architectures discussed in

this study.

Keywords:

Convolutional Neural Network, deep

learning, image recognition, KKDNet, smart

agriculture

1. INTRODUCTION

Aiming to increase both quantity and quality, agriculture

has undergone many technological advancements and changes

over the years. However, this field still encounters significant

obstacles in terms of quantities to cover global needs, as shown

in the June 2017 United Nations report [1].

To effectively meet this need to sustain a growing and more

selective society, the modernization of agriculture combined

with increased use of energy and inputs is therefore necessary.

However, such a practice can adversely affect the natural

ecosystem. One way for mitigating the adverse impacts of

productive yet intensive agriculture consists of using solutions

offered by Artificial Intelligence (AI) [2] and the Internet of

Things (IoT) [3], thereby implementing smart agriculture [3,

4].

Smart agriculture using AI and IoT techniques goes through

various phases. These include the acquisition of environmental

data from sensors, the recognition of acquired data for analysis,

the data analysis phase and the decision-making phase. One of

the foundations of smart agriculture is the use of computer

vision and deep learning for pattern recognition and

classification. Through these methods, relevant information

such as plant species, presence of diseases, and presence of

harmful species can be extracted [4]. In this context, image

recognition can distinguish weeds from crops, thereby

promoting targeted application of herbicides and reducing

chemical usage. Furthermore, fruit recognition allows for

determining the optimal harvesting time, which can enhance

yields and fruit quality. It also enables rapid identification of

fruits affected by diseases or pests, facilitating timely

corrective actions to minimize crop losses and damages.

Additionally, in production and distribution chains, fruit

recognition facilitates sorting and removal of defective or

lower-quality products, ensuring that only the best fruits reach

the market.

This work focuses on the recognition and analysis of

captured data, specifically the classification of plant images.

Convolutional Neural Networks are typically used for this task

[5-8]. They are a form of Deep Learning (DL) model [9, 10]

(see Figure 1). Originally presented by LeCun et al. [11] and

enhanced by LeCun et al. [12], they design is based on the

architecture of the biological neurons [11].

Indeed, LeCun et al. [12] created a Convolutional Neural

Network known as LeNet-5, specifically designed for

classifying handwritten digits. Its architecture and training

principles are discussed in more detail by Hecht-Nielsen [13].

However, LeNet-5 is not equipped to handle more complex

challenges, such as extensive image and video classification

tasks, due to the constraints of training data and computational

resources at that time. However, since 2006, numerous CNN

methods have been developed that overcome these problems

Ingénierie des Systèmes d’Information
Vol. 29, No. 5, October, 2024, pp. 1701-1710

Journal homepage: http://iieta.org/journals/isi

1701

https://orcid.org/0000-0002-8015-1815
https://orcid.org/0000-0002-3598-0841
https://orcid.org/0009-0009-2023-5898
https://orcid.org/0000-0002-8681-400X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290504&domain=pdf

[6, 7, 14, 15].

Krizhevsky proposed a classical CNN architecture called

Alexnet [5] which showed good performance. Numerous

studies such as ZFNet [16], VGGNet [17] and GoogleNet [14]

have been suggested to increase its results.

Figure 1. Subfields of artificial intelligence

Huang et al. [18] proposed DenseNet, in which every layer

is directly connected to all preceding layers. In this

architecture, each layer processes the attribute from all earlier

layers as separate inputs, while its own attribute is given as

inputs to all next layers. This scheme reaches optimal results

on CIFAR-10/100 [19], whether or not data augmentation is

applied. On the extensive dataset, DenseNet gets the same

results to ResNet [20], when using less than half of the

parameters. Traore et al. [21] proposed a CNN model for the

classification of epidemic pathogens. The proposed CNN

model comprises six convolution layers with the same

architecture.

Guo et al. [6] introduced a straightforward Convolutional

Neural Network. Authors (They) used the ReLU function [22]

as the activation function and the dropout [23] as the

regularization technique). The ReLU function leaves the value

becomes 0 if the output value is less than 0; if not, it retains

the initial values. Thus, it can be used to force certain data to

zero. Compared to some existing CNN models, such as those

suggested by authors in references [24-26], the model

proposed by Guo et al. [6] demonstrates inferior performance.

However, the Guo et al. [6] model achieves relatively good

recognition capabilities, benefits from a simple architecture,

and requires minimal memory space for its parameters.

Although several CNN models have been proposed in the

image classification context, architectures vary depending on

the context of each study, which makes it difficult to establish

a general architecture applicable to all domains. Additional

issue is accessing extensive datasets such as ImageNet [5],

encompassing approximately 14,000,000 images, and the

MNIST database [27], which comprises 60,000 training

images and 10,000 test images. This paper presents a robust

and computationally efficient Convolutional Neural Network

designed for the classification of tomato images.

2. CLASSIFICATION WITH CNN

2.1 CNN and visual data

Convolutional Neural Networks (CNNs) are highly

effective for assignment that require the analysis of visual

information, for example identifying images, detecting objects,

and segmenting images. CNNs have the ability to learn

hierarchical representations of visual data, allowing them to

recognize intricate patterns and make precise predictions

based on both low-level and high-level features.

