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The amount of information produced about any item or user has reached a very staggering 

level. Not only the volume of data, the velocity of data has reached an unprecedented 

magnitude. For any information retrieval or information processing system to work 

efficiently, it should be able to process massive amounts of data in real-time. Modern 

systems face a lot of challenges in managing data with high volume and velocity, especially 

when these systems are required to generate accurate predictions in a timely fashion. The 

most efficient way to ensure that modern information retrieval systems can adapt to the 

current volume and velocity of data is to implement them over a parallel and distributed 

environment. In this paper, we put forward a method for enhancing the scalability and 

performance of recommender systems in big data environments. By using the Euclidean 

distance to calculate the cosine similarity we introduce a technique which is efficient in 

parallelizing the algorithm for distributed environments. Thereby improving the 

computational efficiency and scalability of the recommender system. This enables such 

systems to manage large datasets with high accuracy and speed. With the help of parallel 

processing, our method can assist modern information retrieval systems keep up with the 

pace of ever-growing demands of data velocity and volume, ensuring real-time 

performance and robust scalability. 

Keywords: 

memory-based, cosine similarity, euclidean 

distance, PySpark, parallel and distributed 

environment 

1. INTRODUCTION

There has been an incredible development and business 

surge in the online commerce industry. The economy fueled 

by this growth has evolved into a connected economy, and due 

to the rapid expansion of data, the network has now stepped 

into the age of big data. Users cannot correctly use the 

information made available by ever-growing e-commerce 

platforms, as the amount of commodity information has 

reached an inconveniently large scale. This has led to 

information overdose for the users. This means that incoming 

information is above and beyond the processing capacity of 

recipients, users, and systems alike. Due to this astronomical 

data growth, parallel and distributed systems of 

recommendation are becoming increasingly important. One of 

the key benefits of such systems being distributed and parallel 

is their ability to process large datasets more quickly. Real-

time recommendations to users have to be the main aim for 

recommender systems, such as those used by streaming 

services and e-commerce websites. Another benefit of parallel 

and distributed recommender systems is their ability to handle 

larger datasets. This is important for recommender systems, 

considering the number of parameters that are factored in 

while providing recommendations, including but not limited 

to user likings, item features, and information related to users 

and items. Additionally, parallelized distributed recommender 

systems are scalable, resilient, and cost-effective. This means 

they can be deployed on large-scale systems, handle failures, 

and be deployed on commodity hardware. We present an 

implementation of a memory-based collaborative filtering 

algorithm in a parallel and distributed environment in this 

paper. Our implementation uses several techniques to improve 

performance, including: 

(1) Partitioning the user-item preference matrix across

multiple processors. 

(2) Using a more efficient, parallelizable version of the

cosine similarity formula. 

Our experimental results show that our parallel 

implementation of a memory-based collaborative filtering 

algorithm can significantly improve performance over a serial 

execution. The paper has been divided into six sections. In the 

second section, we discuss the basic terminologies used in 

recommender systems. The third section of the paper discusses 

the similar efforts in the field. Our methodology of parallel 

implementation of a memory-based collaborative filtering 

algorithm is laid out in the fourth section. All the experimental 

results of the proposed method have been presented using 

graphical and tabular data in the fifth section. We finally 

conclude the paper in the final and sixth sections. 

2. BACKGROUND

Before we jump into recommender systems, the most 

imperative step should be to understand different categories of 

data processing systems referred to as Information Retrieval 
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systems. Information retrieval (IR) can be defined as the 

process of using a source of data and extracting information 

pertinent to an inquiry done by, any user or any other system 

e.g., a movie based on genre from a streaming platform, a 

journal from a repository based on a subject, or results 

produced by the search engine based on a question asked by 

the user [1]. One the types of IR is recommender systems. 

Hence, we can define a recommender system (RS) as a 

subcategory of an information filtering system that calculates 

the most accurate rating a user would provide for an item [2]. 

RS as a software solution has its roots in the most basic human 

tendency of asking for suggestions or recommendations before 

trying out any new experience or object or even for making 

friends. The information provided by these systems helps the 

users make decisions like purchasing an item, renting a movie, 

etc. The recommendations presented are designed to assist 

individuals in making informed decisions across a range of 

contexts. This means that the primary objective of these 

systems is to provide personalized recommendations which is 

the major difference between recommender systems and 

information retrieval search engines [2]. Recommender 

systems have emerged as essential tools in electronic 

commerce, providing effective solutions for online users 

grappling with information overdose. Their significance lies in 

their ability to sift through vast amounts of data, enabling users 

to make informed decisions. These systems have become 

pivotal in addressing the challenges posed by the 

overwhelming volume of information on online platforms. 

Hence, numerous methods for generating recommendations 

have been put forward. Companies like Netflix, Amazon, 

Facebook, etc. have successfully applied and gained from 

these methods for recommending books, movies and friends. 

