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Mechanisms of Action (MoA) relates to how drugs work at a molecular level to produce 

therapeutic effects in the body. Every drug interacts with specific molecules and these 

interactions can either boost or hinder the activities of these molecules, leading to changes 

in how cells and tissue’s function. This article proposes a network of several Ensembled 

Deep Neural Networks Splits (EDNNS) to predict the multiple targets of the MoA 

responses of different samples. The dataset consists of various groups of features, with more 

than two hundred enzyme and receptor targets. Several Machine Learning (ML) models, 

including the EDNNS, are evaluated. For performance evaluation, the logarithmic loss 

function is used. In the experimental evaluation, we evaluated MLP, Deep NN, ResNet, 

Xgboost and found that the proposed ensemble EDNNS is more robust than the MLP, Deep 

NN, ResNet, Xgboost having less loss. The comparatively less loss thus means a more 

robust and accurate model for prediction. This work can benefit the advanced drug 

discovery cause-effect by providing valuable insights and exciting directions for future 

research. 
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1. INTRODUCTION

Mechanisms of Action (MoA) is a phenomenon of how 

drugs work at a molecular level to produce their therapeutic 

effects in the body. As drugs interact with specific molecules, 

like receptors or enzymes, they play important roles in 

biological responses and processes. These interactions 

augment the activities of these molecules, leading to changes 

in how cells and tissue’s function. Knowing a drug's MoA is 

vital in pharmacology because it allows researchers to predict 

how effective it will be, what side effects might occur, and 

how it might interact with other medications. Machine 

Learning (ML) provides a valuable contribution to several 

fields ranging from engineering, social, computing, and 

medical sciences. Interest has grown in the applicability of the 

ML in medicine and biosciences, signifying our interest in this 

field. If the ML models can successfully learn the MoA 

distribution with minimum loss and high accuracy, the 

obtained model can then predict a compound's MoA based on 

a specific cellular signature, benefiting the advanced drug 

discovery cause-effect process. Understanding the process of 

MOA is crucial in the identification of drug efficacy 

concentration in addition to the toxic and lethal dose along 

with any adverse effects. 

The current paper proposes a network of EDNNS to predict 

the multiple targets of the MoA responses of different samples. 

As such, an exploratory answer to the question is reported! 

Can the drug's MoA based on gene expression and cell 

viability data be predicted using the ML paradigm? The 

Harvard's Laboratory for Innovation Science dataset is used to 

explore the answer. The dataset consists of various groups of 

features with more than two hundred targets of enzymes and 

receptors. The samples are profiled at different time points and 

doses. Multiple ML models are evaluated with special interest 

inclined towards the EDNNS model due to its superior 

regression performance. Our proposed approach is similar to 

the stacking ensemble of multiple deep NNs. For performance 

evaluation, the average value of the logarithmic loss function 

is used. The experimental evaluation shows that the ML 

paradigm, especially the EDNNS, provides better MOA 

prediction and can be used for practical applications and 

scenarios. 

Understanding a drug's MOA is not a pre-requisite for drug 

approval as long as the safety and efficacy are well 

documented. Even though largely unclear, Metformin's MOA 

is proposed to control diabetes through AMP-activated protein 

kinase's (AMPK) inhibition [1]. Similarly, Dimebon, which 

was postulated to stabilize mitochondria, thereby possessing 

anti-Alzheimer potency, nevertheless had to be aborted during 

the phase 3 trial as cognition potency was due to its histamine 

and serotonin receptors interaction and not as an anti-

Alzheimer effect [2]. A compound's MOA is attributed to the 

protein signaling in a pathway, the role of effector protein, and 

differing protein expressions depending on the site of action 

[3]. 

The latest technological research methodologies can 

comprehensively test any compound's hypothesized MOA at 

many levels using ML, pathway enrichment, connectivity 

mapping, causal reasoning, and the compound's previously 

documented site of action and signaling proteins interaction. 

