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Within the field of computer vision and artificial intelligence, the analysis of two-

dimensional image data stands as a pivotal domain, specifically in the context of semantic 

segmentation. This intricate process involves the precise categorization of pixels within a 

two-dimensional space, thereby enabling nuanced classification at a granular level. In this 

research endeavor, we present a novel network architecture, denoted as "a-Net," 

strategically crafted to achieve a delicate balance between computational expeditiousness, 

operational efficiency, adaptability, and precision for the overarching objective of semantic 

segmentation in two-dimensional imagery. The a-Net architecture, grounded in the 

principles of auto-encoding, tactically addresses data loss concerns inherent in segmentation 

processes. Engineered to adeptly outline objects within two-dimensional spaces, this 

architecture yields meticulous masks for individual objects, ensuring the generation of high-

fidelity segmentation outcomes. The design philosophy of a-Net underscores not only its 

computational efficacy but also its straightforward implementability and training, thus 

imparting versatility across a diverse array of applications. Its efficacy spans the resolution 

of varied challenges within the domain of two-dimensional semantic segmentation, with 

particular relevance in medical imaging scenarios encompassing objects of both 

microscopic and macroscopic scales. Our investigative methodology establishes the 

superior performance of the a-Net architecture relative to alternative two-dimensional 

semantic segmentation frameworks. This superiority is underscored by commendable 

outcomes observed across diverse challenges, affirming the a-Net's status as a robust and 

versatile solution within the evolving landscape of two-dimensional semantic segmentation. 

This research significantly contributes to advancing the state of the art in the realm of image 

segmentation, offering a sophisticated and efficient solution that attains optimal precision 

while preserving computational efficiency. 

Keywords: 

medical applications, deep learning, 

semantic segmentation, encoder-decoder, 

atrous convolutions 

1. INTRODUCTION

This new field of deep learning has taken off within 

machine learning, enjoying tremendous acclamation for the 

capacity to deal with very complicated data and run through 

complex tasks. It is applied in the medical domain, more so in 

handling some of the pivotal challenges associated with 

semantic segmentation, which testifies to this transformative 

capability it is having. In the medical context, semantic 

segmentation means the careful classification of every pixel in 

a medical image into predefined categories, such as organs, 

tissues, or anomalies. It is a process intended to enhance 

diagnostic accuracy, aid thoughtful treatment planning, and 

further medical research. 

Deep learning remained an effective solution for semantic 

segmentation due to its inherent ability for capturing complex 

features and generating generalized insights from large 

datasets. Deep Convolutional Neural Networks [1] have been 

proved to be very powerful on a range of visual recognition 

tasks. However, more often than not, performance is 

hamstrung by the requirement of large datasets and a huge 

number of parameters during training. The unique challenge 

in semantic segmentation is classifying every pixel 

independently, which departs from this conventional approach 

of giving a single class to an image as seen in most image 

classification paradigms. 

Semantic segmentation spans across dimensions: 2D 

images, videos, and 3D objects. Each one is a very challenging 

and crucial aspect in computer vision. This means that, in 2D 

images, all pixels should be classified by understanding the 

semantic relations between neighboring pixels to delineate an 

object. More traditionalick systems for semantic segmentation 

have been manually designed with features fed into a 'flat' 

classifier like Boosting, Random Forests, or Support Vector 

Machines. In supervised approaches, pixels were classified 

using their features, while in clustering algorithms, 

segmentation of objects was based on defining the number of 

clusters and then allowing the algorithm to segregate pixels 
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based on inter-cluster distances. However, features of this kind 

were relatively of limited expressive power. 

Even though deep neural networks have overshadowed all 

other traditional algorithms of machine learning, the 

Convolution Neural Networks are still accompanied by certain 

challenges like reduction in features due to Convolution 

operations. To deal with it, the dilated convolutional technique 

creates holes between subsequent elements of the kernel while 

training and increases its covered area, thereby enhancing the 

extraction of relevant information. Another challenge that 

remains is how to deal with objects at multiple scales, 

surmounted by employing the pyramidal space technique. 