Any RS has two main objects: “Items” and “Users”. The topic 

or object for which the suggestions are generated is generally 

called “Item”. Normally, RS is meant to recommend a specific 

type of item like movies, books, songs, restaurants, etc. Such 

systems are mainly aimed at individuals (referred to as “User” 

in RS) who are relatively new in a certain domain, like people 

looking for hotel suggestions before visiting a new place. 

Interaction between the items and users is called “Transaction”. 

Transactions give us data about items, users and preferences. 

The recorded preferences of users act as an input to the RS. 

These inputs can be collected implicitly or explicitly. Explicit 

feedback [3] shows the direct preference of users for an item. 

Explicit ratings are mostly on a numerical scale like a range of 

1 rating for worst and 5 being the best, like otherwise dislike, 

etc. Implicit feedback is extracted from user actions like the 

amount of time the user was on any given page, clicks 

performed by users on websites, whether the user purchased 

the item or watched the video, etc. Based on the way 

recommendations are generated, RS can be classified as given 

in Figure 1. 

 

 
 

Figure 1. Type of recommendation system 

 

(1) Collaborative filtering: Collaborative filtering [4] 

recommender systems leverage the preferences and 

behaviours of other users to suggest items or content to a 

particular user. By analysing the choices and interactions of a 

diverse user base, these systems identify patterns and 

correlations, allowing them to generate personalized 

recommendations. This approach helps users navigate the 

abundance of available options, making their online 

experience more tailored and relevant. Through sophisticated 

algorithms and data analysis, recommender systems enhance 

user engagement and satisfaction by presenting them with 

choices aligned with their interests and preferences. For 

instance, a recommendation of a film for a viewer can be 

grounded on the explicit or implicit feedback given by various 

other viewers who have watched the movie. 

(2) Content-based: Content-based [5] recommender 

systems use the previous interactions of the uses with the 

system and item properties of the items under consideration. 

Such systems might recommend movies based on the genre of 

the previously watched movies of the users or a book 

recommender tool might suggest books of the same author 

whose other books have already been read by the same user. 

(3) Demographic: These systems use the date of birth, sex 

of the user, and their current geographical location to generate 

suggestions for the user. For instance, this type of 

recommender would recommend the product to any user on 

the same lines as the products that users of the same age and 

gender have purchased. 

(4) Knowledge-based: Industry or domain-specific 

knowledge is used by such systems to provide useful 

suggestions to the user. The best example is a system 

suggesting a recipe to the user, considering the dietary 

restrictions and the ingredients they have on hand. 

(5) Community-based: Community-based recommender 

systems recommend items to a user relying on the 

predilections of user clusters having similar features. For 

instance, this type of recommender would use all views of all 

users of the same online forum to which another user belongs 

and suggest a movie rated highly by the users of the forum. 

(6) Hybrid filtering: These recommender systems are built 

using a combination of systems mentioned above. 

 

2.1 Content-based filtering algorithms 

 

Content-based filtering (CBF) generates a feature set of 

items and preference or behaviour profiles for users based on 

additional information about user demography, online 

behavior, their friend network, and the properties of items used 

by customers. CBF is classified as content-based when it 

provides recommendations grounded in the content details of 

items. Conversely, when these recommendations rely on the 

contextual information of users, CBF is termed context-based. 

In most situations, extracting relevant information about users 

or items becomes challenging due to a lack of information or 

information overload. This limits the performance and 

application of CBF. 

 

2.2 Collaborative filtering algorithms 
 

The majority of the recommender systems are based on 

Collaborative filtering algorithms. It can be defined as a 

method that generates suggestions, i.e., filters the information 

related to the choices of any person by gathering information 

from a large quantity of other people, i.e., collaborative 

filtering [6]. Breese et al. [7] categorized CF techniques into 
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systems which are based on memory while another type of 

system is built on models.  

 

2.2.1 Model-based CF techniques 

In the model-based approach, the system generates 

parameters to model the behavior of users and features of 

items, which enables it to make suggestions using the created 

parameters. Filtering techniques are collaborative in nature 

and build learning models based on machines for predicting 

ratings that an item might get from the user. These models are 

trained on a dataset of user ratings and item features. Once the 

models are trained, they can forecast the most probable rating 

an item would get from a specific user, even in scenarios where 

the user-item interaction would not have occurred earlier and 

no rating data is recorded for this user-item pair. As the main 

of such techniques is to predict rating, probability of purchase, 

etc., these systems are most commonly configured as 

supervised learning problems. 

 

2.2.2 Memory-based CF techniques 

Memory-based collaborative filtering techniques are 

relatively simple to implement and can be very effective for 

generating personalized recommendations. Memory or 

neighbourhood-based CF are implemented by calculating 

distance or similarity metrics. In memory-based CF, 

recommendations are based on similarities among users [8] or 

items [9]. 

