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The present work is focused on the simulation of Casson (non-Newtonian) nanofluid flow 

over an inclined stretching sheet. The study considers the influence of an imposed magnetic 

field, heat source/sink, thermal radiation and chemical reaction under the multi slip effects. 

The study includes the application of wall suction/injection and Navier's first-order slip to 

analyse the velocity, temperature, and concentration at the wall. The governing equations 

have been transformed into nonlinear ordinary differential equations (ODEs) with 

similarity transformations. By employing the homotopy analysis method (HAM), we have 

successfully derived the numerical solution for the nonlinear ordinary differential 

equations (ODEs) and their corresponding boundary conditions. The impact of various 

parameters on the velocity, temperature, and concentration field has also been 

demonstrated. Multiple slip flow is utilised in various practical domains like micro-electro-

mechanical systems, nano-electro-mechanical systems, micro-organism flow, and rarefied 

gas flow, among others. 
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1. INTRODUCTION

The unique thermal, mechanical, and chemical properties of 

nanofluids, a mixture of nanoparticles adjourned in a base 

fluid, make them perfect for enlightening lubrication, 

increasing thermal conductivity, and improving the 

performance of a variety of systems. The study of nanofluid 

dynamics is still in its early stages, with efforts being made to 

create new nanofluid formulations, increase their stability, 

forecast their behaviour in various scenarios, and improve 

their performance in a range of applications. It is true that Choi 

and Eastman [1] significantly advanced in the field of 

nanomaterials. Their research concentrated on using 

nanoparticles to increase a fluid's thermal conductivity. The 

addition of a small amount of nanoparticles in heat transfer 

fluids results in the new thermal phenomena of nanofluids 

(nanoparticle-fluid suspensions) reported by Pil Jang and Choi 

[2]. Meyer et al. [3] investigated computational techniques for 

studying fluid dynamics, while focusing on numerical 

approaches to nanofluid flow analysis. Akbari et al. [4] 

researched on the comparisons between different concepts of 

fluid flow likely looks at the benefits and distinctions between 

different models for fluid behaviour prediction. Wong and De 

Leon [5] engrossed in dispensing an extensive scope of present 

and anticipated nanofluid applications, stressing their more 

controllable heat allocation abilities and the unique properties 

that make nanofluids appropriate for such uses. 

Due to of its wide-ranging applications and implications, 

non-Newtonian fluid flow requires careful study and 

modelling in the industrial and engineering sectors. Unlike 

Newtonian fluids like water or air, non-Newtonian fluids 

lacked to investigate the direct association between shear 

tension and shear proportion. Rather, variables such as shear 

rate, time, or stress can affect their viscosity. For a variety of 

industries, careful and precise modelling of the behaviour of 

non-Newtonian fluids is essential. As an illustration: Non-

Newtonian fluids are frequently found in the production of 

paints, food products, and polymers. A wide range of food 

products, including dough, sauces, and creams, behave in 

ways that are not Newtonian. Siddappa and Abel [6] 

considered the study of boundary layer flow past a stretching 

plate in non-Newtonian like visco-elastic fluid flow. Different 

non-Newtonian nanofluid flows are purposefully designed by 

Khan [7, 8] for abundant configuration. 

Because of their relationship between shear stress and strain, 

Casson fluids are non-Newtonian due to their sole rheological 

characteristics. These fluids are appropriate for shear diluting 

implementation because of their notable shear viscosity and 

yield stress. In the beginning, Casson [9] introduced the 

Casson fluid model for silicon dissolution and gel pens. 

Human blood, concentrated fruit liquids, jellies, honey, soups, 

and tomato sauces are a few examples of Casson fluids. In a 

stretching sheet, Dandapat et al. [10] examined about stability 

of MHD path in a viscoelastic liquid or gas, while Fang et al. 

[11] investigated the extended Blasius equation. Mamalouka

et al. [12] discussed about the difference in solving the second
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order problems on a fluid that flows over an augmentation. 

