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 This study aims to identify the most suitable deep learning model for early detection of 

dental caries in a new database of dental diseases. The study compares the performance of 

residual and dense networks using standard performance metrics. Dental caries is 

categorized into four classes based on dental practitioner recommendations. A novel 

database consisting of 1064 intraoral digital RGB images from 194 patients was collected 

in collaboration with Bharati Vidyapeeth’s Dental College, Pune. These images were 

cropped to obtain a total of 987 single-tooth images, which were divided into 888 training, 

45 testing, and 54 validation images. In Phase I experimentation, ResNet50V2, 

ResNet101V2, ResNet152, DenseNet169, and DenseNet201 were utilized. Phase II 

focused on ResNet50V2, DenseNet169, and DenseNet201, while Phase III concentrated 

on DenseNet169 and DenseNet201. For Phase I experimentation, the overall accuracy of 

dental caries classification ranged from 0.55 to 0.84, with DenseNet exhibiting superior 

performance. In Phase II, the overall accuracy varied from 0.72 to 0.78, with DenseNet 

achieving the highest accuracy of 0.78. Similarly, in Phase III, DenseNet201 surpassed 

other models with an overall accuracy of 0.93. The DenseNet201 algorithm shows promise 

for detecting and classifying dental caries in digital RGB images. This finding is significant 

for the future development of automated mobile applications based on dental photographs, 

which could assist dental practitioners during examinations. Additionally, it could enhance 

patient understanding of dental caries severity, thereby promoting dental health awareness. 

 

Keywords: 

deep learning, dental caries, ResNet50V2, 

ResNet101V2, ResNet152, DenseNet169, 

DenseNet201, dental imaging 

 

 

 

1. INTRODUCTION 

 

“Dental caries”, commonly referred as “tooth decay or 

cavities”, is recognized as one of the most prevalent chronic 

diseases globally. “Dental caries” is one such disease that 

affects individuals across all age groups. As per the reports by 

“World Health Organization (WHO)”, approximately 60-90% 

of young children and about all of adult population are affected 

by dental caries, making it a widespread public health issue. 

Early childhood caries (ECC) typically initiates at 

approximately 7 months of age and can progress to affect 

permanent dentition [1]. According to “Centers for Disease 

Control and Prevention (CDC)” over 52% of children between 

6 and 8 years old have had decay in their primary dentition, 

indicating the scale of the problem. 

ECC not only affects dental health but can have broader 

impacts on a child’s development, nutrition, and quality of life. 

As the condition advances, it causes pain, infection, and 

difficulties in eating, speaking, and sleeping, leading to poorer 

general health and delayed growth. ECC typically starts as 

“white-spot lesions” on the “gingival margin of the upper 

primary incisors” and, if untreated, can result in severe 

destruction of the tooth crown [1, 2]. The rapid progression of 

ECC is exacerbated by modern dietary habits, particularly a 

diet high in sugars, which accelerates bacterial activity in the 

mouth [3]. Studies show that sugary foods and drinks are the 

primary contributors to caries development, especially in 

young children, further emphasizing the need for preventive 

strategies and early intervention [4]. 

The global burden of ECC is alarmingly high, with reports 

of prevalence reaching up to 70% in preschool-aged children 

in some regions. Despite the severity of the problem, the 

disease often goes unnoticed in its early stages, and many 

parents fail to recognize its potential consequences, assuming 

that damage to temporary (primary) teeth is insignificant. 

However, untreated caries in primary teeth can lead to 

complications in permanent teeth, such as misalignment, 

enamel hypoplasia, and increased susceptibility to decay in the 

future [5]. Moreover, untreated ECC can progress to severe 

ECC (S-ECC), which affects the smooth surfaces of teeth and 

often requires more invasive treatments, including tooth 

extractions, under general anaesthesia in severe cases [6, 7]. 

Thus, ECC must be treated as a significant health issue rather 

than a minor inconvenience.  

Beyond dental caries, other oral health problems, including 

gingivitis, periodontal disease, tooth sensitivity, and 
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malocclusion (misaligned teeth), are also common in children. 