(1) User-item Collaborative Filtering: items used or 

purchased or rated by users similar to us. Such systems first 

find users similar to the user under consideration and then 

generate recommendations for users based on their purchase 

or rating history. 

(2) Item-item Collaborative Filtering: based on the 

segregation that suggests that users who show interest in 

specific items are more likely to be interested in these items. 

Here, we first find similarities among a bunch of items and 

recommend items that are most similar to items already rated 

by that user.  

A detailed comparison in terms of the various 

characteristics of both these methods can be found in Table 1. 

 

Table 1. Comparison of memory and model-based CF 

 

Characteristic 
Model-Based 

Collaborative 

Filtering 

Memory-Based 

Collaborative 

Filtering 
Simplicity More complex Simpler 

Interpretability Less interpretable More interpretable 
Flexibility Less flexible More flexible 

Cold-start handling Worse Better 

Scalability 
More scalable for 

large datasets (once 

models are trained) 

Less scalable for 

large datasets 

Accuracy 
More accurate, 

especially for 

sparse datasets 

Less accurate, 

especially for 

sparse datasets 
Explainability Less explainable More explainable 

 

2.3 Challenges of the recommender system 

 

Recommender systems are complex algorithms that use 

data to predict what users will like. They are used in various 

applications, like online shopping, streaming services, and 

social media. However, recommender systems also face 

several challenges, including: 

Lack of data: Recommender systems need data to learn user 

preferences and make accurate recommendations. However, it 

is quite possible that there is not enough data for the users with 

very specific interests and this makes it very difficult to make 

useful and correct recommendations. 

Cold start problem: It is a phenomenon faced by a 

recommendation system when a new user or item enters the 

system and recommendations have to be generated for such 

users or items. Being new to the system there is no associated 

data for such users or items. This makes it very hard to provide 

recommendations when no data is available for the user’s 

interests or the item’s popularity. Thus, making it very 

challenging while generating recommendations. 

Scalability: The most critical feature of any Recommender 

system should be its ability to scale up to the ever-increasing 

volume of data being generated by users and items. As most 

of the recommender systems run on very complex algorithms 

which are computationally demanding, scalability becomes 

one of the biggest challenges that should be considered while 

designing any recommender systems. 

Sparsity: As the majority of the users do not interact with 

the majority of the items, the user-item matrix in a 

recommender system is often very sparse. This means data is 

not available for most of the user-item pairs. The absence of 

data makes it very difficult to make useful recommendations 

and understand the preferential pattern of the user or the 

popularity of items. 

Bias: The methods or even data used to generate 

recommendations can be the source of an inherent bias 

towards certain items or users. Once the bias is present in the 

recommendations there is a very high chance of the same items 

being recommended to the majority of users and not taking 

into account the actual preferences of the user. 

Privacy: There is an automatic concern relating to the 

collection and storage of data for making more accurate 

recommendations. This data can be transactional data or 

implicit data like browsing history and purchase history. This 

is not only a security concern but also raises ethical concerns 

as to what is the extent to which we should collect data without 

infringing the privacy of any user. 

Apart from the challenges discussed above, there are 

numerous other challenges faced by any recommender system. 

It should be flexible enough to cater to the ever-evolving 

preferences of the user and also consider the new items which 

are regularly added to the inventory. It also should be robust 

to handle attacks such as shilling attacks. A shilling attack is 

an attack where the system is flooded by fake user profiles and 

their review of items which can either promote or paint a bad 

review for any item. Even with such challenges, the 

recommender system is a very useful tool which not only helps 

users identify the most suitable items for them but also 

discovers new content and products which they would 

normally not try. 

 

 

3. PREVIOUS WORK 

 

With the increasing ease of accessibility to the internet and 

a large number of online and connected devices, the majority 

of the applications running on such devices have become data-

centric. Data is now being generated at a very tremendous rate. 

Applications like search engines, social media platforms, 

content streaming and sharing platforms have data and 

intelligent usage at their core. They are processing data from a 

few gigabytes to several terabytes or even petabytes. Google 
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for example is processing around twenty petabytes of data 

daily [10]. There have been various reviews of different 

recommender system techniques and applications. Lu et al. [11] 

provided a comprehensive survey of real-world recommender 

system applications and categorizes the definite necessities for 

recommendation methods in each application field. The author 

has also systematically reviewed recommender systems 

(online software) by considering four aspects: 

(1) Recommendation methods: This includes the different 

algorithms recommender systems use to generate 

recommendations, such as collaborative filtering, content-

based filtering, and knowledge-based filtering. 

(2) Recommender system software refers to specific 

applications that implement recommender systems, such as 

BizSeeker. 

(3) Real-world application domains: This refers to the 

different areas in which recommender systems are used, such 

as e-business, e-learning, and entertainment. 

(4) Application platforms: This refers to the different 

devices and platforms on which recommender systems are 

available, such as mobile phones, TVs, and websites. 