This condition is expected to be mixed convection within the 

particular field when forced convection and free/natural 

convection cooperate to facilitate easier heat transfer. The 

enhanced thermal transference for miscellaneous Casson flow 

of nanofluid influence by external magnetism over a rotating 

sheet was investigated by Ali et al. [13]. Intentional aspects of 

the temperature and molar variation with respect to Arrhenius 

activation energy are discussed by Alsallami et al. [14]. 

Magnetohydrodynamic (MHD) flows are driven by 

curiosity and application: they are recycled to treat cancerous 

tumours, reduce bleeding from surgical wounds, distribute 

specific medications using magnetic particles, and detect 

illness using magnetic resonance imaging (MRI). The study of 

MHD examines the relationship between magnetic fields and 

fluid flow, which is a branch of mathematics. The MHD 

boundary layer flow above a permeable elongation area finds 

petition claims in the trade of crystal Fiber, paper crafting, 

plasma education, fuel trades, MHD control producer, 

boundary regulator in aero mechanics and fear of fissionable 

containers. Many conceptual as well as creative investigations 

caused some researchers to argue. Ishak [15] observed (MHD) 

boundary layer movement brought on by an increasing rapidly 

elongating sheet with radiation outcome. The viscosity factor 

of a magnetohydrodynamics (MHD) nanofluid is discussed by 

Shahid et al. [16] and is dependent on temperature. As a result 

of its abundant tenders in engineering complications, the 

influence of an outermost magnetic field on 

magnetohydrodynamic (MHD) deluge a lengthening area of 

spreading is highly notable in the field of fluid mechanics. The 

impact of an outward applied magnetism on 

Magnetohydrodynamics flow across an elongating membrane 

was examined by Pavlov [17]. Anderson [18] examined the 

viscous fluid MHD flow at the end of a stretching sheet. The 

distribution of heat away from the surface is largely influenced 

by thermal radiation. It has claims in trade industries like space 

exploration, missiles, atomic furnaces, planetary vehicles, 

choppers, satellites, and actions involving high temperatures. 

More grades regarding the movement of a nanofluid in the 

occurrence of mass as well as heat were noted in the studies 

[19, 20]. An elemental response has broad tenders that cover 

the destruction of crops by freezing, food distribution, 

newspaper exchange, ventilation, tile work, sunstroke 

protocols, and river suspensions and petroleum. Seyedi et al. 

[21] framework is ideal for mathematically analysing the 

influence of a biological response to direct heat emission on 

an embracing Eyring-Powell fluid channel distortion. It is 

feasible to implement a no-slip boundary condition when the 

fluid particles are near the external and are unable to transfer 

along with it or after the bond expires coherence. Viscous 

liquids prevent this marvel from happening because smooth 

walls sufficient, a firm surface may cause them to slip. In many 

situations, including wire mesh rough surfaces, greased 

surfaces, and covered surfaces, slip conditions become 

important. The change in uses characteristic of nature and 

modern technology has led to an important amplification in 

count, heat, and mass transport along with chemical reactions. 

Fluid flow involves chemical processes such as refrigeration 

fortifications, mist generation, and ceramic business. The 

integral transform analysis of mass and heat diffusion of 

chemically reacting systems with Michaelis–Menten kinetics 

was prepared by Pinheiro et al. [22].  

The mass flow caused by a temperature gradient is indicated 

by the Soret result. The Soret effect has been incorporated by 

numerous researchers into their studies to discuss these issues 

and emphasize their significance. The learning of the boundary 

layer flow produced by an elongating sheet was primarily done 

by Crane [23]. He provided a precise fix for the initial issue. 