2.2 Different layers of the CNN

A CNN typically comprises multiple layers (see Figure 2),

every one serving a distinct function within the network (A

CNN generally consists of several layers (Figure 2), each with

a specific function in the network). According to some authors

[28-30], several key types of layers in Convolutional Neural

Networks should be. Table 1 shows these layers and their

function in the network.

Figure 2. The different phases of the CNN [28]

1702

Table 1. CNN layers (adapted from Krichen [29])

Layer Function

Convolution

layer

Generate feature maps by applying a

convolution operation.

Pooling layer
Reduce the size of feature maps while

retaining the most important information.

Activation layer Introduce non-linearity in the model.

Full connected

layer

Links each neuron in the preceding layer to

every neuron in the current layer.

2.2.1 Convolutional layer

Considered as the heart of CNN [28, 29], convolution is a

mathematical operation that combines two signals to generate

a third signal, representing the effect of one signal on the other,

modulated by the shape of the second signal. It can be

calculated as follows:

(𝑝 × 𝑞)[s] = ∑ 𝑝[𝑟]𝑞[𝑠 − 𝑟]∞
𝑟=−∞ (1)

where, 𝑝 and 𝑞 are functions that can be either discrete or

continuous, and 𝑠 is the position of the output signal. For

discrete signals, the equation above transforms to:

(𝑝 × 𝑞)[s] = ∑ 𝑝[𝑟]𝑞[𝑠 − 𝑟]∆𝑟∞
𝑟=−∞ (2)

with ∆𝑟 the sampling interval. For continuous one, the

equation takes the form:

(𝑝 × 𝑞)[𝑢] = ∫ 𝑝(𝜎)𝑞(𝑢 − 𝜎)𝒹𝜎
∞

−∞
 (3)

Here, 𝑢 is the position of the output signal.

Convolution is used to extract various features. The primary

layer identifies basic characteristics such as contours, edges

and angles. The upper layers, on the other hand, extract

features more advanced (Figure 3). In the case presented in

Figure 3, the input dimensions are: 𝑁 × 𝑁 × 𝐷. It is convolved

with H filters, which size is 𝑘 × 𝑘 × 𝐷. Each operation on the

input with a kernel produces a single output feature, and using

H independent kernels results in H unique features.

Figure 3. Graphical representation of the convolution

process (adapted from Hijazi et al. [31])

Beginning at the top left corner of the input, each core shifts

to the right, one element at a time. When it reaches the top

right corner, the core moves down one element and then

resumes moving left to right, processing one element at a time.

This procedure persists as far as the kernel reaches the bottom

right corner. While N equal to 32 and k equal to 5, the kernel

can occupy 28 distinct positions horizontally and 28 distinct

positions vertically. As a result, each element of the output will

contain 28×28 elements.

In a sliding window process, at each position of the core, the

elements k×k×D are multiplied, then accumulated element by

element. Thus, to create a characteristic output element,

k×k×D elementary multiplications and accumulations are

required.

2.2.2 Pooling layer

The pooling layer is designed to diminish the spatial

dimensions of the feature maps generated by the convolutional

layer [6, 28]. It helps to improve the robustness of feature

extraction and reduces the likelihood of overfitting.

Typically placed in the middle of convolutional layers, the

size of the feature maps in the pooling layer is influenced by

the stride of the kernels. Commonly used pooling operations

include average pooling, which mathematically corresponds to

𝑓(𝑥) =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 and max pooling, which mathematically

corresponds to 𝑥𝑖𝑖
𝑚𝑎𝑥 [32]. Max pooling, one of the most

frequently adopted methods, divides the image into

rectangular areas, returning only the maximum value found in

each area. A common maximum pooling size is 2×2. An

essential element of pooling, aimed at reducing the complexity

of the upper layers, is subsampling, which can be likened to a

reduction in resolution in image processing. The number of

filters is not altered by pooling. As illustrated in Figure 4,

using pooling on 2-by-2 blocks in the top left corner shifts

focus to the top right corner, with a shift of two steps. Thus, a

step of 2 is used for pooling. It is possible, but not very

common, to use a step of 1 to avoid under sampling. Here,

APG means the average of the window in green and maxG the

maximum of the window in green.

Figure 4. Pooling layers (adapted from Taye [28])

2.2.3 Activation layer

Activation functions are an essential element of CNNs, as

they introduce nonlinearity [28, 33]. This non-linearity is

essential as it allows the model to capture the intricate and non-

linear patterns present in many real-world situations.

In the literature, activation functions frequently employed

in CNNs are the rectified linear unit (ReLU), the sigmoid

function, and the hyperbolic tangent function (tanh). The

ReLU is particularly popular in contemporary CNNs because

of its simplicity and its effectiveness in mitigating the

vanishing gradient issue during training. Mathematically, the

ReLU function is defined as follows:

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) (4)

1703

x represents neuron's input. This function calculates the

maximum between 0 and 𝑥 , which neutralizes negative values

while preserving positive values unchanged. ReLU helps

Convolutional Neural Networks (CNNs) learn complex

features, and helps avoid neuron saturation during learning.

Given its simplicity, several derivatives of the ReLU

activation function have been proposed to improve it.

Examples include ELU, LeakyReLU, SELU and ReLU6 [30,

33]. This function is often used in neural networks for specific

tasks where activation is required but where it is also desirable

to limit the output range, according to the study by Jiang et al.