Chen et al. [12] provided a clear and concise overview of 

CF-based recommender systems, covering rudimentary ideas, 

different CF algorithms, and assessment metrics. They also 

discuss traditional CF methods’ challenges, such as cold start, 

data sparsity and scalability. The authors introduce the hybrid 

CF methods based on social networks, which have shown 

promising results in addressing the challenges of traditional 

CF methods. This work discusses a wide range of memory and 

model-based techniques, including enhanced similarity 

measures, memory-based trust-aware CF, model-based social 

matrix factorization-based CF, and dimensionality reduction 

techniques. 

Collaborative filtering algorithm is one of the most 

deployed personalized recommendation approaches especially 

in commercial recommendation systems [13, 14]. Scalability 

is a major concern for collaborative filtering. This has also 

been pointed out by Mishra et al. [15] who consolidated the 

research problems in Recommendation Systems, scalability is 

one of the most challenging problems to be solved. Bobadilla 

[16] also studied the cold start problem present in all 

recommender systems alongside similarity metrics tailored for 

this problem. Authors have also dwelled on providing a survey 

of social filtering focusing on trust, reputation and credibility. 

One of the approaches used in addressing such a problem is 

the reduction of data size [17]. This is done by either reducing 

the number of users by randomly sampling customers or by 

not considering users who have made fewer purchases. Items 

can also be reduced by selecting certain specific categories of 

items [18]. This approach of addressing scalability issues does 

not work as recommendation quality worsens significantly. 

The segmentation method [19] has also been used to tackle 

scaling issues where users are segmented into groups of 

similar customers. After segments are generated, the similarity 

between users and the vector which summarizes each segment 

is calculated. Cluster models are efficient as compared to the 

data size reduction approach. 

Most recommendation algorithms have tackled the 

scalability issue by moving the computationally heavy part of 

running any model into an offline phase. The same has been 

performed in Amazon.com recommendations [20] where it 

generates a similar item table and finds items similar to the 

items purchased by the user in offline mode. Part of the 

recommendation, which is only on a real-time basis, is listing 

the most similar items for that particular user. The real-time 

approach does not depend on the total number of items but 

only on the purchases made by that user, making item-item CF 

a highly scalable recommendation algorithm. 

However, moving the calculation steps, which consume a 

maximum amount of time to the offline phase and saving 

intermediate results for the online phase helped in scaling as 

per dataset. Still, the offline phase is a step which consumes a 

large amount of time and a tremendous number of resources. 

Then researchers started using a parallel data processing 

method such as Map-Reduce over a distributed environment 

to implement collaborating filtering. Varanasi [21] 

implemented user-based collaborative filtering over Map-

Reduce in a Hadoop environment where Jaccard distance was 

the similarity measure being calculated. The experiments in 

this approach do not include the effort for pre-processing as 

the performance measurement metric. Only the running time 

and data size are considered. It uses 6 MapReduce jobs. 

Bobadilla et al. [22] identified the limitations of traditional 

similarity metrics, such as Pearson correlation, which are not 

well-suited for discrete data, and proposes a new metric that 

addresses these limitations by combining numerical and 

nonnumerical information. Three of the most widely used 

practical datasets were used by the author to evaluate the new 

metric and prove its much better performance than the 

traditional metrics regarding accuracy, coverage, and 

precision/recall.  

Varanasi [23] implemented an item-item CF using Map-

Reduce with multiple similarity measures namely Jaccard 

Similarity, Tanimoto Similarity, Cosine Similarity and 

Pearson Coefficient. The results show that as the authors 

increased the number of nodes execution time decreased. 

However, even with a 6-node cluster, the time consumed is 

well above 4 hours and reaches around 16 hours for certain 

datasets. This work uses 7 MapReduce jobs for 

implementation. 

When parallel implementation of the basic recommendation 

algorithms [24] used Pearson correlation, adjusted cosine 

similarity and alternating least squares models on a platform 

like TensorFlow. The results pointed out that the adjusted 

cosine similarity neighbourhood approach provided the best 

accuracy, whereas the alternating least square method gave the 

lowest accuracy. The offline computation phase of adjusted 

cosine similarity on the other hand took around 8 hours in 

execution. 

In another Map-Reduce-based approach used in “Scalable 

Recommender System over MapReduce” [25], item-item and 

user-user collaborative are directly implemented without 

changing the approach to calculate similarity. Here, they focus 

on the accuracy of the RS, not on the efficiency of the RS. It 

used 4 maps and 3 reduce jobs. A lot of contributions and work 

has been done where the Hadoop MapReduce framework has 

been used to process the calculation of collaborative filtering 

in a parallel manner [26], but there seems to be a lack of focus 

on the serial processing required in executing a MapReduce 

job. Hence it is imperative that fewer full scans and sequential 

access should be assured while executing MapReduce jobs as 

it is paramount for maintaining the superior efficacy of parallel 

processing because such jobs require disk operations on the 

data nodes for getting input data and writing back the 

processed information. 