These conditions, if left untreated, can lead to more serious 

dental and systemic health issues. Suboptimal oral hygiene 

practices and a delayed identification of oral diseases further 

exacerbate these problems, contributing to the worldwide 

impact of oral health. According to surveys conducted in 

different regions, many children, especially in developing 

countries, lack access to routine dental care, and parents often 

neglect the importance of dental hygiene in the early stages of 

life [8, 9]. A survey in Riyadh highlighted that awareness and 

knowledge about dental care, particularly in early childhood, 

are often lacking, leading to higher incidences of oral health 

problems [10]. Implementing preventive dental care and 

education, starting even before teeth emerge, has proven to 

greatly lower the occurrence of dental caries and other oral 

health issues.  

Early detection of oral health issues is crucial for preventing 

further damage and reducing the burden on healthcare systems. 

While larger lesions are often visible during routine dental 

examinations, the initial stages of caries, such as white-spot 

lesions, are not easily detectable through visual inspection 

alone, even by experienced dental practitioners. Tools such as 

dental mirrors, light sources, and X-rays are commonly used 

in dental clinics to aid in diagnosis, but these methods are not 

always accessible in rural or underprivileged areas. The lack 

of effective screening and detection tools outside of dental 

offices, particularly in non-dental environments like schools, 

homes, or community health centers, poses a significant 

challenge to ensuring early intervention. 

This gap underscores the urgent need for developing 

automated, non-invasive systems for early detection of dental 

diseases. Advances in technology, particularly in the fields of 

“artificial intelligence (AI) and deep learning”, offer 

promising solutions. Automated systems can assist in 

screening for dental caries and other oral diseases using simple 

tools, such as smartphones or intraoral cameras, enabling 

timely identification of issues even in resource-limited 

environments. Such systems can be especially beneficial in 

rural or developing regions where access to professional dental 

care is limited. Moreover, these technologies have the 

potential to assist healthcare providers and non-professionals 

alike in identifying early signs of dental diseases, ultimately 

improving patient outcomes and reducing the time and costs 

associated with late-stage treatments. 

Larger lesions in teeth are visible to the naked eye, but 

initial stages of dental caries or other dental diseases are not 

easily detected through visual examination alone, even by 

trained dental practitioners. They may use tools such as light 

sources, dental mirrors, or X-rays for a more thorough 

assessment. 

There is a notable absence of effective screening and 

detection methods for dental diseases, particularly in non-

dental environments like schools or homes, especially in rural 

areas of developing nations. Consequently, there is a pressing 

need for an automated system using simple tools to facilitate 

the timely identification of dental diseases. The outcomes of 

such a system could assist dentists and physicians in 

conducting thorough oral health examinations and save 

valuable time. Moreover, these automated systems could 

mitigate the limitations posed by the lack of training among 

non-professionals. The organization of the paper employs five 

major sections. Section 1 covers “Introduction” which offers 

general overview of the topic followed by bibliographic 

analysis covered in Section 2. Section 3 provides the details of 

“Materials and Methods” used for “dental caries” 

classification. Section 4 is dedicated to the “Results and 

Discussion”, while Section 5 presents the “Conclusion”. 

 

 

2. LITERATURE SURVEY  

 

The existing literature predominantly emphasizes the 

utilization of 'deep learning algorithms' within the dental field. 

Numerous systems have been devised for diagnosing and 

prognosticating various dental diseases. Numerous studies 

have explored the application of various “machine learning 

models” for detecting different dental conditions, such as 

“caries, gingivitis, and other oral health issues”, using digital 

images. Most approaches have focused on leveraging deep 

learning models like “convolutional neural networks (CNNs)”, 

with significant progress reported in accuracy and diagnostic 

capabilities. 

Patil et al. [11] proposed an "Adaptive Dragonfly Algorithm 

(DA) & Neural Network (NN) classifier" for the classification 

of 120 “digital X-ray images”, achieving an accuracy of 93%. 

This enlightens the potential of hybrid models combining 

optimization algorithms with neural networks. While many of 

the studies focus on the potential of deep learning and machine 

learning in dental disease diagnosis, certain limitations persist. 