The current study provides an overview of the different data 

levels, and compounds' MoA can be elucidated. 
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Bioactivity data like High Throughput Screening (HTS) 

provides resourceful data in predicting sites of MoA for 

orphan drugs [4] wherein a multitude of drug molecules can 

be evaluated against a panel of compound targets. The 

obtained data has its limitations as it does not consider the 

pharmacokinetic properties of absorption, distribution, 

metabolism, and excretion (ADME) and lacks data at the 

cellular level about the modified signaling pathway in 

response to drug binding on the receptors. Many other freely 

accessible databases like ChEMBL, PubChem, ExCAPE, and 

BindingDB extract the data from the published literature with 

different lab and experimental settings and assays. The 

variation in experiments may be related to a data error, adding 

to the complexity of the generated data. The morphological 

modifications like apoptosis or alteration in cytoskeletal 

protein upon adding any compound to the cell line can be 

visualized using cell imaging [5]. New assays like the Cell 

Painting assay [6] using fluorescent dyes depict morphological 

changes in organelles. 

There is various segmentation software capable of 

analyzing and mining features from 2D cell images like 

CellProfiler [7], CellCognition [8], and PhenoRipper [9], in 

addition to automated feature mining software like 

Convolutional Neural Networks (CNNs) [10] that involves 

deep learning (DL). DL utilizes raw images for extraction and 

precise identification of cells or cellular sub-compartments or 

substructures [11, 12]. One limiting factor for DL software is 

the inability of all tested drug molecules to alter cellular 

morphology. 

Proteomics provides vital information related to the 

compound's MOA through the expression of the proteins. The 

methodology's limitations are time-consuming, expensive, and 

lacking quantification of all proteins in an experiment, which 

can be circumvented by obtaining data from multiple 

experiments or studies [13, 14]. Similarly, metabolomics 

provides changes in metabolite enzyme activity by any drug 

molecule. Deeper mechanistic information of any drug 

molecule can thus be obtained through changes in 

transcription, translation, proteomics, and metabolites levels. 

The metabolic method's limitations require multiple 

experiments to obtain the complete metabolome coupled with 

data interpretation difficulty and wide data variability 

requiring experimental replication [15]. Phosphoproteomics 

provides additional potential pathways modulated by the drug 

molecules following alteration in protein phosphorylation. 

The limitation in phosphoproteomics is overcome through 

PhosphoSitePlus [16], wherein the phosphorylation sites are 

mapped to proteins, thereby providing biological context 

through disease and pathway annotations. 

ML has significantly influenced drug discovery, beginning 

with quantitative structure-activity relationship (QSAR) 

modeling. This method used statistical techniques to predict 

biological activity based on chemical structure, despite 

computational and data limitations at the time. The 

introduction of high-throughput screening (HTS) and 

genomics resulted in a surge of biological data, which 

increased the application of ML algorithms like support vector 

machines (SVMs) and random forests. These algorithms 

enabled the rapid analysis of large datasets, facilitating the 

identification of potential drug targets and accelerating early 

drug discovery stages. Further advancements in deep learning 

have greatly advanced the field. For example, AtomNet has 

accurately predicted small molecule binding affinities to 

proteins, aiding in the discovery of treatments for diseases 

such as Ebola and multiple sclerosis. DeepMind's AlphaFold 

has also revolutionized protein structure prediction. 

Researchers have used AI to analyze biomedical data, 

identifying drug repurposing opportunities like baricitinib for 

COVID-19, which was validated through clinical trials. 

However, the application of ML in drug discovery faces 

challenges, including a scarcity of high-quality, labeled data, 

limited model interpretability, and difficulties in generalizing 

from training data to real-world scenarios. Addressing these 

challenges requires strategies such as enhancing data 

integration across domains, developing interpretable ML 

models, and using techniques like transfer learning and few-

shot learning to tackle data scarcity. Collaborative efforts 

among multidisciplinary teams are also essential to ensure ML 

models are grounded in biological insights and practical needs. 

These efforts promise faster, more efficient, and effective 

approaches to identifying novel therapeutics and improving 

patient outcomes. 

The article introduces an NN-based Ensemble Deep Neural 

Network System (EDNNS) for predicting multiple targets of 

Mode of Action (MoA) responses across various samples. It 

investigates the prediction of MoA using gene expression and 

cell viability data within a machine-learning framework. 