The author has put forward a new method for aggregating 

recommendations from multiple algorithms in paper [27]. The 

method, called Collaborative Rank Aggregation (CRA), uses 
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a metaheuristic algorithm to find weights for each algorithm’s 

ranking, such that the aggregated ranking is more accurate 

than any of the individual rankings. But this method requires 

a training set to tune the weights of the individual algorithms. 

The CRA method may not be able to improve the accuracy of 

recommendations if the individual algorithms are not accurate 

and also may not be able to enhance the accuracy of 

suggestions for all users. 

Dahdouh et al. [28] used Spark as processing system, 

recommendations are made to around 1218 learners from a list 

of more than 150 courses. The work has been done by using 3 

node cluster and a dataset of 5000 transactions where the 

execution time is 55 seconds. Sun et al. [29] have proposed 

SACF model learns a similarity matrix that embeds features 

which are both related and unrelated to sequence, which is 

more informative for personalized e-government 

recommendations. SACF uses matrix factorization to learn the 

similarity matrix, which can effectively calculate the similarity 

between a pair of users having no items rated by both of them. 

SACF reduces the complexity of computing user similarity 

from quadratic to linear, making it more efficient for large-

scale e-government recommendation tasks. It is evaluated on 

a live e-governance database and shows significant 

improvement over the cutting-edge methods.  

All the works discussed above have used direct 

implementations of existing algorithms. This may improve the 

efficiency to a certain extent, but to completely parallelize any 

algorithms, we might have to use specific implementations of 

algorithms which are more feasible for parallel and distributed 

processing. In the next section, we discuss our approach for 

using a different version of existing cosine similarity in 

addition to parallel and distributed methods of processing. 

 

 

4. PROPOSED WORK 

 

The most practical implementation of a memory-based CF 

is calculating the distance metric like cosine similarity [19], 

Pearson correlation [30] and Jaccard coefficient. We have 

focused on cosine similarity. It measures the similarity of two 

items, A and B, by measuring the cosine of the angle between 

the two vectors. The original formula for the cosine similarity 

is as given in Eq. (1): 

 

Similarity(𝐴, 𝐵) = Cos(𝐴, 𝐵) =
|𝐴 ⋅ 𝐵|

∥ 𝐴 ∥∗∥ 𝐵 ∥
 (1) 

 

In this paper, item-item CF is implemented by using cosine 

similarity in parallelly in a parallel manner. For this parallel 

implementation, the proposed calculation of cosine similarity 

is given in Eq. (2): 

 

Similarity(𝐴, 𝐵) =
|𝐴|2 + |𝐵|2 − 𝐶2

2 ∗ |𝐴| ∗ |𝐵|
 (2) 

 

where, A and B are item vector and C is the Euclidean distance 

between A and B. 

When applying cosine similarity in item-item CF each 

vector corresponds to an item and vector dimension 

corresponds to users who have rated the item. 

The following algorithm [19] provides an approach by 

calculating the similarity between a single item and all related 

items. 

 

Algorithm Iterative approach to find likeness among any 

item and remaining associated items 
1: Loop every item Ix 

2: Loop every User U who rated Ix 

3: Loop every item Iy rated by user U 

4: Save values when a user rated Ix and Iy 

5: Loop every item Iy 

6: Calculate the similarity between Ix and Iy 

 

The computation described above is the extremely time 

intensive. To improve the efficiency, it requires reducing the 

problem into manageable proportions. Number of users and 

items range in millions and become unmanageable. The 

approach taken in our work is to perform independent 

calculations in a parallelized and distributed manner. To 

achieve parallelization, the following steps are required. 

 

Step 1: Load and partition data 
1: Read item ID, user id & rating from csv source 

2: Partition data with item ID column 

 

Once we have partitioned data, we can carry on with further 

transformations. Given below are transformations applied. 

 

Step 2: Consolidate dimensions of each item vector 
1: Mapper 2: - Map data into key-value pair  

2: Input: - Partition data from pre-processing step.  

3: Output: - (Key(item id), value (user id, rating)) 

4: Reducer 1: - Consolidate all rating for each item 

5: Input: - (Key(item id), value (user id, rating)) 

6: Output: - (Key(item id), value (Magnitude of item vector,((user 

1, rating), (user N, rating)))) 

 

Step 3: Generate item pair for similarity calculation 
1: Mapper 3: - Generate item pair as key and value as pair of 

magnitude of vector and user & rating pair 

2: Input: - (Key(item id), value (Magnitude of item vector, ((user 

1, rating)(user N, rating)))) 

3: Output: - (Key(item item), value (Magnitude of item I vector, 

((user 1, rating), (user N, rating))), (Magnitude of item J vector, 

((user 1, rating), (user N, rating)) 

 

Step 4: Calculate cosine similarity for each item pair 
1: Mapper 4: - Use the formula in the Eq. (9) to calculate the 

cosine similarity. 