Sun et al. [12] provided a comprehensive review on the 

application of “machine learning” in dentistry, encompassing 

areas such as “oral cancer, periodontitis, dental caries, diseases 

of dental pulp and periapical lesion, dental implants, and 

orthodontics”. For example, Stratigaki et al. [13] evaluated the 

use of “near-infrared light transillumination (NILT)” 

alongside bitewing radiography (BWR) for diagnosing dental 

conditions. Their results indicated that while NILT could be 

useful for routine examinations, it was not reliable enough to 

replace BWR for critical treatment decisions. This points to 

the ongoing challenge of finding non-invasive diagnostic 

methods that can match the reliability of traditional imaging 

techniques. 

Similarly, Divakaran et al. [14] demonstrated that utilizing 

"GLCM features, SVM, KNN, and ANN classifiers" can 

effectively differentiate between decayed teeth and healthy 

ones. These studies underscore the versatility of machine 

learning models in handling different types of dental images. 

Another area of research involves using machine learning 

for predictive analysis. Park and Choi [15] introduced the 

concept of "decayed occupied teeth" (DOT) to assess the 

relationship between feeding practices and cavity 

development in infants. Their study used logistic regression to 

find a significant correlation between feeding practices and 

early cavity development, revealing lower instances of cavities 

in children who consumed external foods compared to those 

exclusively breastfed. Similarly, Hung et al. [16] analyzed a 

large dataset of 5135 samples using SVM, XGBoost, random 

forest, KNN, and logistic regression classifiers to predict root 

caries based on patient age. They achieved 95% accuracy with 

SVM, indicating that machine learning models can be highly 

effective for predictive analysis in dentistry. 

A notable trend is the use of “CNNs” for diagnosing dental 

diseases. The studies [17-19] demonstrated the superiority of 

“CNNs” for dental applications, particularly in detecting 

caries. “CNNs” have proven to be highly effective in 

processing dental images. In terms of future research 

directions, Chen et al. [20] emphasized the importance of 

collaboration between clinicians, researchers, and engineers to 
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advance AI integration into dentistry. They argued that 

interdisciplinary efforts are necessary to ensure that AI tools 

not only achieve high accuracy but are also practical and user-

friendly in clinical settings. Javid et al. [21] employed 

ResNet50 to detect enamel decay from digital photographs 

with a 95% accuracy rate. However, while CNNs show great 

promise, their performance often depends on the quality and 

type of data used. For instance, Leo and Reddy [22] proposed 

a “hybrid neural network (HNN)” combining “artificial neural 

networks (ANN)” and “deep neural networks (DNN)” for 

dental caries classification on 480 digital radiographs. Their 

model outperformed traditional CNNs, suggesting that hybrid 

models may offer advantages over standalone deep learning 

methods in certain contexts. Additionally, Myint et al. [23] 

identified a gap in dental caries and gingivitis detection, 

stressing the need for more comprehensive models that 

consider bacterial levels and oral hygiene habits alongside 

image-based data. Uoshima et al. [24] emphasized the 

importance of a comprehensive skill set, including technical 

and non-technical skills, in dental education. They suggested 

integrating artificial intelligence (AI) to enhance the dental 

education system. 

Beyond CNNs, other deep learning architectures have been 

explored. For example, Verma et al. [25] combined CNN with 

SVM for image classification, applied to 250 digital 

radiographs, achieving better performance than conventional 

CNN approaches. This suggests that hybrid deep learning 

models may provide more robust solutions for dental disease 

detection. Kumar et al. [26] conducted a comprehensive 

review of dental image fractionation and modalities utilized in 

dental image analysis. Similarly, Chen et al. [27] introduced a 

stage-wise detection approach for dental image analysis, 

utilizing a neural network to detect missing teeth and apply a 

numbering system, but their dataset was limited to 1250 digital 

X-rays. Tuzoff et al. [28] applied Faster R-CNN to 1594 

panoramic dental radiographs, concluding that their proposed 

method could effectively update digital dental records in 

practice. Reyes et al. [29] identified the potential of machine 

learning in various dental subfields but noted the challenge of 

generalizing machine learning methods across different 

applications. Additionally, Musri et al. [30] reviewed the use 

of “deep learning convolutional neural networks (DLCNNs)” 

for identifying dental problems, concluding that DLCNNs 

have shown promising results, particularly in detecting dental 

caries.  