Comparative evaluation with MLP, Deep NN, ResNet, and 

Xgboost reveals that the proposed EDNNS ensemble exhibits 

greater robustness with lower loss compared to these 

individual models. The findings of this article may provide 

advancements in drug discovery by identifying new 

therapeutic targets and biomarkers, facilitating personalized 

medicine, and enabling safer, more effective treatments. It 

helps create drugs that target specific disease mechanisms, 

reducing side effects and increasing efficacy. Additionally, we 

can repurpose existing drugs for new uses, speeding up the 

development of therapies for conditions lacking effective 

treatments. 

2. BIOLOGICAL NETWORK AND PATHWAY DATA

Proteins, the cellular signaling mediators, are critical in 

understanding MoA due to their interaction with other 

proteins, genes, and metabolites. Yeast two-hybrid (Y2H) 

screening [17] demonstrates interactions absent in in-vivo or 

affinity purification-mass spectrometry (AP/MS) [18] with an 

increased percentage of false-positive and negatives are the 

commonly used experimental methods for protein-protein 

interaction [19-21]. Various network databases are available 

through in-house experiments, literature mining, and 

individual network database compilation [22, 23]. Each 

network interaction type has its database like STRING [24] 

(protein-protein), RECON [25] (metabolic), and DoRothEA 

[26] (TF-gene), and composite networks combining multiple

networks like OmniPath [27] and BioGRID [28]. Network

selection will depend on the research question to be resolved

along with network analysis and types of interactions required.

In MoA evaluation, pathway data links genes/proteins to 

observed phenotypes, allowing straightforward data 

interpretation. A compound's MoA can be inferred if any 

compound for known genes in a given pathway demonstrates 

differential expression. Pathway database, with its limitation 

of the varied data curation method, can be resolved using 

PathMe [29] to determine variations and obtain a consensus 

pathway or select an all-inclusive annotation database. 
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3. METHODS OF MOA ELUCIDATION 
 

3.1 Connectivity mapping 

 

Connectivity mapping equates modification of gene 

expression cell lines incubated with the drug molecule to the 

set of already present reference signatures associated with any 

disease or other known drug molecules MOA or disease. 

 

3.2 Pathway enrichment 

 

Pathway enrichment analysis provides the opportunity to 

reduce a vast array of genes or proteins, even in the absence of 

any biological information, to more minor processes, making 

them more interpretable than the gene database itself, thereby 

providing more context in identifying any given phenotype 

interest. 

 

3.3 Causal reasoning 
 

Any modification in mRNA expression is determined 

precisely through causal reasoning using prior knowledge 

network (PKN) molecular interaction from gene expression 

data [30]. Any compound's MoA is determined using such 

methodology through the compound-induced modulated 

signaling proteins. A compound's MoA is determined 

accurately without mixing gene level with protein activity 

through causal reasoning's estimated perturbed protein 

signaling equated to pathway enrichment. One limitation of 

casual reasoning is an absence of validated signaling protein 

output equated to experimentally determined protein activity 

modification. 
 

3.4 Clustering aggregation 
 

These algorithms encompasses essential tools for 

exploration, serving the vital purpose of identifying and 

organizing groups of related or interacting samples [31]. These 

methods operate based on the principles of similarity or 

distance, utilizing metrics like k-means clustering or data 

density measures such as DBSCAN. They play a pivotal role 

in analyzing complex datasets containing gene expression, 

chemical compositions, and image-based information, which 

are often unstructured and high-dimensional [32]. By 

uncovering patterns and relationships inherent in these 

intricate datasets, clustering techniques help to unravel the 

complexity of biological processes. Ultimately, they provide 

valuable insights that significantly contribute to the 

advancement of scientific understanding in various fields. 
 

3.5 Group Factor Analysis 
 

Group Factor Analysis (GFA) is an integrative analysis 

determining the correlation of various data like chemical 

descriptors and genetic processes [33]. Multi-omics Factor 

Analysis (MOFA) and MOFA+ are examples of GFA linked 

to clinically relevant findings in which the integrated clusters 

comprising 24 anti-tumor compounds' biological data 

demonstrated to possess MEK inhibitor activity on 

hematopoietic cells [34]. 
 