As time has passed by, the boundary layer flow over regular 

and irregular widening of surface areas has piqued the 

enormous interest of numerous researchers [24-27]. The 

reputation of mutable nanomaterial radius for the non-

Newtonian flow of nanofluid promoted through a stretching 

sheet is discussed by Ali et al. [28]. An elastic limit that is 

similar to the constant harvest tension in Casson fluid occurs, 

if the rouleaux entertains similar an elastic solid studied by 

Fung [29]. The ideal point flow and heat allocation in a Casson 

fluid flow ended an elongating plate are discussed by Mustafa 

et al. [30]. Shehzad et al. [31] supplied a thoughtful answer to 

the stable boundaryed layer flow of a Casson fluid above an 

absorbent elongating plate. Investigators have been captivated 

by the potential of exponentially stretching cylinders in a 

variety of domains, such as polymer dispensation, purification, 

biomedical tenders, and energy change systems. An 

investigation into the analogous determination of the flow 

features and transmission of heat inside a constant Casson-

based nanofluid stirring diagonally crosswise erectly situated 

cylinder exposed to spreading radial extension was guided by 

Naseer et al. [32]. Merkin et al. [33] observed the thermal 

features of the boundaryed sheet flow at a recession fact 

connecting a volumetric curve that causes exponentially 

stretched sheet. Malik et al. [34] investigated cautiously the 

comparable conclusions regarding the flow properties and heat 

exchange of a stable Casson-based nanofluid applied inclined 

to a vertically positioned cylinder subjected to exponential 

radial stretching sheet. The combination of a magnetic field 

and a heat source affects on Casson nanofluid flow in a stable 

boundary layer, as done by Sarojamma and Vendabai [35]. In 

measuring thermophoretic diffusion properties and Brownian 

motion, Mustafa et al. [36] examined the merged convective 

move of magneto-nanofluid that was controlled by vertical 

stretched plate. Awais et al. [37] measured the outcomes of 

heat source/sink and mass and heat transfer on Casson fluid 

flow through a vertically exponentially stretched/shrinking 

sheet using mathematical analysis. Zhai et al. [38] have 

derived the relation between the mass transfer and heat 

structures for a variety of disorders and absorbers. Thermal 

and stratification characteristics of non-Newtonian fluid 

passes through a porous medium was investigated by Megahed 

and Abbas [39]. Through the use of FDM, Barik et al. [40] 

examined the impact of multiple slips effects on the flow of 

MHD nanofluids over an inclined, radiative, and chemically 

reactive stretched sheet. 

We found that a very few studies have investigated the 

thermo-hydro-dynamics properties of Casson and nanofluid 

over an inclined stretching sheet by taking into account all the 

different phenomena, including variables like magnetic field, 

linear radiation, an external heat source/sink, and the chemical 

reaction, from the aforementioned literature survey. It is 

anticipated that slip exists at the surface in this investigation 

because nanofluid has been used as the working fluid. To 

analyze these phenomena, the research employs established 

similarity variables, converting the primary partial differential 

equations (PDEs) into a set of interconnected ordinary 

differential equations (ODEs). These ODEs are numerically 

resolved by using employing the homotopy analysis method 

(HAM), This methodology ensures the generation of robust 

data across various parameters. To validate the computed 
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results, a comparative analysis is performed against existing 

research data. The research makes a significant contribution to 

our understanding of non-Newtonian nanofluid flow by 

elucidating the complex interactions among various elements 

that govern micro rotational transport in a non-Newtonian 

nanofluid, as characterized by the Casson nanofluid model.  

 

 

2. MATHEMATICAL FORMULATION 

 

In the present study, a steady, two‐dimensional, 

incompressible, laminar flow of nanofluid over a stretching 

sheet which is inclined at an angle Ω from its vertical axis. The 

x- and y- axes are aligned along the inclined surface and 

normal to the surface as depicted in Figure 1. Stretching has 

been accomplished by moving the wall with a velocity Uw=ax, 

a>0 along the x-axis. The MHD, thermal, as well as the 

concentration boundary layers are supposed to develop along 

the y- axis, and grow along the x-axis. The velocity, 

temperature, and concentration of the nanofluid on the wall are 

Uw, Tw, and Cw, respectively. The velocity, temperature, and 

the concentration fields are taken as U∞=bx, T∞ and C∞ as as 

y→∞. It is assumed that thermal equilibrium prevailed 

between the nanoparticles and base fluid with having slip 

between them. A uniform magnetic field of strength B0 has 

been applied normal to the x-axis, and over the entire fluid 

domain. In the present study, the effects of the thermal 

radiation, chemical reaction, and the buoyancy on the velocity, 

temperature, and concentration profiles in the presence of the 

multiple slip conditions at the wall are considered under 

suction/injection. External heat source/sink is also considered 

in the energy equation. The body force terms due to the 

thermal and concentration gradients are included in the 

momentum equation. The properties of Brownian motion and 

thermophoresis are considered.  