[33].

2.2.4 Fully connected layer

The fully connected layer is a type of layer where each

neuron is connected to every neuron in the previous layer [34,

35]. In neural network architectures, they are typically

employed in the last stages to generate the ultimate output.

Here are some of the main roles of the fully connected layer,

it is in charge of integrating features extracted from input data

by previous layers. Fully connected layers can also learn non-

linear combinations of input features, allowing them to capture

intricate relationships between different variables. Once

features have been appropriately combined, the fully

connected layer produces outputs that are used for

classification (classification tasks) or for the prediction of

continuous values (regression tasks).

3. PROPOSED CNN MODEL

When observing the development of a CNN in depth,

evidence suggests that the capacity for expression increases

with the network's depth. However, as the network becomes

deeper, its memory consumption increases and there is a risk

that its performance will not improve [6, 18].

With this in mind, we proposed a novel architecture of CNN

called Kamagate, Kopoin and Dagou Neural Network

(KKDNet), which is intended to be robust and does not rely on

layer depth. Unlike many Convolutional Neural Networks

(CNNs), which place great emphasis on network depth, our

approach with KKDNet focuses more on the quality of

extracted features and the stability of the model in different

situations. The choice not to base our model on layer depth

stems from several considerations. Firstly, a shallower

architecture can reduce the model's complexity and hence its

sensitivity to overlearning, while enabling faster convergence

during training. Furthermore, by focusing on features that are

relevant and meaningful to the given task, our approach aims

to promote efficient generalization, even using a limited

network depth.

In developing KKDNet, we focused on building an

architecture that leverages the power of Convolutional Neural

Networks while avoiding the pitfalls associated with excessive

depth. By judiciously adjusting hyperparameters and using

appropriate regularization techniques, we sought to create a

model capable of competing with deeper architectures while

retaining high efficiency and generalizability.

3.1 Architecture of KKDN

3.1.1 Convolutive part

KKDNet's architecture is a classic CNN with 4 convolution

layers and 4 pooling layers (see Figure 5). We experimented

with different architectures and selected the one with 4

convolutional layers (see Table 2), because starting from this

number of layers, the accuracy reaches its maximum value.

Therefore, there is no need to go beyond this number of layers.

Moreover, adding additional layers does not improve

performance but could rather increase execution time. The

same reasoning led us to choose the 3×3 kernel. We utilized a

pooling layer with 2×2 filters and a stride of 2. The goal is to

reduce the input to a quarter of its initial size. This allows the

image to be scaled by a factor of ½, which means that a

window of 2×2 is used and the height of the output

corresponds to half the height of the input.

The first layer is a convolutional layer that uses 16 filters of

size. Each filter here corresponds to a matrix of 3 pixels by 3

pixels. In this layer, we applied max pooling with a 2×2 filter

and a stride of 2, ensuring that the pooled regions do not

intersect. The second layer applies 32 sizes 3×3 filters,

producing 32 activation maps. We applied the same type of

maximum grouping to this layer as to the first layer, shape 2×2

and stride 2. The third one applies 64 filters of 3×3, followed

by another layer of maximum shape pooling 2×2 and stride.

The four max pooling layers decrease the dimensions of the

display by a factor of 32. This layer feeds two other fully

connected layers with 1024 and 512 inputs respectively. Using

3×3 filters allow the model to capture local patterns and details

in the input image. Fundamental features like edges and

textures are efficiently extracted.

Figure 5. Convolution part of KKDNet

3.1.2 Fully connected architecture

In a fully connected layer, each neuron is connected to all

the outputs of the previous layer. Note that the operations

carried out in a fully connected layer are analogous to those in

a convolutional layer, making it possible to transition between

the two. Loss layers are employed to penalize the network

when it produces an output different from that expected, and

are usually located at the last stage of the network. Different

loss functions exist, for example the SoftMax function, which

is used to predict one class from a set of disjoint classes. In this

study, we have also concentrated on the fully connected

portion [36], which makes the network more robust. For

greater efficiency in discriminating features extracted in the

convolutional phases, the fully connected part is learned under

two distinct sub-networks (Figure 6).

The first subnetwork has 1024 neurons as input, followed

by 512, 256 and 128 neurons respectively in the next three

layers. The second subnetwork has 512 neurons as input,

followed by 128 neurons in each of the three successive layers.

Both subnetworks have an identical number of fully connected

layers and They outputs are concatenated in the fourth layer

to extract the most discriminating features learned. This

distribution makes it possible to search for high-

dimensionality features across two different architectures.

Each fully connected layer performs complex calculations to

1704

transform inputs and produce meaningful outputs,

contributing to the its ability to learn and generalize from

training data. The final layer is a SoftMax loss layer with 128

inputs.

We should point out that several architectures were tested

in this work. For example, architectures with more than 4

layers gave slightly better performance results than the one we

adopted. However, the execution time was a little longer for

no great difference.