3.6 Modeling and prediction 
 

Supervised ML trains and identifies patterns in the presence 

of identified labels used to optimize a function by connecting 

to features like gene expression with an endpoint like a 

compound's activity at specific points on the label. Supervised 

ML demonstrates the compound's MoA by predicting primary 

and off-target drug interactions [35]. DL methods are typical 

artificial neural networks (ANN) with a multitude of discrete 

layers along with specialized training modules, thereby 

mimicking the human brain's complex neural network.   

Each methodology has its benefit and limitations like 

network and pathway depend on preliminary information 

related to the curation quality. In addition to being time-

constrained, ML has its share of other limitations in 

interpreting data, and the data obtained is restricted to a small 

part of the high-level MoA space. Similarly, different data 

types obtain a varied version of the MoA biology and thus 

enable a more comprehensive understanding of compound 

MoA. ML contributes to MOA elucidation through prediction, 

which upon further interpretation, can be utilized by 

researchers. 

 

 

4. PROPOSED APPROACH: ENSEMBLED SPLITS 

 

We target the scenario! Can the drug's MoA based on gene 

expression and cell viability data using the ensemble stacking 

as splits be predicted with minimum loss? As such, a model 

was trained to classify drugs based on the stimulus of the 

biological activity after the drug's administration. For 

performance evaluation, the average value of the logarithmic 

loss function was applied to each drug MoA annotation pair in 

the dataset. 

ML is generally based on the assumption that all algorithms 

are centralized, implying that both the training data and the 

model reside on the same computing infrastructure. However, 

this has recently been considered a barrier in ML innovation 

concerning data privacy. Therefore, the concept of NN models 

spread across multiple physical machines has provided an 

exponential reduction to the computational burden of training 

and, at the same time, has high accurate models when trained 

over a large number of spreads. In ensemble stacking splits 

NN, the training of NN is divided into several sub-trainings 

performed and distributed to multiple nodes. Each sub-model 

is a fully functional NN that feeds into the segment. The output 

of the splits is then concatenated for final prediction and model 

generation. The details of the splits and the NN are presented 

in the experimental section. 

 

 
 

Figure 1. Ensembles as splits for the proposed model 
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Dataset represents the generic raw form of the data, for 

example, images. The features represent the extracted features 

in case data is in raw form. F1, F2, and F3 represent the subset 

of features where the prominent features are sub-divided. The 

S1, S2, and S3 represent the independent units of the NN 

network used for training. Finally, the results are aggregated. 

Figure 1 shows the generic flow of the proposed model for 

the ensemble as splits for the proposed model, wherein the 

dataset represents the generic raw form of the data, which can 

be expressed in terms of datasets having images. Figure 1 

represents the features extracted from the dataset if the data is 

in raw form, while if the dataset is already available as features, 

then the step might be replaced with dataset pre-processing. 

For ensemble splits, the features are sub-divided as F1, F2, and 

F3; F represents the subset of features where the prominent 

features are sub-divided. The S1, S2, and S3 represent the 

independent units of the NN network used for training. These 

are physical systems interconnected to solve a particular 

problem in pure split networks. Finally, the results are 

aggregated from different nodes. 

 

 

5. EXPERIMENTAL ANALYSIS 

 

The dataset for MoA prediction is obtained from and 

available on Kaggle and is provided as such by the 

Connectivity Map (CM), a project by MIT, Harvard, LISH, 

and the NIH-LINCS [36]. The dataset is utilized for academic 

purposes and experimental evaluation of the ML models only. 

The dataset consists of the following features: 

(1) Gene expression 

(2) Cell viability 

(3) Multiple targets of MoA 

The problem represented by MoA data is a multilabel 

classification problem. Thus, data has multiple targets; 

however, these are not multiple classes. First, the data analysis 

is presented, followed by MoA prediction using ensemble 

stacking.  

Table 1 presents a sample of the MoA data. The training 

features set represents the gene expression data and cell 

viability and is represented by "g" and "c" symbols. In the 

dataset, the samples cp_type is treated with a cp_vehicle 

compound or with ctrl_vehicle (control perturbation). The 

ctrl_vehicle has no MoA. cp_time and cp_dose represent 24, 

48, and 72 hours’ duration, and the dose is either high or low. 

From a data wrangling point of view, no missing values 

were found. For visual analysis of the data, Figure 2 shows the 

plot for the gene expression features, only representing g-0 and 

g-2. Figure 3 shows the cell viability features, C-0 and C-5, as 

representative samples. 