 

 
 

Figure 1. Physical model of the flow 

 

The visco-elastic equation of state for an isotropic and 

flexible flow of Casson fluid is: 
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where, μB is plastic dynamic viscosity of the non-Newtonian 

fluid, py is the yield stress of the fluid, π is the product of the 

constituent of deformation rate with itself, eij is the (i,j)th 

component of the deformation rate and πc is the vital tone of 

this product based on the non-Newtonian model. For the case 

of Casson fluid, we measured π>πc and 𝑝𝑦 =
𝜇𝐵√2𝜋

𝛽
, it is 

probable to say that the dynamic viscosity 𝜇 = 𝜇𝐵 +
𝑝𝑦

√2𝜋
. 

Substituting the value of py in μ, we get 𝜇 = 𝜇𝐵 (1 +
1

𝛽
). 

In the perspective of the boundary layer approximation, the 

governing differential equations for continuity, momentum, 

energy, and the nanofluid concentration are written as follows 

[40]: 

 

0
u v

x y

 
+ =

 
 (1) 

 

( ) ( )

( )

2

2

2

1
1

cos

( )

T C

f

f

u u u
u v

x y y

g T T C C

B xdU
U U u

dx




 








 

   
+ = + 

   

 + − + − 
  

+ + −

 

(2) 

 

( )
( )

( )

2

2

2

0 1

T
B

r

f f

T T T
v

x y y

DC T T
D

y y T y

Q q
T T

c c y

u 



 





  
+ =

  

    
+ +  

     


+ − −



 
(3) 

 

( )
2 2

2 2
.T

B

DC C C T
u v D Kr C C

x y y T y




   
+ = + − −

   
 (4) 

 

Succeeding Barik et al. [40], the boundary conditions are 

considered as: 
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where, 𝛼 =
𝑘

(𝜌𝑐)𝑓
, 𝜐 =

𝜇

𝜌𝑓
, 𝜏 =

(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
. 

Succeeding Roseland approximation, the radiative heat flux 

is: 
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where, Stefan Boltzmann constant is σ* and κ* is the mean 

absorption coefficient. Furthermore, we assume that the flow's 

interior temperature differential is sufficiently vast so that T4 

is denoted as a linear function of temperature. As a solution, 
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by enlarging T4 in Taylor series about T∞ and if we disregard 

terms of higher order, we get: 
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Using Eqs. (6) and (7), Eq. (3) converts into: 
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Using following similarity transformations: 
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where, ζ is the similarity variable, ψ is the stream function. 

The stream function ψ is formalized in the standard way as: 
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substituting Eq. (9) in Eqs. (2), (4) and (8), we obtain: 
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The boundary conditions are: 
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2.1 HAM 

 

To express the homotopic results of Eqs. (11) to (14), we 

gross up the primary deductions and linear operators as 

follows: 
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where, Di (i=1 to 7) are the arbitrary constants. 

We construct the zeroth-order deformation equations: 
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subject to the boundary conditions: 
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where, 
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where, 𝑝 ∈ [0,1]  is the embedding parameter, ℏ𝑓 , ℏ𝜃  and 

ℏ𝜙are non-zero auxiliary parameters and Nf, Nθ and Nϕ are 

nonlinear operators. 

The nth-order deformation equations are follows: 
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If we let𝑓𝑛
∗(𝜁), 𝜃𝑛

∗(𝜁) and 𝜙𝑛(𝜁) as the different results of 

mth order deformation equations, then the general solution is 

given by: 
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where, the integral constants Di (i=1 to 7) using the boundary 

conditions. 

It is effortless to solve the above linear homogeneous 

equations using MATHEMATICA one after other in the order 

n=1, 2, …. 