Figure 6. Fully connected part of KKDNet

Table 2. Different CNN architectures

Name Interval Recommendation

Convolution

layers
3, 4, 5, 6, 7, 8 4

kernel (3 × 3), (5 × 5), (7 × 7) (3 × 3)
Stride 1 × 1, 2 × 2 2 × 2

Activation

function

ReLU, Sigmoid, Softmax,

Tanh
ReLU

3.2 Network optimization

Optimizing convolutional networks is one of the most

important tasks in setting up such a system. The weights of the

Convolutional Neural Network must be optimized with the

gradient descent algorithm. Throughout this iterative process,

it is crucial to fine-tune key parameters, such as the base

learning rate. To achieve better validation accuracy in a

reduced number of epochs, we used the cyclic learning rate

method [37], which involves varying the learning rate within

a range of values for a specific number of iterations. In our

case, the Adadelta optimizer with a learning rate whose values

are between 1. 𝑒−1 and 1. 𝑒−6 was applied. The factor 𝜌 = 0.5

was used to reduce the learning rate.

Table 3. Core KKDNet network parameters and

recommended settings

Name Interval Recommendation

Epoch 16, 25, 32, 64, 50 25

Batch-size 25, 50, 75, 100 50

Per-parameter

adaptive learning

rate methods

SGD, RMSprop,

Adagrad, Adadelta,

Adam, Adamax, Nadam

Adadelta

Dropout rate 0.1, 0.2, 0.3, 0.4 0.1

As far as the other hyperparameters are concerned, it has to

be said that the selection of the best hyperparameters depends

on the data and the application, requiring the formation of

models with different configurations and the evaluation of

their performance on a validation set. It is almost impossible

to try them all, given the exponential number of configurations

and hyperparameters. Some authors [36] instead recommend

optimizing hyperparameters, such as learning rate and batch

size, by experimenting with various values while keeping the

other hyperparameters fixed. Next, the specified

hyperparameter space can be explored in more detail through

random sampling, and the parameters yielding the best results

on the validation set can be selected. Based on this principle,

we have listed the other hyperparameter values used in the

network in Table 3.

4. EXPERIMENTATION AND RESULTS

4.1 Dataset

The image dataset we utilized is 'Fruits-360', derived from

the work by Muresan and Oltean [38]. 'Fruits-360' is a

comprehensive dataset of fruit images that has been employed

in various studies to assess the proposed models [39-41]. The

images were captured by filming the fruit as it was rotated by

a motor. The fruits were positioned along the motor's axis at a

low speed (3 rpm), and a brief 20-second video was recorded.

To obtain the background images, a diffusion fill algorithm

was employed. Initially, all pixels along the edges of the image

are marked, as well as any pixels in close proximity to these

marked pixels, provided the color distance is below a specified

threshold. This process is repeated until no additional pixels

can be marked. The marked pixels are identified as the

background, while the remaining pixels are classified as part

of the object. The maximum allowable distance between

neighboring pixels is a parameter of the algorithm, adjusted

through trial and error for each video. The fruits were resized

to fit a 100×100 pixel image. This dataset includes 90,483

images of fruits and vegetables, categorized into 131 different

classes. In this study, we focused primarily on tomato images,

which are classified into 9 types: Tomato 1, Tomato 2, Tomato

3, Tomato 4, Cherry Red Tomato, Heart Tomato, Brown

Tomato, Unripe Tomato, and Yellow Tomato (see Figure 7).

Note that the tomato whose scientific or popular name has not

been found is labelled with numbers: tomato 1, tomato 2,

tomato 3, tomato 4.

The total number of tomato images (data set 1) is 6810, of

which 5103 used for training consist of sets of each tomato

type, and 1707 used for testing. We also observed that in each

training set, one-fifth of the images for each tomato type were

allocated for validation, while the remaining four-fifths were

used for training.

To address the issue of small data sizes, the image data

augmentation technique known as 'Augmentor' [42] was

employed. This involved using a pipeline-based approach to

stochastic image augmentation. This method allows the user

to chain operations such as shears, rotations and crops, and

pass images through this pipeline to create new data. All

pipeline operations are applied randomly, both in terms of the

probability of operations being applied to each image as it

passes through the pipeline, and in terms of the parameters of

each operation, which are also chosen randomly from user-

specified ranges. This makes it possible to sample from a

distribution of possible images, generated by the pipeline at

runtime. To create data set 2, comprising 10,000 images, we

used the ‘Augmentor’ tool package available in Python. The

main parameters selected include a random rotation of images

between -5 degrees and +5 degrees, horizontal flipping with a

probability of 50%, and random zooming with a 50%

1705

probability, enlarging or reducing the image within an area

representing 80% of its original size. For vertical flipping, a

probability of 50% has been set.

Elastic distortions allow you to distort an image while

maintaining its proportions. Table 4 shows the number of

training images from data sets 1 and 2, as well as the test

images for each type of tomato.

Figure 7. Image of each tomato by category

Table 4. Number of images of each tomato for each training

set

Tomato Type
Training

Set 1

Training

Set 2

Testing

Set

Tomato 1 738 1440 246

Tomato 2 672 1316 225

Tomato 3 738 1419 246

Tomato 4 479 938 160

Tomato Cherry Red 492 989 164

Tomato Maroon 367 788 127

Tomato Heart 684 1325 228

Tomato Not Ripened 474 895 158

Tomato Yellow 459 890 153

Total 5103 10000 1707

4.2 Results for the “fruits-360” dataset

4.2.1 Results on tomatoes dataset

Here are experimental results carried out on a core i7

computer and 16GB RAM with python packages like Scikit-

learn, Keras. Experimental results are relative to our proposed

architecture KKDNet and other CNN architecture like

GoogLeNet, ShuffleNet, ResNet and DenseNet. The main

metrics performance we look for are accuracy both in training

phase and test phase, we also look for the execution times.