 

 
 

Figure 2. Plot of gene expression features g-0 and g-2 

 

 
 

Figure 3. Plot of cell viability features c-0 and c-5 

 

Table 1. Sample of data from the training set 

 
sig_id cp_type cp_time cp_dose g-0 g-1 g-2 g-3 g-4 g-5 

id_000644bb2 trt_cp 24 D1 1.062 0.5577 -0.2479 -0.6208 -0.1944 -1.012 

id_000779bfc trt_cp 72 D1 0.0743 0.4087 0.2291 0.0604 1.019 0.5207 

id_000a6266a trt_cp 48 D1 0.628 0.5817 1.554 -0.0764 -0.0323 1.239 

id_107fc335d ctl_vehicle 48 D2 0.0309 0.4909 1.198 5.031 -1.241 0.4047 

 

 

6. EVALUATION AND DISCUSSION 

 

Predictions using the proposed EDNNS are performed 

using the bottom segment, followed by forwarding the 

prediction to the next model segment. After receiving the 

prediction, a new prediction is made based on the previous 

prediction on the input data, which is then forwarded to the 

next model. These steps are repeated until reaching of end 

layer with the final prediction and a computational graph for 

each model. The computational graphs embody input 

transformation to the prediction and help in the 

backpropagation phase. Then the network is defined, in this 

case, a four-layered network where each split is a self-

sufficient network. The shape of layers influences the final 

prediction. The sending and receiving layers must have a 

similar structure. Next, workers are defined to distribute the 

splits. Training functions are defined similarly to that of the 

conventional NN. A second backpropagation phase is needed, 

which pushes gradients back over the segments. Finally, for 

starting training, the data is sent to starting locations. 

The proposed EDNNS consists of many dense layers, 

dropout layers, and layers performing batch normalization. 

After the dense layers, activation functions are altered. For 

training, the network is trained on the non-scored targets. The 

weights of the non-scored targets are then transferred for the 

training of another model on the scored targets. Smoothing on 

the label is then used, which helps in regularization. For 

training, the Multilabel Stratified K-Fold with ten splits is 

adopted. Figures 4 and 5 show the network's architecture. 

Figure 4 shows the single split and its layers. 85% of the top 

features are used as input for each split. The Autograd function 

enables the differentiation of variables versus the loss function. 

An Autograd gradient can be used to update the model. 

However, in the implementation, the computational graph 
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variables were lacking in one place; therefore, the partial 

backpropagation splits backward loss reduction approach was 

adopted as splits have to be concatenated to get the final model 

prediction. The concatenation blending is achieved using 

averaging. Figure 5 shows the concatenation of splits and 

different layers to blend different splits. 

 

 
 

Figure 4. Architecture of the network (A single sample split 

and its layers) 

 

The data split among train and test samples has not been 

entirely randomized from the analysis. The signatures in the 

training data at low/high doses and different time points. 

However, the data is not split by drug. Some drugs appeared 

only in training, while some in training and testing samples. 

From the dataset analysis, the dominant seven drugs 

contributing to 10 targets from a total of 206 targets (Table 2) 

are presented in Table 3. For each of the ten targets, the drugs 

contribute over 50% of the sig-ids. Initially, this may cause 

biases in prediction. 

 

 
 

Figure 5. Architecture of the network (concatenation of the 

different splits and the layers) 

 

Table 2. List of all targets involved in the MoA dataset 

 
Sig_id Sig_id 

5-alpha_reductase_inhibitor hdac_inhibitor 

11-beta-hsd1_inhibitor histamine_receptor_agonist 

acat_inhibitor histamine_receptor_antagonist 

acetylcholine_receptor_agonist histone_lysine_demethylase_inhibitor 

acetylcholine_receptor_antagonist histone_lysine_methyltransferase_inhibitor 

acetylcholinesterase_inhibitor hiv_inhibitor 

adenosine_receptor_agonist hmgcr_inhibitor 

adenosine_receptor_antagonist hsp_inhibitor 

adenylyl_cyclase_activator igf-1_inhibitor 

adrenergic_receptor_agonist ikk_inhibitor 

adrenergic_receptor_antagonist imidazoline_receptor_agonist 

akt_inhibitor immunosuppressant 

aldehyde_dehydrogenase_inhibitor insulin_secretagogue 

alk_inhibitor insulin_sensitizer 

ampk_activator integrin_inhibitor 
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Analgesic jak_inhibitor 