The research proposes an a-Net semantic segmentation 

architecture that combines pyramidal spatial dilated 

convolution with an encoder-decoder approach. This fusion 

seeks to retain maximum information from an image, and the 

ensuing sections will deliberate on separate elements that go 

into this architecture while testing its influence on variability 

across different datasets. 

 

 

2. RELATED WORKS 
 

Large success in deep learning for semantic segmentation 

was initiated by Long et al., who developed fully 

convolutional neural networks for this task. This enabled 

hierarchical feature extraction and learning through CNNs, 

extending those large classification models like AlexNet [2], 

VGG-16 [3], GoogLeNet [4], and ResNet [5] into FCNs [6] 

for generating spatial maps rather than simple classification 

scores. 

Recent research has mostly been centered on modifications 

and improvements of FCNs in semantic segmentation with 

good results. 

 

2.1 Encoder-decoder 

 

Another influential methodology apart from the FCN 

paradigm is that of encoder-decoder. Essentially, it consists of 

two phases: an encoder generating a feature map, and a 

decoder reconstructing an image of the same dimensions as the 

input image from the feature map. Contrary to FCNs, the 

decoder phase comprises upsampling and convolution, and 

ends with a softmax operation to assign each pixel a specific 

class. This approach spawned various different architectures, 

of which SegNet [7] and U-Net [8] are ones that have enriched 

the segmentation methodologies landscape. Each of their 

strengths is different within the computer vision and image 

analysis spectrum. 
 

2.2 Atrous convolutions 

 

The technique of Dilated Convolution has been outstanding 

in efficiently extracting features across arbitrary resolutions. 

Chen et al. [9] introduced the DeepLab architecture that uses 

dilated convolution with different dilation rates to achieve a 

larger receptive field without extra computational cost or 

undersampling of feature maps. Improvements along this line, 

DeepLab version 3 [10], have gone much beyond the 

performance without the post-processing Conditional Random 

Field step of previous versions. This means that Dilated 

Convolutional Layers can actually improve the extracted 

features effectively for semantic segmentation. 

 

2.3 Fusion of features 

 

Feature fusion is one of the prevalent techniques for 

semantic segmentation. It demonstrated very remarkable 

performance on a large variety of tasks. Chen et al. [11] 

explained this methodology that refers simply to the 

concatenation of outputs stemming from several layers within 

a network. Similarly, Pinheiro et al. [12] proposed a Feature 

Fusion-based network. This introduced a progressive 

refinement module that refines smoothly the functionalities 

from the previous layers into the following ones. This 

technique further underlines the role and power of feature 

fusion in strengthening semantic segmentation networks 

toward more robust adaptation with respect to context-aware 

segmentation results. 

 

 
3. OUR METHOD 

 

One of the primary limitations in advanced architectures 

like the U-Net and DeepLab was their inability to evaluate and 

extract advanced features. To answer this challenge, much 

attention had to be put forward on improving this critical phase 

to enhance model performance and accuracy. 

As shown in this section, our architecture, a-Net (Figure 1) 

[13, 14], is constructed as illustrated, with Figure below, 

showing a-Net incessantly putting emphasis on the roles of 

atrous convolution and the encoder for efficient feature 

extraction.  

 
3.1 Stride and Atrous convolution (Features extraction) 

 
Speaking with regard to DCNNs, traditional convolution 

starts a window for convolution in the top left of the tensor and 

goes scan line by scan line to the right and downwards. If a 

stride is 1, then every element is visited one at a time. But for 

the sake of efficiency or subsampling, strides of two or three 

elements may be used, skipping intermediate locations. This 

method combined with pooling will lead to decreasing spatial 

resolution and increase the number of trainable parameters. 

Dilated convolution, also named atrous spatial pyramid 

sampling, is a strategic solution keeping up—determining 

spaces between kernel values and explicit control over the 

density of feature response computation in fully convolutional 

networks. For instance, a 3×3 kernel with a dilation rate of 3 

provides the same view as a 7×7 kernel, thus portraying how 

the filter's vision will change adaptively with the modification 

of the dilation rate. In our particular case, with 256×256 image 

dimensions, we feel the difference between the spatial 

resolution of the input and output. With a stride of 3 in the first 

convolution layer, the dimension turns out to be 86×86. Then, 

applying the same Convolution six times with the same stride 

is constant and chances of feature decimation are not there. On 

the other side, atrous convolution keeps the same dimension 

of the output where r, the dilation rate, implies the sampling 

step at the input image shown in Figure 2. 