Figure 8 shows the validation and training loss curves for

our model. We trained our model with 8.1 million parameters

for 25 epochs and a batch size of 50 images. As illustrated in

Figure 8, our model quickly (before epoch 5) achieves higher

validation accuracy, with much lower validation loss, thanks

to the cyclic learning rate we applied. Before epoch 12, we

could say that we were under learning, since the validation loss

curve was below the training loss curve. From this point

onwards, a higher cyclic learning rate was applied, reducing

the gap between the two curves, which subsequently tend to

decrease together towards 0. At the end of the 25 epochs, we

have obtained a validation accuracy of 100%, while our

learning accuracy is also equal to 100%, reflecting an effective

level of learning and generalization of our model.

In the following, we evaluate the achievement of our

KKDNet model against several models from the literature,

such as GoogLeNet [43], ShuffleNet [44], ResNet [20], and

DenseNet-121 [39], which we have implemented.

It should be noted that all these networks have been trained

with the hyperparameter values that give the best performance.

GoogLeNet, consisting of 22 convolution layers and it is based

on the inception architecture [45]. It employs inception

modules, allowing the network to choose from various sizes of

convolutional filters within each block. An inception network

stacks these modules sequentially, occasionally incorporating

maximum pooling layers with a stride of 2 to halve the grid

resolution. ShuffleNet is particularly designed for mobile

devices with very limited processing capabilities. Its

architecture uses two process point-group convolution and

channel shuffling, to significantly decrease computing costs

while maintaining accuracy.

Figure 8. KKDNet training and validation loss curves

Regarding the calculation of complexity, it should be noted

that pooling layers and activation functions generally have

negligible complexity and are therefore not taken into account.

The algorithmic complexity here is primarily determined by

the number of operations required to perform the convolutions,

which is the most computationally expensive part [46]. Let 𝐶

denote the complexity, it can be calculated as follows:

𝐶 = (∑𝐾𝑙 × 𝐾𝑙 × 𝐼𝑙 × 𝐻𝑙 ×𝑊𝑙 × 𝑆𝑙

𝐿

𝑙=1

) + 𝑃 (5)

where, L represents the total number of convolutional layers in

the network, K denotes the filter size, I stand for the number

of input channels, H indicates the height of the feature map, W

1706

signifies the width of the feature map, S refers to the number

of output channels, and P represents the number of model

parameters. The computation of algorithmic complexity can

be expressed in FLOPs (Floating Point Operations), which is

the total number of floating-point operations needed to execute

a model. Table 5 presents the parameters and algorithmic

complexities of the various models.

We also compare our model with KKDNet-one, which

retains the same architecture as KKDNet but has a single fully

connected layer. The KKDNet-one architecture thus consists

of 4 convolutional layers with filters 3×3 and a shape 2×2

stride. For the fully connected part, we have a first layer of

1024 neurons, followed by 512, 256 and 128 neurons in the

next three layers, the last layer being the output layer with 9

neurons.

The training performance results obtained from training set

1, composed of tomato images, on different models are

presented in Table 6. Table 7 presents similar results obtained

on training set 2. In addition, we have included in these tables

a column relating to computational complexity, corresponding

to the results in Table 5.

What we can say about the results shown in Table 6 and

Table 7 is that for all models overall, the training performance

values in the accuracy metric are very close to the test ones,

and in addition they are above 94%. This shows that all models

are able to extract and learn features efficiently. We have the

Resnet, DenseNet and our KKDNet models, which show

100% performance in the accuracy metric on both the

validation and test sides. This shows that all three models have

learned the features well and are able to generalize to new data

accurately. Regarding the accuracy metric (Table 6), the

GoogLeNet model shows a validation performance of 98.61%

and a test performance of 99.05%. The ShuffleNet model has

a training performance of 95.07% and a test performance of

95.80%. As for KDDNet-one, performance was 95.90% in

training and 96.09% in test. With the data set 2.

We observe on both two table (Table 6 and Table 7) that

KKDNet achieves similar or even better performance than the

GoogLeNet, ShuffleNet, and ResNet architectures, both in

training and testing. The advantage is that these performances

are achieved with a significantly lower computation time

compared to the other architectures. Indeed, computation time

is closely related to complexity, evaluated in FLOPS. For

example, it takes GoogleNet 25 times longer than KKDNet to

achieve the same results. ShuffleNet takes 51 times longer

than KKDNet.

4.2.2 Others result

We conducted further experiments using the remaining

images from the "Fruits-360" database, excluding the tomato

images, to evaluate KKDNet's generalization capability. The

"Fruits-360" dataset comprises around 80 types of fruits across

131 classes, including avocados, bananas, pineapples, and

mangoes. By excluding the tomato classes, we retained 83,643

images across 122 classes. KKDNet achieved an accuracy of

98.20%, compared to 97.50% for GoogleNet, 96.53% for

ShuffleNet, 99.58% for ResNet, and 99.10% for DenseNet.