 

2.2 Convergence of HAM 

 

To obtain the appropriate values for the non-zero auxiliary 

parameters, ℏ  -curves are depicted in Figure 2. From this 

figure, the auxiliary parameter is given by the supposable 

interval [-1.0,0.0]. The solutions are convergent for whole 

region of 𝜁 when ℏ𝑓 = ℏ𝜃 = ℏ𝜙 = −0.72. Convergence of the 

method is given in Table 1. 

 

 
 

Figure 2. ℏ -curves for f''(0), θ'(0) and φ'(0) at 15th order 

approximations 

 

 

3. RESULTS AND DISCUSSIONS 

 

The association between different factors and their 

consequences on f', θ and ϕ of the fluid flow is explored in 

detail in this section. Additionally, we elucidate the parameters 

associations between these profiles and important 

dimensionless variables, such as the skin friction coefficient, 

the local Nusselt number and the local Sherwood number. In 

order to shed light on these connections, we employ a set of 

informative graphs. As a way to preserve coherence with the 

numerical results generated in this study, we strictly follow the 

predetermined values shown in Table 1, unless there are 

specific deviations indicated in the relevant figures. 

 

Table 1. Convergence of HAM solution for different orders 

of approximations when β=1.0, M=0.5, Ω=60o, 

S=R=A=δ1=δ2=δ3=Q=Gr=Gc=0.1, Pr=Sc=1.0, Nb=0.3, 

Nt=0.2, γ=0.2 

 
Order -f''(0) -θ'(0)

 
-ϕ''(0)

 
5 -1.316344 0.463692 0.633936 

10 -1.317255 0.450865 0.650285 

15 -1.317248 0.451028 0.650438 

20 -1.317248 0.451025 0.650431 

25 -1.317248 0.451024 0.650432 

30 -1.317248 0.451024 0.650432 

35 -1.317248 0.451024 0.650432 

40 -1.317248 0.451024 0.650432 

 

Figures 3-5 presented the effects of the Casson fluid 
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parameter β on the velocity, temperature and concentration 

profiles. It is observed that amplification in β enhances the 

viscosity of the fluid. Fluid behaves like shear-thickening on 

behalf of an incremental change in β which lessens the fluidity 

of the fluid and also its wideness of the momentum boundary 

layer. The velocity, temperature profiles decrease with the 

increase of Casson fluid parameter, whereas the reverse trend 

is observed in concentration profile. 

 

 
 

Figure 3. Figuration of f'(ζ) for β 

 

 
 

Figure 4. Figuration of θ(ζ) for β 

 

 
 

Figure 5. Figuration of ϕ(ζ) for β 

 

The influence of magnetic parameter M on the profiles is 

revealed in Figures 6-8. f'(ζ) decreases as M's magnitude 

increases, despite the opposite pattern for concentration and 

temperature. In actuality, as M increases, the Lorentz force 

which limits fluid motion increases, which causes the rate of 

transport to decrease. When the magnetic field was applied 

over the flow field, the Lorentz force became apparent. This 

force is strong enough to slow down the fluid's flow and drag 

it along. As a result, fluid flow velocity decreases as 

momentum layer thickness increases. 

 

 
 

Figure 6. Figuration of f'(ζ) for M 

 

 
 

Figure 7. Figuration of θ(ζ) for M 

 

 
 

Figure 8. Figuration of ϕ(ζ) for M 

 

The influence of velocity ratio parameter A on the profiles 

momentum is revealed in Figure 9. The momentum of the fluid 

increases as velocity ratio parameter A magnitude increases. 

The effect of velocity ratio parameter A on the evolution of 

non-dimensional temperature and solutal concentration 

profiles is shown in Figures 10 and 11. Thin thermal and 

solutal boundary layers form when A values increase because 

the temperature and fluid concentration decrease 

asymptotically. An increased amount of heat transfer from the 

wall to the free stream is encouraged by a higher velocity ratio 

parameter, which also increases the free stream velocity. 

Because the free stream velocity increases with increasing 

velocity ratio parameter A, the fluid concentration likewise 
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decreases.  