2: Input: - (Key(itemi,itemj), value (Magnitude of item vector, 

((user 1, rating), (user N, rating)))) 

3: Output: - (Key(itemi,itemj), value (Cosine similarity of item 

pairs)) 

4: Reducer2: - Produce a single file with item pair and 

corresponding cosine similarity 

 

Our approach has multiple facets, which makes it more 

efficient. 

1. The magnitude of item vectors is calculated in a 

parallelized manner. 

2. Use of Euclidean distance for calculating cosine 

similarity. 

3. Calculation of similarity in a distributed Spark cluster. 

The Eq. (1) is slower because it computes the sum of 

products whereas Eq. (2) calculates sum of square distances. 

Multiplication is an expensive operation compared to 

subtraction and square. The Eq. (2) does not require the 

computation of the product, and is therefore faster. We break 

down and discuss each component of both formulae in the next 

paragraph. 

When we calculate the square root of the sum of the squares 
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of each corresponding element of any vector, we can say that 

we have calculated the norm of that particular vector is defined 

as the square root of the sum of the squares of its elements. For 

example, let us consider a vector A, the norm can be calculated 

by Eq. (3). 

 

∥ 𝐴 ∥= √∑𝐴2 (3) 

 

We need to partition vector A into smaller blocks and then 

compute the norm of each block in parallel when the norm has 

to be calculated in a distributed environment. Then, all the 

intermediate norm of each block is summed up to achieve the 

final norm of the vector. Given, two vectors A and B, the dot 

product can be calculated by computing the sum of the 

products of their corresponding elements. This is also called a 

scalar product of the two vectors which is calculated using Eq. 

(4). 

 

𝐴 ⋅ 𝐵 = ∑𝐴 ∗ 𝐵 (4) 

 

We need to partition the vectors A and B into smaller blocks 

and then compute the dot product of each block in parallel in 

a distributed environment. Then we can achieve the final dot 

product of the two vectors by adding up the dot products of the 

blocks. The Euclidean distance between two vectors is defined 

as the square root of the sum of the squares of the differences 

of their corresponding elements. In other words, for two 

vectors A and B, the Euclidean distance is given by: This can 

also be computed in a distributed environment by partitioning 

vectors A and B into smaller blocks and computing the parallel 

Euclidean distance between each block. Once the Euclidean 

distance between each block is computed, the overall 

Euclidean distance between the vectors can be computed by 

summing the Euclidean distances between the blocks. 

In the proposed Eq. (1), we have precalculated the 

magnitude of the item vector, so this calculation does not 

contribute to execution time when calculating similarity in the 

final step. As the data is partitioned based on items, all the 

dimensions corresponding to users rating the same item are 

present in a single partition. This ensures minimum shuffle 

between the partitions. 

 

Table 2. Comparison of number of mapper and reducers 

 
Paper Mapper Reducer 

Varanasi [21] 6 6 
Varanasi [23] 7 7 

Wang and Yao [25] 4 3 
Proposed Method 4 2 

 

It can be understood from the Table 2 that number of 

MapReduce jobs is very important. Our work uses optimum 

number of mappers and reducers. Hence, we get the improved 

results. 

 

4.1 Roles of distributed system in recommendation 

 

Apart from the calculation changes. We also made sure to 

use of distributed and parallel computing as the two main 

weapons to fight the challenges and enhance the performance 

of these recommendation engines. 

These programming paradigms have a two-pronged 

approach, where the computation work is spread or distributed 

across multiple computers whereas parallel processing utilized 

the multiple cores of each machine and the workload is further 

distributed in multiple cores of each machine. Furthermore, 

these systems can be upgraded by using a large number of 

commodity hardware and by scaling parallelly thereby 

reducing the cost of expensive vertical upgrades. This 

collection of computing resources makes it possible to handle 

large datasets and enables recommender systems to generate 

real-time recommendations. 

There are a bunch of advantages provided by the use of 

distributed and parallel computation: 

Scalability: A distributed system can easily scale to match 

the growing rate of data, users and items. As such systems 

scale up horizontally which means adding commodity 

hardware instead of expensive servers, it is much cheaper and 

becomes more viable for the future too. The proposed work 

uses the user-item interaction matrix which is partitioned over 

the distributed environment. The system can distribute the new 

workload across nodes when new data and users are added. 

This ensures that the system can easily handle larger datasets. 

If required we can just add more inexpensive hardware instead 

of high-end servers. Thus, horizontal scaling ensures 

scalability in a much cheaper manner than vertical scaling.  