A key limitation in many studies is the restricted scope of 

datasets used. For instance, Zhang et al. [31] developed a 

multistage “deep learning model” using SSD MobilenetV2 for 

cavity detection from RGB images, but their study was limited 

to front teeth, leaving out other areas of the mouth. While these 

models show high precision and recall, the restricted dataset 

scope limits their applicability to broader, real-world dental 

scenarios. 

Some researchers have attempted to tackle the challenge of 

limited datasets by integrating different types of imaging 

techniques or by expanding the size of their datasets. For 

example, Rashid et al. [32] used a mixed dataset of 936 digital 

radiographs and 90 digital photographs to develop a hybrid 

Mask RCNN model for automated dental caries detection, 

achieving accuracy levels ranging from 0.78 to 0.92. This 

demonstrates the potential of combining different image types 

to improve the robustness of deep learning models in detecting 

dental diseases across varied conditions. In many other studies 

[33-38] specialised models for dedicated dental caries 

detection were designed.  

Additionally, real-time applications of deep learning in 

clinical settings are beginning to emerge. Hung et al. [39] 

suggested that a real-time online clinical tool could 

significantly enhance diagnostic precision for dentists. While 

tools like CNNs and hybrid models have shown success, the 

generalization of these methods in clinical practice remains an 

obstacle due to variability in dental conditions and imaging 

techniques. 

Data from the Indian Dental Association's National Oral 

Health Programme survey indicates a concerning shortage of 

dentists relative to the rural population. Dental health in India 

is further hampered by socioeconomic factors such as limited 

education, awareness, and economic constraints, leading to 

severe oral health issues. Dental treatments are often 

financially prohibitive for disadvantaged families. Therefore, 

there is a critical need for easily accessible early diagnosis of 

dental problems. An automated, easily accessible, and cost-

effective system for early detection and prognosis of dental 

issues is essential. Such a system would facilitate timely 

intervention and treatment, ultimately improving oral 

healthcare outcomes. Additionally, it would enhance precision 

in diagnosis and optimize time utilization for dental 

practitioners. This approach has the potential to significantly 

enhance oral healthcare accessibility and affordability for 

underserved communities. 

In conclusion, while significant progress has been made in 

dental healthcare using machine learning models, several gaps 

remain. Many studies are limited by small datasets, specific 

imaging techniques, and challenges in generalizing models to 

clinical environments. More research is needed to validate 

models in real-world settings and develop AI systems for non-

clinical environments, such as rural areas. Additionally, there 

is a lack of research on automation using digital RGB images, 

which this study addresses by evaluating deep learning models 

on intra-oral photographs and comparing residual and dense 

networks to find the best-performing algorithm. 
 

 

3. MATERIALS AND METHOD 

 

The literature review identified a notable challenge in dental 

research: the absence of labeled dental databases containing 

digital RGB images. This motivated us to create a new 

database specifically targeting dental diseases. For an 

overview of the methodology used in our proposed model, 

please refer to Figure 1. 
 

 
(a)                           (b)                        (c) 

 
(d)                            (e)                         (f) 

 

Figure 1. Sample images: (a) Anterior region, teeth in centric 

occlusion (b) Right posterior region, teeth in centric 

occlusion (c) Left posterior region, teeth in centric occlusion 

(d) Anterior region, teeth in edge-to-edge occlusion (e) 

Palatal/occlusal surface view of maxillary teeth (f) Palatal/ 

occlusal surface view of mandibular teeth 
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3.1 Noninvasive data acquisition 

 

The collected database comprises 1164 digital photographs 

of 194 adult patients in the age group 14 to 60 years who came 

to OPD (out patient’s department) of ‘Bharati Vidyapeeth’s 

Dental College and Hospital, Pune’. The dentist will assess 

each patient clinically for the presence of disease or abnormal 

conditions. The general dental assessment commences from 

the moment the patient enters the room. The external 

appearance of the patient includes facial appearance, skin, 

mobility, smell, etc. General dental assessment is divided into 

extraoral and intraoral examinations. An extraoral 

examination is performed for head and neck posture, etc. It 

involves the symmetry of the face. The extraoral examination 

is followed by the intraoral examination.  