Notably, KKDNet demonstrates strong generalization with an

accuracy above 94% and outperforms GoogleNet, ShuffleNet,

and DenseNet in this aspect, though ResNet achieves slightly

higher accuracy. Additionally, KKDNet offers a superior

execution time advantage (Table 5).

Table 5. Parameters number and computational complexity of the models

Models Parameters Number Computational Complexity (FLOPs)

GoogleNet 6,056,505 1,221,195,310

ShuffleNet 968,337 2,450,507,844

ResNet 23,606,153 6,347,705,993

DenseNet 7,052,617 3,212,015,689

KKDNet -one 5,507,385 44,924,217

KKDNet 8,064,441 47,704,745

Table 6. Performance comparison on data set 1

Models Computational Complexity (FLOPs) Training Accuracy (%) Test Accuracy (%)

GoogleNet 1,221,195,310 98.61 99.05

ShuffleNet 2,450,507,844 95.07 95.78

ResNet 6,347,705,993 100 100

DenseNet 3,212,015,689 100 100

KKDNet -one 44,924,217 95.80 96.09

KKDNet 47,704,745 100 100

Table 7. Performance comparison on data set 2

Models Computational Complexity (FLOPs) Training Accuracy (%) Test Accuracy (%)

GoogleNet 1,221,195,310 99.79 100

ShuffleNet 2,450,507,844 98.69 99.88

ResNet 6,347,705,993 99.89 100

DenseNet 3,212,015,689 100 100

KKDNet -one 44,924,217 98.92 100

KKDNet 47,704,745 100 100

5. DISCUSSION

This study intends to present a CNN network model that

offers good performance without being computationally

intensive or having many layers. Our proposed CNN network,

named KKDNet, features just 4 convolutional layers, with a

1707

kernel size of 3×3, a stride of 2×2, and utilizes the ReLU

activation function, as outlined in its architecture in Table 2.

In addition, with the use of cyclic learning rate in training

phase achieve approximately same performance in training

and test accuracy as shown in Table 6 and Table 7. We believe

that using a cyclic learning rate, which periodically increases

the learning rate, helps explore a larger portion of the

parameter space and avoid local minima, thereby facilitating

the discovery of better global solutions more quickly.

Concerning the execution time based on the number of

operations in FLOPS, as presented in Table 5, we observed

that we need to multiply its execution time by a coefficient

ranging from 25 to 52 to match the time required for the other

architectures discussed in this study. This efficiency is

primarily due to the use of 4 layers and the 3×3 kernel size,

which require less computation time and maintain similar

performance like other mentioned CNN architectures.

However, we note that for other classes in the Fruits 360

database, our model (KKDNet), as well as the GoogLeNet,

DenseNet, and ResNet models, exhibit error rates between 1%

and 2%. Indeed, these errors could result from the variety of

classes and the fact that some classes are less represented in

the database. Regularization techniques such as L1/L2 could

address this issue and help the model generalize better. We

could also add the batch normalization technique, which,

although not strictly a regularization technique, can help

achieve a more generalizable model.

6. CONCLUSION

In this research, we introduced the KKDNet model, an

efficient CNN network model, while being enhanced for

computational effectiveness. Experiments were performed on

tomato image datasets from the "fruits 360" database. The

results obtained showed that our KKDnet model offers

comparable performance to recent models in the literature,

while requiring less computation time to run. It should be

noted that we applied techniques such as the cyclic learning

rate, which not only accelerated learning but also made the

model more efficient. Ultimately, the results showed that our

KKDNet model with fewer layers achieved superior

performance in the identification and classification of tomato

images, and could therefore serve as a general system for smart

categorization of plant images in practical use. We presume

that our model because of using cyclic learning rate will

perform well in generalization.

In the future, to make our model even more robust, we plan

to test it on other types of image datasets such as MNIST

dataset. We also intend to employ regularization techniques

like L1/L2 regularization and batch normalization to enhance

the model's generalizability. Additionally, we plan to integrate

the model into a software application for use in agriculture.

REFERENCES

[1] Nations, U. World population projected to reach 9.8

billion in 2050, and 11.2 billion in 2100. United Nations

Department of Economic and Social Affairs.

https://www.un.org/development/desa/en/news/populati

on/world-population-prospects-2017.html, accessed on

Jan. 5, 2024.

[2] Rothman, D. (2018). Artificial intelligence by example:

Develop machine intelligence from scratch using real

artificial intelligence use cases. Packt Publishing Ltd.

https://www.pdfdrive.com/artificial-intelligence-by-

example-develop-machine-intelligence-from-scratch-

using-real-artificial-intelligence-use-cases-

e176504308.html, accessed on Oct. 30, 2019.

[3] Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A.,

Aggoune, E.H.M. (2019). Internet-of-Things (IoT)-

based smart agriculture: Toward making the fields talk.

IEEE Access, 7: 129551-129583.

https://doi.org/10.1109/ACCESS.2019.2932609

[4] Issad, H.A., Aoudjit, R., Rodrigues, J.J. (2019). A

comprehensive review of Data Mining techniques in

smart agriculture. Engineering in Agriculture,

Environment and Food, 12(4): 511-525.

https://doi.org/10.1016/j.eaef.2019.11.003

[5] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

Imagenet classification with deep Convolutional Neural

Networks. Advances in Neural Information Processing

Systems, 25.

https://proceedings.neurips.cc/paper/2012/hash/c399862

d3b9d6b76c8436e924a68c45b-Abstract.html, accessed

on Jan. 4, 2024.