Faster Training: With the use of parallel processing the 

algorithms itself can be parallelized. This expedites the 

calculation of values like similarities. Thus, in turn improving 

the speed of the training of algorithms many folds, enabling 

them to learn from extensive datasets quickly. This use of 

parallel processing confirms that similarities and 

recommendations are always updated with the latest user-item 

interactions. Our implementation uses parallel processing as 

each node has 4 CPU cores. This speed up the calculations of 

the similarities as larger calculations are broken down into 

smaller tasks. This can be easily ascertained using the speedup 

measure of the results. 

Real-time Recommendations: When distributed and parallel 

data processing is combined, the prospect of real-time 

recommendations becomes a possibility. This ensures that all 

recommendations are always updated with the most recent 

trends of user preferences and item popularity. In the proposed 

solution Apache Spark has been used as the engine which 

provides in-memory processing. This further compliment the 

new formula by providing near real-time calculations, so that 

similarity values can be always recalculated if there is any 

change in user preferences and popularity of the items. 

Complex Models: Such systems also allow the researchers 

to use more sophisticated methods like deep learning-based 

recommendation models. These models can emulate the 

behavior of the users and user-item relations much more 

efficiently. In our approach, due to the use of Apache Spark 

which supports a large number of data science and ML 

libraries. We can easily build further complex models. 

These implementation techniques have shown a good 

improvement in the execution time of cosine similarity; the 

results are discussed in detail in the next section. 

 

 

5. EXPERIMENTS AND RESULTS 

 

5.1 Experiments setup 

 

The setup used in the experiment is the Google Dataproc 

Spark cluster. It has a 4-node cluster setup on the Google 

Cloud platform with 8GB of RAM and 4 cores for each node. 

The cluster has 1 master and 3 slaves. Apache Spark is the 
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processing engine for executing the code. 

Dataproc is a platform managed by Google Cloud platform. 

It provides Hadoop and Spark services. It is a very useful tool 

for batch processing, machine learning and stream processing. 

It is very user-friendly as it lets users create clusters and 

manage them using the Google Cloud platform dashboard. 

Figure 2 gives a screengrab of the VM instance list of the 

Google Cloud platform. 

 

 
 

Figure 2. Cluster setup in Dataproc 

 

5.2 Datasets 

 

Dataset used in the experiment is called MovieLens. It 

contains ratings given by a number of users from the 

MovieLens website. This data has been aggregated by the 

MovieLens website over a large amount of time. The dataset 

used in our work has 1000209 ratings provided by 6040 unique 

users for 3706 movies. 

 

5.3 Measures of performance 

 

The most common measures for determining the 

performance of a parallel system are as follows: 

(1) Execution Time: It is the most basic and intuitive 

measure which tracks the time taken between submission of a 

job for similarity calculation and job completion. 

(2) Speedup: This is a ratio of the execution time of an 

application on a single core and the execution time when the 

same application is executed using parallel computation [14]. 

It signifies the improvement in the execution time when using 

parallel computation. It is given in Eq. (5). 

 

𝑆(𝑛) =
𝑇(𝑛)

𝑇(𝑛)
 (5) 

 

here, the time of execution with one processor is T (1), and the 

execution time with n processors is T(n). 

(3) Efficiency: The percentage of time during which a 

machine is effectively utilized in parallel computing. It is also 

calculated by dividing the speedup by the number of 

processors [28]. 

 

𝐸(𝑛) =
𝑆(𝑛)

𝑛
=

𝑇(1)

𝑛 ∗ 𝑇(𝑛)
 (6) 

 

In the formula given above speedup is denoted as S(n), 

whereas the time of execution with one processor is T (1), and 

the execution time with n processors is T(n). 

 

5.4 Results 

 

Experiments were run with different data volumes for 

proposed cosine similarity Eq. (2) and existing cosine 

similarity Eq. (1). 

(1) Execution Time: For calculating this measure, we 

executed the proposed cosine and original cosine both on the 

4-node cluster and recorded execution time for 5k, 10k, 20k, 

50k, 100k, 200k and 500k, 1M and 2M number of transactions. 

Execution time was recorded for different volumes and 

different number of partitions. The results are captured in the 

Table 3.  

 

Table 3. Comparison of execution time 

 

Data 

Volume 
No. of 

Users 
Partitions 

Proposed 

Cosine 

Similarity1 

Cosine 

Similarity1 

5001 2645 
2 25.22 32.06 
4 16.81 21.37 
6 20.17 25.64 

10000 3722 
2 26.31 55.89 
4 17.54 37.26 
6 21.05 44.71 

20000 4680 
2 31.79 104.54 
4 21.19 69.69 
6 25.4 83.5 

50000 5637 
2 74.01 290.97 
4 49.34 193.98 
6 59.21 232 

100000 5966 
2 246.80 762.95 
4 164.5 508.63 
6 197.4 610.46 

200000 6037 
2 1123 2308 
4 748.96 1539.43 
6 898 1847.32 

500000 6040 
2 5245.4 9759 
4 3503 6506 
6 4203 7807 

1000000 6040 
2 6834 19665 
4 4556 13110 
6 5467 15732 

2000000 20000 
2 15990 48375 
4 10660 32250 
6 12792 38700 

Note: 1unit of measurement of execution time is seconds. 
 