It is accomplished through filtering of the image and putting 

(r-1) zeros between two successive values of filters along each 

dimension of space. 
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Figure 1. a-Net architecture 

 

 
 

Figure 2. Atrous 3×3 convolution with varying rates 

 

At the outset of our network, we utilize atrous convolution 

side by side. As elaborated above, using the stride would result 

in features remaining in the output but resolution decreases 

which is not desirable for semantic segmentation. Hence, we 

make five copies of convolution consisting of 1×1 and 3×3 

convolutions applied on the input image with different dilation 

rates ranging from 6 to 24 with an increment of 6 in parallel. 

This has been inspired by the design proposed by Yu and 

Koltun [15]. This parallel path will cater to the problems 

associated with the diminishing resolution and also enhance 

the effectiveness of semantic segmentation. 

 

3.2 Merging the features 

 

Such integration of outputs from different layers is very 

important in generating robust feature representations. Using 

each output individually is challenged by sophisticated 

mechanisms of images, capture angles, and the strong 

presence of noise, which make it ever more difficult to 

interpret the meaning of each target. This was pointed out by 

Liu et al. [16] Since it incorporates dilated convolution to 

achieve parallel outputs, it is then of paramount importance to 

merge these outputs to make the optimization of the deep 

network easier and increase learning efficiency. However, 

since each of the five outputs of atrous convolution comprises 

16 feature maps, concatenating all these outputs would give an 

output with a massive number of 80 feature maps, greatly 

increasing the training time. For this reason, the strategy 

adopted adds distinct feature maps at a size that will match the 

outputs from previous layers. The aim here is not only to 

generate features that are more appropriateness, but also to 

avoid a huge number of feature maps that increase the 

challenge, hence optimizing the performance of the network 

during training. 
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3.3 Auto-Encoding phases 

 

In the last stage of our architecture chain, this output is 

further refined from the merge with a two-step contraction and 

expansion procedure, taken also from U-Net. This encoding 

step is mainly a series of convolutions where the 3×3 

convolutions are followed by ReLU activation (𝑓(𝑥)  =
 𝑥+  =  𝑚𝑎𝑥(0, 𝑥)) for dropping the negative values. Setting 

a 2×2 max-pooling layer, we will further reduce the spatial 

dimensions. The contractive path extracts a unified feature 

tensor using 12 convolutional layers, starting from 32 to 1024 

feature maps. On the other hand, the successive expansive path 

[17] is simply a reversal of the former path, which starts from 

1024 to 32 feature maps; it uses 2×2 upsampling layers 

concatenated with their corresponding paths from the first 

phase and convolves it by 3×3 and ReLU activates it. 

It preserves the relevant structure and features by 

concatenating the output from the encoder to the input image. 

Finally, five 3×3 convolutions are applied, the first four of 

which are followed by the Leaky ReLU activation function, 

defined by (𝑓(𝑥)  =  𝑥 𝑖𝑓 𝑥 >  0 𝑒𝑙𝑠𝑒 0.02 ∗ 𝑥), and the last 

layer utilizes a 1x1 convolution. Leak ReLU ensures that all 

negative values have a small, non-zero gradient, which helps 

ensure that all variables are trainable and contributes to a more 

robust training process. That last set of convolutions maps 

each of the feature vectors with 8 components the last two 

layers produced to the number of classes wanted at the end, 

culminating in a refined class-aware output of segmentation. 

U-Net is good at capturing fine details in virtue of the 

symmetric encoder-decoder structure. However, it sometimes 

struggles to handle complex and multi-scale features better 

dealt by DeepLabv3 using atrous convolutions. Thus, 

DeepLabv3 may lose high spatial resolution in the feature 

maps. Our a-Net architecture alleviates these challenges by 

combining atrous convolution and feature fusion techniques to 

enhance feature extraction without losing spatial details. This 

approach uses both U-Net and DeepLabv3 strengths while 

improving on their limitations to give better results. The 

details in these parts further make it clearer why a-Net can 

work better than its competitors in certain respects, thus 

further enhancing the contribution of our work. 