[6] Guo, T., Dong, J., Li, H., Gao, Y. (2017). Simple

Convolutional Neural Network on image classification.

In 2017 IEEE 2nd International Conference on Big Data

Analysis (ICBDA), Beijing, China, pp. 721-724.

https://doi.org/10.1109/ICBDA.2017.8078730

[7] Sharma, N., Jain, V., Mishra, A. (2018). An analysis of

Convolutional Neural Networks for image classification.

Procedia Computer Science, 132: 377-384.

https://doi.org/10.1016/j.procs.2018.05.198

[8] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521(7553): 436-444.
https://doi.org/10.1038/nature14539

[9] Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou,

Y., Bo, X., Xie, Z. (2018). Deep learning and its

applications in biomedicine. Genomics, Proteomics and

Bioinformatics, 16(1): 17-32.

https://doi.org/10.1016/j.gpb.2017.07.003

[10] Müller, V.C., Bostrom, N. (2016). Future progress in

artificial intelligence: A survey of expert opinion.

Fundamental Issues of Artificial Intelligence, Springer,

Cham, 555-572. https://doi.org/10.1007/978-3-319-

26485-1_33

[11] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11): 2278-2324.

https://doi.org/10.1109/5.726791

[12] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard,

R., Hubbard, W., Jackel, L. (1989). Handwritten digit

recognition with a back-propagation network. Advances

in Neural Information Processing Systems, 2: 396-404.

[13] Hecht-Nielsen, R. (1992). III.3-Theory of the

backpropagation neural network. Neural Networks for

Perception, 1992: 65-93. https://doi.org/10.1016/B978-

0-12-741252-8.50010-8

[14] Lee, H., Kwon, H. (2017). Going deeper with contextual

CNN for hyperspectral image classification. IEEE

Transactions on Image Processing, 26(10): 4843-4855.

https://doi.org/10.1109/TIP.2017.2725580

[15] Chen, G., Chen, Q., Long, S., Zhu, W., Yuan, Z., Wu, Y.

(2023). Quantum Convolutional Neural Network for

image classification. Pattern Analysis and Applications,

1708

26(2): 655-667. https://doi.org/10.1007/s10044-022-

01113-z

[16] Zeiler, M.D., Fergus, R. (2014). Visualizing and

understanding convolutional networks. In Computer

Vision-ECCV 2014: 13th European Conference, Zurich,

Switzerland, Proceedings, Part I. Springer International

Publishing. Springer, Cham, 13: 818-833.

https://doi.org/10.1007/978-3-319-10590-1_53

[17] Simonyan, K. (2014). Very deep convolutional networks

for large-scale image recognition. arXiv Preprint arXiv:

1409.1556. https://doi.org/10.48550/arXiv.1409.1556

[18] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger,

K.Q. (2017). Densely connected convolutional networks.

In Proceedings 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI,

USA, pp. 4700-4708.

https://doi.org/10.1109/CVPR.2017.243

[19] Hu, K., Zou, A., Wang, Z., Leino, K., Fredrikson, M.

(2024). Unlocking deterministic robustness certification

on imagenet. Advances in Neural Information Processing

Systems, 36.

https://proceedings.neurips.cc/paper_files/paper/2023/h

ash/863da9d40547f1d1b18859519ce2dee4-Abstract-

Conference.html

[20] Targ, S., Almeida, D., Lyman, K. (2016). Resnet in

resnet: Generalizing residual architectures. arXiv

Preprint arXiv: 1603.08029.

https://doi.org/10.48550/arXiv.1603.08029

[21] Traore, B.B., Kamsu-Foguem, B., Tangara, F. (2018).

Deep convolution neural network for image recognition.

Ecological Informatics, 48: 257-268.

https://doi.org/10.1016/j.ecoinf.2018.10.002

[22] Nair, V., Hinton, G.E. (2010). Rectified linear units

improve restricted Boltzmann machines. In Proceedings

of the 27th International Conference on Machine

Learning (ICML-10), Haifa, Israel, pp. 807-814.

[23] Wang, S., Manning, C. (2013). Fast dropout training. In

International Conference on Machine Learning, PMLR,

28(2): 118-126.

https://proceedings.mlr.press/v28/wang13a.html,

accessed on Jan. 5, 2024.

[24] Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.

(2013). Regularization of neural networks using

dropconnect. In International Conference on Machine

Learning. PMLR, pp. 1058-1066.

https://proceedings.mlr.press/v28/wan13.html, accessed

on Jan. 6, 2024.

[25] Lee, C.Y., Gallagher, P.W., Tu, Z. (2016). Generalizing

pooling functions in Convolutional Neural Networks:

Mixed, gated, and tree. In Artificial Intelligence and

Statistics. PMLR, pp. 464-472.

https://proceedings.mlr.press/v51/lee16a.html, accessed

on Jan. 6, 2024.

[26] Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z. (2015).