Results clearly state that the proposed implementation of 

cosine similarity is much more efficient than the original 

implementation. As the data volume increases, the execution 

time increases for both approaches significantly. The 

difference between execution time is less when small volumes 

of data. However, for 2M rows of data, the execution time is 

more than 50 % less in the proposed solution.  

Another observation that can be made is that increasing the 

number of partitions improves execution time for both 

methods.  It can also be seen that 4 partitions are ideal for the 

dataset as using 2 partitions reduces the performance. 

However, increasing the number of partitions to 6 also causes 

the execution time to increase due to overheads. Further, this 

approach is also able to scale according to the increasing 

number of users. Figure 3 showcases that execution time 

growth for the proposed solution does increase exponentially 

with the increasing volume. 

The authors [28] have used a 3-node cluster and worked on 

a maximum of 5000 transactions. So, we also set up one more 

3-node cluster to compare with the results provided by the user. 

The results for execution time have been noted in Table 4 

which also states that it is faster than the similar items 

calculated in the previous work. 
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Figure 3. Execution time comparison 

 

Table 4. Comparison of execution time 5k rows for 3 node 

cluster 

 

Data Volume 
Proposed Cosine 

Similarity1 
FP-Growth 

Algorithm [28]1 
5001 22.25 50 
Note: 1unit of measurement of execution time in seconds. 

 

(2) Speed Up: For calculating this measure, we executed 

data once on a single core of a CPU with memory (RAM) of 8 

GB and then using a CPU with quad cores without any changes 

in the configuration of RAM for both proposed cosine 

similarity and original cosine similarity. 

Table 5 shows that parallel implementation of any algorithm 

considerably speeds up the algorithm. However, our approach 

speeds up the similarity calculation 3 times against 2 times 

when using the original cosine formula. 

 

Table 5. Comparison of speed up measure 

 

Algorithm 
T(1) 

Seconds 
T(4) 

Seconds 
S(4)=T(1)/T(4) 

Proposed Cosine 

Similarity 
55.64 16.81 3.31 

Cosine similarity 47 21.37 2.20 

 

(3) Efficiency is based on the speedup measure calculated 

above. Using the values in the Table 2. 

 

Table 6. Comparison of efficiency measure 

 

Algorithm 
S(p), where 

p=4 
p=4 E(4)=S(4)/4 

Proposed Cosine 

Similarity 
3.31 4 0.82 

Cosine similarity 2.20 4 0.55 

 

The results shown above in Table 6 prove that our approach 

has a better percentage of time during which a machine is 

effectively utilized in parallel computing. Parallel processing 

also ensures more efficient use of utilization of resources of 

each node of the cluster. This means that computational 

resources are more efficiently utilized in performing all the 

calculations and processing large volumes of data. 

 

 

6. CONCLUSIONS 

 

All the experimental results provided above showcase that 

the proposed method provides improved scalability and 

performance. These features are critical for a recommendation 

system to be considered useful in a real-world scenario. Given 

below are a few important considerations showcasing the 

usefulness of this approach: 

(1) Improved execution time: In the above results it is clear 

that execution time is nearly reduced to half of that of 

the original formula. For example, in Table 3 for 2000000 

rows of data execution time is 10000 seconds as compared to 

that of 32000 seconds in the original cosine formula.  

(2) Better parallelization: The greater speedup factor noted 

in Table 5 also showcases that our implementation is very 

much suitable for parallel execution as increasing the number 

of cores reduces the execution time by a factor of more than 3 

whereas the execution time in the traditional approach only 

improved by a factor of 2. 

(3) Ability to handle more users: As the volume of the data 

is increased thereby increasing the number of users the results 

in Table 3 again show that the proposed method can manage 

increment in the data without a proportion increase in 

execution time. 

(4) Better resource utilization: The proposed work 

showcases an improved efficiency of 0.82 compared to 0.55 of 

the original approach. This means that our approach utilizes 

the available resources more effectively than the current 

approach. 

There are many papers which have focused on the parallel 

implementation of collaborative filtering. However, the focus 

has always been on using the direct implementations of 

existing algorithms. We have proved with the experiments that 

even adjusting the derivation of cosine similarity can 

tremendously improve execution time. Further, we can also 

safely state that the formula used in this paper has a better 

speedup. The use of the new formula also utilizes the resources 

much more efficiently. All these parameters remain 

consistently in favour of using the new formula. 

Though the use of a suitable formula did improve the 

efficiency of the memory-based collaborative filtering, there 

were no changes done to improve the accuracy. We plan to 

focus next on improving the accuracy of such a system. This 

would provide us with more efficient and accurate novel 

approaches to make sense of the ever-growing data. 
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