androgen_receptor_agonist kit_inhibitor 

androgen_receptor_antagonist laxative 

anesthetic_-_local leukotriene_inhibitor 

angiogenesis_inhibitor leukotriene_receptor_antagonist 

angiotensin_receptor_antagonist lipase_inhibitor 

anti-inflammatory lipoxygenase_inhibitor 

antiarrhythmic lxr_agonist 

Antibiotic mdm_inhibitor 

anticonvulsant mek_inhibitor 

Antifungal membrane_integrity_inhibitor 

antihistamine mineralocorticoid_receptor_antagonist 

Antimalarial monoacylglycerol_lipase_inhibitor 

Antioxidant monoamine_oxidase_inhibitor 

antiprotozoal monopolar_spindle_1_kinase_inhibitor 

Antiviral mtor_inhibitor 

apoptosis_stimulant mucolytic_agent 

aromatase_inhibitor neuropeptide_receptor_antagonist 

atm_kinase_inhibitor nfkb_inhibitor 

atp-sensitive_potassium_channel_antagonist nicotinic_receptor_agonist 

atp_synthase_inhibitor nitric_oxide_donor 

atpase_inhibitor nitric_oxide_production_inhibitor 

atr_kinase_inhibitor nitric_oxide_synthase_inhibitor 

aurora_kinase_inhibitor norepinephrine_reuptake_inhibitor 

autotaxin_inhibitor nrf2_activator 

bacterial_30s_ribosomal_subunit_inhibitor opioid_receptor_agonist 

bacterial_50s_ribosomal_subunit_inhibitor opioid_receptor_antagonist 

bacterial_antifolate orexin_receptor_antagonist 

bacterial_cell_wall_synthesis_inhibitor p38_mapk_inhibitor 

bacterial_dna_gyrase_inhibitor p-glycoprotein_inhibitor

bacterial_dna_inhibitor parp_inhibitor 

bacterial_membrane_integrity_inhibitor pdgfr_inhibitor 

bcl_inhibitor pdk_inhibitor 

bcr-abl_inhibitor phosphodiesterase_inhibitor 

benzodiazepine_receptor_agonist phospholipase_inhibitor 

beta_amyloid_inhibitor pi3k_inhibitor 

bromodomain_inhibitor pkc_inhibitor 

btk_inhibitor potassium_channel_activator 

calcineurin_inhibitor potassium_channel_antagonist 

calcium_channel_blocker ppar_receptor_agonist 

cannabinoid_receptor_agonist ppar_receptor_antagonist 

cannabinoid_receptor_antagonist progesterone_receptor_agonist 

carbonic_anhydrase_inhibitor progesterone_receptor_antagonist 

casein_kinase_inhibitor prostaglandin_inhibitor 

caspase_activator prostanoid_receptor_antagonist 

catechol_o_methyltransferase_inhibitor proteasome_inhibitor 

cc_chemokine_receptor_antagonist protein_kinase_inhibitor 

cck_receptor_antagonist protein_phosphatase_inhibitor 

cdk_inhibitor protein_synthesis_inhibitor 

chelating_agent protein_tyrosine_kinase_inhibitor 

chk_inhibitor radiopaque_medium 

chloride_channel_blocker raf_inhibitor 

cholesterol_inhibitor ras_gtpase_inhibitor 

cholinergic_receptor_antagonist retinoid_receptor_agonist 

coagulation_factor_inhibitor retinoid_receptor_antagonist 

corticosteroid_agonist rho_associated_kinase_inhibitor 

cyclooxygenase_inhibitor ribonucleoside_reductase_inhibitor 

cytochrome_p450_inhibitor rna_polymerase_inhibitor 

dihydrofolate_reductase_inhibitor serotonin_receptor_agonist 

dipeptidyl_peptidase_inhibitor serotonin_receptor_antagonist 

diuretic serotonin_reuptake_inhibitor 

dna_alkylating_agent sigma_receptor_agonist 

dna_inhibitor sigma_receptor_antagonist 

dopamine_receptor_agonist smoothened_receptor_antagonist 

dopamine_receptor_antagonist sodium_channel_inhibitor 

egfr_inhibitor sphingosine_receptor_agonist 

elastase_inhibitor src_inhibitor 

erbb2_inhibitor steroid 

estrogen_receptor_agonist syk_inhibitor 

estrogen_receptor_antagonist tachykinin_antagonist 

faah_inhibitor tgf-beta_receptor_inhibitor 
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farnesyltransferase_inhibitor thrombin_inhibitor 