 
 

Figure 9. Figuration of f'(ζ) for A 

 

 
 

Figure 10. Figuration of θ(ζ) for A 

 

 
 

Figure 11. Figuration of ϕ(ζ) for A 

 

 

 
 

Figure 12. Figuration of f'(ζ) for Ω 

 
 

Figure 13. Figuration of f'(ζ) for S 

 

Figure 12 demonstrates the decreasing performance of 

velocity for increased parameter values, specifically angle of 

inclination Ω. The fluid flow becomes difficult due to Lorentz 

forces, which lowers the fluid's velocity. The findings in 

Figure 13 show that increasing suction (S) efficiently lowers 

the velocity profile in both the gaseous and liquid states. 

Figure 14 illustrates the properties of the local Grashof 

number Gr on the velocity profiles. Here, as Gr values rises, 

then the momentum of the fluid flow going to be enhanced 

rapidly. The velocity profiles enhance as the values of 

modified Grashof parameter Gc rises, as seen in Figure 15.  

 

 
 

Figure 14. Figuration of f'(ζ) for Gr 

 

 
 

Figure 15. Figuration of f'(ζ) for Gc 

 

The fluid velocity decreases, and the slip velocity rises as 

the velocity slip constraint δ1 growths. This may be the case 

because, in the event of a slip condition, the stretching sheet's 

velocity and the stream's velocity differ. This is depicted in 

Figure 16. The fluid velocity decreases as the slip velocity 

increases in response to an increase in the velocity slip 
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constraint δ1. This phenomenon happens because the 

stretching sheet's velocity and the fluid stream's velocity near 

the sheet are dissimilar under slip conditions.  

Figure 17 shows that the temperature drops as the thermal 

slip constraint δ2 increases. As the thermal slip constraint value 

rises, the thermal boundary layer's physical width declines 

even though there is very little heat transfer from the sheet to 

the fluid. As seen in Figure 18, the influence of the 

nanoparticle fraction slip constraint δ3 on the mass fraction 

field closely parallels that of δ3 on the temperature field. This 

similarity stems from the basic impediment to liquid motion 

caused by slip, which eventually leads to a reduction in net 

atomic advancement. Consequently, the mass fraction field 

decreases as a result of decreased molecular development. 

 

 
 

Figure 16. Figuration of f'(ζ) for δ1 

 

 
 

Figure 17. Figuration of θ(ζ) for δ2 

 

 
 

Figure 18. Figuration of ϕ(ζ) for δ3 

 

The connection between temperature and the radiation 

constraint R is shown in Figure 19. Increased radiative heat 

energy injection into the system, which increases the 

temperature, is indicated by higher values of R. Figure 20 

shows temperature distributions for a range of Prandtl number 

Pr values, showing a decline in the temperature profile with 

increasing Pr. Physically, smaller temperature profiles are 

produced by increasing Prandtl numbers. Figure 21 illustrates 

the remarkable impact of Q on θ(ζ). In the instance of air, an 

increase in the values improves θ. After declining at first, the 

temperature profile rises away from the wall. 

 

 
 

Figure 19. Figuration of θ(ζ) for R 

 

 
 

Figure 20. Figuration of θ(ζ) for Pr 

 

 
 

Figure 21. Figuration of θ(ζ) for Q 

 

Figures 22 and 23 demonstrate the significance of the 

Brownian movement parameter Nb affects θ(ζ) and ϕ(ζ). 

Generally speaking, Brownian movement aids in heating the 

fluid in the boundary layer and stops particles from depositing 

on the surface away from the fluid. The temperature rises and 

the concentration decreases as the amount of Nb in the fluid 

increases (less than 1). Usually, Brownian motion prevents 

molecules from depositing away from the liquid surface and 

heats the liquid inside the boundary layer. Rapid flow at a 

distance from the extension surface is caused by the 

thermophoretic force created by the resulting temperature 

gradient. As a result, as Nb rises, additional fluid is heated 

away from the surface, raising the temperature of the boundary 

layer. 

Nanoparticles are transported by the fast flow created by the 

stretching sheet, increasing the width of the boundary layer for 
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mass volume fraction. Figures 24 and 25 provide illustrations 

of these phenomena. According to reports, the temperature and 

the concentration of nanoparticles both increase in direct 

proportion to Nt. 