 

 

4. TRAINING 

 

The training protocol is primarily grounded in utilizing 

input images paired with their corresponding masks for each 

image. Kingma and Ba [18] is utilized as the optimization 

algorithm, enhancing the gradient descent method through the 

integration of momentum and adaptive learning rate 

techniques. Its application in semantic segmentation is 

particularly advantageous, as it provides faster convergence 

and improved performance in complex image analysis tasks. 

Momentum aids in determining the optimal direction, while 

adaptive learning rate facilitates more effective step changes. 

An initial learning rate of 0.01 is employed for initialization. 

To maximize GPU memory usage and accelerate convergence 

speed towards minimum error, the batch size technique is 

applied, providing a judicious sampling for each epoch during 

training. Batch normalization layers are incorporated to 

reinforce training by ensuring speed and stability through the 

normalization of inputs via rescaling or recentering. Proposed 

by Ioffe and Szegedy [19], the effectiveness of batch 

normalization during training is well-documented, even 

though the exact reasons behind its efficacy remain a topic of 

discussion. 

For the final layer, the softmax activation function is chosen 

due to its compatibility with the objective of pixel-wise 

classification for multiclasses. Softmax relies on probabilities 

and is defined by the formula  

𝜎(𝑧)  =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
1

, for 𝑖 =  1, . . . , 𝑘 , z = (𝑧1, . . . , 𝑧𝑘)∈  𝑅𝑘 ,and 

𝑘 ≥ 1. The a-Net enhances training and computes the model 

error using the softmax output alongside the ground truth 

segmentation. Focal loss is employed as the error function due 

to its proven effectiveness in mitigating class imbalance issues 

within each image—a persistent challenge in image processing. 

The focal loss function is defined as 𝐹𝐿(𝑃𝑖)  =  −𝛼 ∗ (1 −
 𝑃𝑖)γ ∗  𝑙𝑜𝑔(𝑃𝑖), where 𝑃𝑖  is the predicted probability of the 

positive class, 𝛼  controls the weight of positive samples, and 

𝛾 determines the focus on easy-to-classify (𝛾 = 0) or hard-to-

classify examples (𝛾 > 0). The output size corresponds to the 

number of scalar values in the model output. 

 

 

5. EXPERIMENTAL EVALUATION 

 

In this section on evaluation, we trained our models for 400 

epochs to garner the models' performance on different datasets. 

We used two different image datasets: one of large objects and 

the other of small objects, evidencing the flexibility and 

effectiveness of the proposed architecture. 

The first dataset concerns 3D semantic segmentation, with 

the target of large image stacks resulting from electron 

microscopy recordings, focusing on mitochondria (Figure 3). 

This dataset is courtesy of EPFL [20], and it contains 165 

image slices, each measuring 768×1024×3 pixels. For every 

image, there exists a ground truth segmentation map in which 

mitochondria are encoded in white and the background is 

encoded in black. 

 

 
 

Figure 3. Our predictions in the Electron Microscopy 

problem (The first column corresponds to the input images, 

the second to their masks, and finally, our a-Net predictions) 
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Figure 4. Our predictions in X-ray images from the tuberculosis control program 

 

The second dataset was about segmenting X-ray images, 

most of which concerned tuberculosis. Figure (Figure 4). This 

dataset, sourced from the tuberculosis control program of the 

Montgomery County Department of Health and Human 

Services, MD, USA [21], consists of 704 radiographs with 

clinical labels. The dataset was compiled on the Kaggle 

platform that contained images for training and for validation. 

Both of these datasets are considered among the most 

essential benchmarks with respect to evaluating new models' 

performance in semantic segmentation. We've used standard 

semantic segmentation evaluation metrics for both models: 

IoU, MSE, RMSE, F1-score, and Pixel Accuracy on these two 

diverse datasets (Table 1 and Table 2). This theoretical 

evaluation sheds light on the performance and generalizability 

of our model within two very different medical imaging 

domains, thus showing flexibility and efficiency of the a-Net 

architecture. 