fatty_acid_receptor_agonist thymidylate_synthase_inhibitor 

fgfr_inhibitor tlr_agonist 

flt3_inhibitor tlr_antagonist 

focal_adhesion_kinase_inhibitor tnf_inhibitor 

free_radical_scavenger topoisomerase_inhibitor 

fungal_squalene_epoxidase_inhibitor transient_receptor_potential_channel_antagonist 

gaba_receptor_agonist tropomyosin_receptor_kinase_inhibitor 

gaba_receptor_antagonist trpv_agonist 

gamma_secretase_inhibitor trpv_antagonist 

glucocorticoid_receptor_agonist tubulin_inhibitor 

glutamate_inhibitor tyrosine_kinase_inhibitor 

glutamate_receptor_agonist ubiquitin_specific_protease_inhibitor 

glutamate_receptor_antagonist vegfr_inhibitor 

gonadotropin_receptor_agonist vitamin_b 

gsk_inhibitor vitamin_d_receptor_agonist 

hcv_inhibitor wnt_inhibitor 

 

Table 3. Output of 10 targets and 7 unique over-represented 

drugs in the MoA dataset 

 
Target Drugs 

Cdk inhibitor 24 

Egfr inhibitor 25 

flt3 inhibitor 17 

Hmgcr inhibitor 7 

Kit inhibitor 17 

Nfkb inhibitor 19 

Pdgfr inhibitor 21 

Proteasome inhibitor 4 

Raf inhibitor 9 

Tubulin inhibitor 22 

 

 
 

Figure 6. The log-loss-based comparison of the EDNNS with 

the MLP [37], Deep NN [38], ResNet [39], Xgboost [40] 

 

For performance evaluation, the log losses are computed on 

the validation set. Figure 6 shows the comparison of the 

EDNNS with the MLP [37], Deep NN [38], ResNet [39], 

Xgboost [40]. MLP, Deep NN, ResNet, Xgboost models, and 

the EDNNS losses are 0.01968, 0.01823, 0.01701, 0.01978, 

and 0.01599, respectively. From the evaluation in the figure 

based on the log loss, the proposed ensemble EDNNS is more 

robust than the MLP, NN, ResNet, and Xgboost, having less 

log loss. The comparatively less loss thus means a more robust 

and accurate model for prediction. Generally, in biomedical 

and genomics data, the distribution is strongly affected by the 

type of sample, instrumentation inconsistencies, quality of 

reagent deviations, etc. The current study also argues that the 

biological data in raw form is not comparable due to 

systematic errors, which refer to the same data and the same 

person's experimental setup. Also, significantly different 

features stay smaller, thus assuming that the distributions of 

most samples in MoA are similar. Without prior experience 

with MoA or similar domains, the current study experimented 

with a concatenation of ML/DL framework to achieve better 

performances on MoA prediction. If the ML models learn the 

MoA distribution robustly with minimum loss and high 

accuracy, the obtained model can then predict a compound's 

MoA based on a specific cellular signature. 

 

 

7. CONCLUSION 

 

The current paper proposes NN based EDNNS approach in 

predicting multiple targets of the MoA responses of different 

samples. As such, the current study explored the answer to the 

question of the prediction of MoA based on gene expression 

and cell viability data using the ML paradigm. The current 

study evaluated MLP, Deep NN, ResNet, Xgboost and found 

that the proposed ensemble EDNNS is more robust than the 

MLP, Deep NN, ResNet, Xgboost having less loss. The 

comparatively less loss thus means a more robust and accurate 

model for prediction. This work can benefit the advanced drug 

discovery cause-effect by providing valuable insights and 

exciting directions for future research. 
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