 

 
 

Figure 22. Figuration of θ(ζ) or Nb 
 

 
 

Figure 23. Figuration of ϕ(ζ) or Nb 
 

 
 

Figure 24. Figuration of θ(ζ) for Nt 

 
 

Figure 25. Figuration of ϕ(ζ) for Nt 
 

The influence of Schmidt number (Sc) on the concentration 

profile of ϕ(ζ) is depicted in Figure 26. It has also been 

observed that the concentration profile decreases as the value 

increases. In terms of physics, Sc is the ratio of mass 

diffusivity to momentum diffusivity; an increase in the 

Schmidt number indicates a decrease in the fluid's mass 

diffusivity relative to its momentum diffusivity, which implies 

a decrease in scalar diffusivity and less diffusion and slower 

concentration changes in the fluid medium. 
 

 
 

Figure 26. Figuration of ϕ(ζ) for Sc 
 

Figure 27 illustrates the impact of a chemical reaction 

parameter γ on ϕ(ζ). It is known that the concentration 

decreases as the chemical reaction parameter increases. 

Figure 28 displays the skin-friction factor on variation of M 

and δ1. It’s observed that as M and δ1
 
increased the skin-

friction coefficient increases. 
 

 
 

Figure 27. Figuration of ϕ(ζ) for γ 
 

 
 

Figure 28. Figuration of Cfx for M and δ1 

 

In Figure 29 it is noted that Nusselt number decreases for 

increase both the constraints Nt and δ2. Sherwood Number is 

shown in Figure 30, rise as a result of the fluid's high molecular 

diffusivity and low heat conductivity. The Nt and δ3 variations 

are displayed. In the boundary layer, the fluid velocity near the 

wall decreases as Nt and δ3 increases.  
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Figure 29. Figuration of Nux for Nt and δ2 

 

 
 

Figure 30. Figuration of Shx for Nt and δ3 

 

Table 2. Comparison of skin friction coefficient for different 

values of β and A when M=0, δ1=0.0, S=0.0 

 
β A Oyelakin et al. [41] HAM 

1 0.0 -1.41421 -1.41421 

5 0.0 -1.09544 -1.09545 

1000 0.01 -0.99782 -0.99801 

1000 0.1 -0.96937 -0.96937 

1000 0.2 -0.91811 -0.91811 

 

Table 3. Comparison of -f''(0) for different values of δ1 when 

M=0, A=0.0, β=1000, S=0.0 

 

δ1 
Ibrahim and 

Makinde [42] 

Oyelakin et al. 

[41] 
HAM 

0.0 1.0000 1.000000 1.00000 

0.1 0.8721 0.872083 0.87208 

0.2 0.7764 0.776377 0.77638 

0.5 0.5912 0.591195 0.59121 

1.0 -- 0.430160 0.43017 

2.0 0.2840 0.283979 0.28397 

3.0 -- 0.214054 0.21406 

5.0 0.1448 0.144714 0.14484 

10.0 0.0812 0.080932 0.08125 

 

Table 4. Evaluation of the numerical values of -θ'(0) for 

different values of Pr when Le=10 and in the nonappearance 

of remaining parameters 

 

Pr 
Rudraswamy  

et al. [43] 

Gupta et al. 

[44] 

Mini et al. 

[45] 
HAM 

0.2 0.1691 0.1691382 0.169124 0.169118 

0.7 0.4539 0.4538682 0.453917 0.453853 

2.0 0.9112 0.9113432 0.911358 0.911341 

 

To assess the validity and accuracy of the applied numerical 

scheme, numerical values for skin-friction factor, the heat 

transfer and mass transfer coefficient for various values 

parameters and in the absence of different parameters are 

compared with the available results and the outcome is shown 

in Tables 2-4. The results are found in excellent agreement. 