Deeply-supervised nets. In Artificial Intelligence and

Statistics. PMLR, pp. 562-570.

https://proceedings.mlr.press/v38/lee15a.html, accessed

on Jan. 06, 2024.

[27] LeCun, Y., Kavukcuoglu, K., Farabet, C. (2010).

Convolutional networks and applications in vision. In

Proceedings of 2010 IEEE International Symposium on

Circuits and Systems, Paris, France, pp. 253-256.

https://doi.org/10.1109/ISCAS.2010.5537907

[28] Taye, M.M. (2023). Theoretical understanding of

Convolutional Neural Network: Concepts, architectures,

applications, future directions. Computation, 11(3): 52.

https://doi.org/10.3390/computation11030052

[29] Krichen, M. (2023). Convolutional Neural Networks: A

survey. Computers, 12(8): 151.

https://doi.org/10.3390/computers12080151

[30] Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J. (2021). A

survey of Convolutional Neural Networks: Analysis,

applications, and prospects. IEEE Transactions on

Neural Networks and Learning Systems, 33(12): 6999-

7019. https://doi.org/10.1109/TNNLS.2021.3084827

[31] Hijazi, S., Kumar, R., Rowen, C. (2015). Using

Convolutional Neural Networks for image recognition.

Cadence Design Systems Inc.: San Jose, CA, USA, 9(1).

[32] Bieder, F., Sandkühler, R., Cattin, P.C. (2021).

Comparison of methods generalizing max-and average-

pooling. arXiv Preprint arXiv: 2103.01746.

https://doi.org/10.48550/arXiv.2103.01746

[33] Jiang, Y., Xie, J., Zhang, D. (2022). An adaptive offset

activation function for CNN image classification tasks.

Electronics, 11(22): 3799.

https://doi.org/10.3390/electronics11223799

[34] Durairajah, V., Gobee, S., Muneer, A. (2018). Automatic

vision based classification system using DNN and SVM

classifiers. In 2018 3rd International Conference on

Control, Robotics and Cybernetics (CRC), Penang,

Malaysia, pp. 6-14.

https://doi.org/10.1109/CRC.2018.00011

[35] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi,

F.E. (2017). A survey of deep neural network

architectures and their applications. Neurocomputing,

234: 11-26.

https://doi.org/10.1016/j.neucom.2016.12.038

[36] Du, X., Sun, S., Hu, C., Yao, Y., Yan, Y., Zhang, Y.

(2017). DeepPPI: boosting prediction of protein-protein

interactions with deep neural networks. Journal of

Chemical Information and Modeling, 57(6): 1499-1510.

https://doi.org/10.1021/acs.jcim.7b00028

[37] Yu, T., Zhu, H. (2020). Hyper-parameter optimization: A

review of algorithms and applications. arXiv Preprint

arXiv: 2003.05689.

https://doi.org/10.48550/arXiv.2003.05689

[38] Muresan, H., Oltean, M. (2018). Fruit recognition from

images using deep learning. Acta Universitatis

Sapientiae, Informatica, 10(1): 26-42.

https://doi.org/10.2478/ausi-2018-0002

[39] Lu, T., Han, B., Chen, L., Yu, F., Xue, C. (2021). A

generic intelligent tomato classification system for

practical applications using DenseNet-201 with transfer

learning. Scientific Reports, 11(1): 15824.
https://doi.org/10.1038/s41598-021-95218-w

[40] Siddiqi, R. (2019). Effectiveness of transfer learning and

fine tuning in automated fruit image classification. In

Proceedings of the 2019 3rd International Conference on

Deep Learning Technologies. In ICDLT ’19. New York,

NY, USA: Association for Computing Machinery,

Xiamen, China, pp. 91-100.

https://doi.org/10.1145/3342999.3343002

[41] Kodors, S., Lacis, G., Zhukov, V., Bartulsons, T. (2020).

Pear and apple recognition using deep learning and

mobile. Engineering For Rural Development, 20: 1795-

1800. https://doi.org/10.22616/ERDev.2020.19.TF476

[42] Bloice, M.D., Stocker, C., Holzinger, A. (2017).

Augmentor: An image augmentation library for machine

1709

learning. arXiv Preprint arXiv: 1708.04680.

https://doi.org/10.48550/arXiv.1708.04680

[43] Anand, R., Shanthi, T., Nithish, M.S., Lakshman, S.

(2020). Face recognition and classification using

GoogleNET architecture. In Soft Computing for Problem

Solving: SocProS 2018, Springer Singapore, 1: 261-269.

https://doi.org/10.1007/978-981-15-0035-0_20

[44] Zhang, X., Zhou, X., Lin, M., Sun, J. (2018). Shufflenet:

An extremely efficient Convolutional Neural Network

for mobile devices. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 6848-6856.

https://doi.org/10.1109/CVPR.2018.00716

[45] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-9. https://www.cv-

foundation.org/openaccess/content_cvpr_2015/html/Sze

gedy_Going_Deeper_With_2015_CVPR_paper.html,

accessed on Mar. 18, 2024.

[46] Dumoulin, V., Visin, F. (2016). A guide to convolution

arithmetic for deep learning. arXiv Preprint arXiv:

1603.07285. https://doi.org/10.48550/arXiv.1603.07285

1710