To this end, detailed preprocessing at the front end had to 

be done in order to ensure robustness. In the case of an electron 

microscopy image dataset, normalization and contrast 

enhancement were done to bring out the features of interest—

the mitochondria. While for the X-ray dataset, histogram 

equalization and resizing were done to introduce uniformity in 

terms of dimensional input. The datasets were divided into 

training, validation, and test sets, ensuring that samples are 

diverse and representative. More specifically, the electron 

microscopy dataset contained 132 images for training and 16 

for validation, leaving 17 for testing. For the X-ray dataset, the 

split consisted of 560 images for training, 70 for validation, 

and 74 for testing. 

Results obtained from these experiments clearly resonate 

with the effectiveness of the a-Net architecture in performing 

a wide range of medical image analysis tasks, underlining its 

applicability elsewhere within semantic segmentation, with 

minimal changes in hyperparameters depending on the 

problem domain. 

 

Table 1. Evaluation table of the three architectures on 

microscopy images of mitochondria 

 

Name MSE RMSE MIOU 
Pixel 

Accuracy 
F1 

u-Net 0.0240 0.1549 0.7685 0.9740 0.7033 

DeepLabv3 0.0203 0.1421 0.8202 0.9778 0.7889 

a-Net 0.0201 0.1415 0.8144 0.9779 0.8977 

 

Table 2. Evaluation table of the three architectures on the 

x-ray images for tuberculosis 

 

Name MSE RMSE MIOU 
Pixel 

Accuracy 
F1 

u-Net 0.0213 0.1459 0.9466 0.9780 0.9584 

DeepLabv3 0.0392 0.1978 0.9020 0.9601 0.9198 

a-Net 0.0156 0.1246 0.9606 0.9837 0.9696 

 

 

6. CONCLUSIONS 
 

In this research effort, we proposed a new architecture—a-
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Net—for semantic segmentation in medical applications. Our 

method was based on the seamless integration of atrous 

convolution, feature fusion, and the encoder-decoder 

technique that improves feature extraction and segmentation 

efficiency. We proved that a-Net could perform better than 

existing architectures like U-Net and DeepLab through 

different semantic segmentation tasks by elaborating very 

carefully on the different stages involved in our 

implementation. 

First, it introduced parallel atrous convolutions, which 

retain spatial resolution; second, it had strategically merged 

feature maps for fastening deep network optimization; lastly, 

it had a specially designed encoding-decoding process 

following the U-Net. These components cement a-Net as a 

strong and versatile framework with the capability of solving 

complicated semantic segmentation tasks. 

Despite these promising results, several limitations remain 

worthy of further investigation. An improvement in 

performance may be achieved with more hyperparameter 

tuning and use of further data augmentation techniques. 

Overall, the current implementation is computationally 

demanding and would possibly limit its applications, 

especially in resource-constrained scenarios—the need for 

additional research on more efficient architectures. 

Future research efforts will be directed toward the adaption 

of the model with respect to the automation of tumor stage 

detection in breast cancer, an important step toward practical 

implementations. If this becomes realized, it would underscore 

the greater effect our work and its contributions have on the 

development of medical imaging applications. Other than this, 

we are going to investigate a-Net further concerning its 

scalability to other domains of medicine or other fields and 

increasing its adaptability to even more semantic segmentation 

problems. 

 

 
7. LIMITATIONS 

 

Despite the promising performance of our new architecture 

for semantic segmentation of medical images, several 

limitations should be acknowledged. Firstly, the architecture's 

efficacy is highly dependent on the quality and diversity of the 

training data. Limited availability of annotated medical images 

can restrict the model's generalizability across different types 

of medical imagery. Secondly, the computational complexity 

of the proposed architecture requires substantial processing 

power and memory, which may not be feasible in resource-

constrained environments. Additionally, while our model has 

shown improved accuracy, it may still struggle with 

segmenting very small or highly irregular structures within 

medical images. Finally, the model's performance has 

primarily been evaluated on a specific set of medical imaging 

modalities, and its effectiveness across a wider range of 

imaging techniques remains to be thoroughly investigated. 

Further research is necessary to address these limitations and 

to enhance the robustness and versatility of our proposed 

architecture. 
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