 

 

4. CONCLUSIONS 

 

Based on numerical studies conducted using a HAM 

technique, the following results were drawn regarding the 

MHD properties of a Casson nanofluid flowing over an 

inclined stretching sheet that was stretched linearly: 

(i) The decrease in nanofluid velocity is proportional to the 

Casson parameter, the magnetic parameter and velocity slip 

factor. The thermal radiation parameter, the Brownian motion, 

the heat source parameter, and all contribute to an increase in 

the nanofluid's temperature.  

(ii) The solution boundary layer grows as the Casson 

parameter, thermophoresis parameter does, but it shrinks as 

Nb shrinks.  

(iii) There is a correlation between the velocity slip 

parameter and an increase in the heat and mass transfer rates. 

However, the rate of heat transfer and the rate of mass transfer 

both decrease as the temperature jump parameter values 

increase.  

(iv) It has been observed that the Nusselt number and the 

Sherwood number drop when the magnetic parameter 

increases. Through the process of velocity slip, both the 

Nusselt number and the Sherwood number fall.  

Future scope: It is possible that the current work could be 

expanded to include the non-Newtonian flow over a nonlinear 

stretching sheet in our subsequent research activities. 
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NOMENCLATURE 

 

a Constant stretching rate 

b Free stream rate 

(c)f Specific heat at constant pressure 

u,v Velocity components in x, y directions 

Uw Stretching velocity 

U∞ Free stream velocity 

B0 Strength of magnetic field  

DB Brownian diffusion coefficient 

DT Thermophoresis diffusion coefficient 

Vw Wall injection/suction velocity 

γ Chemical reaction parameter 

ζ Similarity variable 

B
  

Plastic dynamic viscosity 


 

Product of component deformation 
g

 
Gravitational acceleration 

C Concentration of the fluid 

Cw Concentration level of fluid at surface  

C∞ Ambient concentration 

k* Absorption coefficient 

κ Thermal conductivity of fluid 

ℏ𝑓 , ℏ𝜃   

and ℏ𝜙 

Non-zero auxiliary parameters 

𝜒𝑛   Characteristic function 

Di (i=1 to 

7) 

Arbitrary constants 

Nf, Nθ and 

Nϕ 

Non-linear operators 

Lf, Lθ and 

Lϕ 

Linear operators 

M Magnetic field parameter 

Nt Thermophoresis parameter 

Nb Brownian motion parameter 

Pr Prandtl number  

Ω Inclined sheet angle 

σf Electrical conductivity  

ρp Nanoparticles mass density  

(ρc)p Heat capacity of the nanoparticles 

σ* Stefan -Boltzmann constant 

ρf Fluid density  

(ρc)f Fluid heat capacity 

Gr Local Grashof number due to temperature 

Gc Local Grashof number due to concentration 

θ Dimensionless temperature 

ϕ Dimensionless concentration 

qr Radiative heat flux  

A Velocity ratio parameter 

Grx Temperature buoyancy parameter 

Gcx Concentration buoyancy parameter 

Q0 Heat generation coefficient 

Kr Coefficient of chemical reaction 

Py Yield stress 

S Suction parameter 

Gex Local Reynolds number 

α Thermal diffusivity of the fluid  

βc Volumetric coefficient of mass expansion  

βT Volumetric coefficient of thermal expansion  

eij (i,j)th component of the deformation 
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πc Critical value of the product based on non-

Newtonian model 

β Casson parameter 

R Thermal radiation parameter 

Le Lewis parameter 

T Fluid temperature  

Tw Convective fluid temperature  

T∞ Ambient fluid temperature  

qw Surface heat flux 

qm Surface mass flux 

τw Surface shear stress 

V0 Initial strength of suction 

Cfx Coefficient of skin friction 

Nux Local Nusselt number 

Shx Local Sherwood number 

f Dimensionless stream function 

f' Dimensionless velocity 

Sc Schmidt number 

Q Heat source parameter 

υ Kinematic viscosity  

ζ Dimensionless variable 

μ Dynamic viscosity 

𝜏 =
(𝜌𝑐)𝑝
(𝜌𝑐)𝑓

 

Fraction of Heat Capability of Nanofluid to the 

Base Fluid 

ψ Stream function 

 

Subscripts 

 

f Fluid 

w Wall 

p Nanoparticle 

∞ Free stream 
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