For this procedure, each patient is asked to rinse their mouth 

with normal tap water. For opening of the mouth, winged 

cheek retractors are used. For the purpose of intraoral 

examination, diagnostic instruments including mirror, straight 

probe and explorer were used. With the help of One plus Nord 

2T images were clicked. One plus Nord 2T is with 50-

megapixel Sony IMX766 camera sensor with pixel size of 1.0 

µm, lens quality of 6P, optical image stabilization, aperture of 

f/1.8, and ARM Mali-G77 MC9 GPU for post-processing of 

the image.  

For examination and clicking of intraoral cavities images, 

the patient was asked to sit in a supine position on the dental 

chair with the light turned off. Camera flash was used when 

clicking pictures. The camera was adjusted and stabilized at a 

distance of 2 inches from the lips such that the camera is 

perpendicular to the plane of the teeth in focus for each image. 

The patient’s face was adjusted such that the head is parallel 

to the plane on which the camera lens was adjusted and 

stabilized. Then on the basis of clinical examination, a 

diagnosis was made by the dentist. 

Six images per patient are taken to cover the entire oral 

cavity. Sample images are given below. Please refer to Figure 

1. For the first and second images, the central incisors are 

considered the object of focus and camera lens will be 

perpendicular to them. The patient faces directly upwards. The 

third and fourth images are taken with the first premolar as the 

focus on the respective sides. For these, the patient is asked to 

turn their head at 45° to the left side while taking image of the 

right side and the head will be turned to the right side while 

taking a picture of the left side. For the first 4 images, a winged 

cheek retractor will be used to ensure the required details are 

captured well and for stabilization. For the fifth and sixth 

images, an intraoral mirror will be placed for taking maxillary 

and mandibular occlusal surfaces, respectively. The focus will 

be adjusted to the mirror so that the occlusal surface of each 

arch is clearly visible. 

i. Inclusion criteria 

·Patients willing to participate in the study and those who 

provide their consent. 

·Patients with hard tissue diseases including caries, stains, 

erosion, attrition, abrasion, abfraction, periodontal diseases 

including gingivitis and malocclusions. 

·Patients with healthy teeth, ideal occlusion, and ideal 

periodontal conditions. 

·Images with appropriate resolution taken with 

predetermined standardized method  

ii. Exclusion Criteria 

·Patients with incomplete clinical records, previous history 

of surgery or craniofacial anomalies, maxillofacial trauma 

·Patients with a history of medical conditions and 

vulnerable patients  

 

3.1.1 Database labeling 

Image-wise labeling would have become tedious in this case 

and the model would also have become complicated, hence 

tooth-wise labeling is done. Labeling is done in consultation 

with the dentist. The standard FDI tooth notation system is 

used. This was also useful for detecting the location of the 

tooth. Dental caries is classified as Grade 0 (Healthy), Grade 

1(Pit and Fissure / Start of cavitation), Grade 2 (Deep Cavities, 

Structural damage, Occlusal) and Grade 3 (Total loss of tooth 

structure, root stumps) as suggested by dental practitioner. 

According to the FDI notation system, the mouth is divided 

into four quadrants, each with its specific numbering: “the 

upper right” quadrant is numbered 11 to 18, “the upper left” 

21 to 28, “the lower right” 41 to 48, and “the lower left” 31 to 

38. These numbers assist dentists in identifying individual 

teeth. In our study, we adopt a labeling system that aligns with 

this numbering. For example, patient 1 is recorded with class 

0 caries in tooth 11, while patient 34 has class 3 caries in tooth 

45. Dental practitioners document these labels in an Excel 

sheet, where the first column shows patient identifiers and the 

other columns list tooth numbers, with caries class numbers 

noted in the intersecting cells. Images were cropped tooth-wise. 

They were labeled class-wise as per the excel sheet prepared.  
 

3.1.2 Data augmentation 

Consider the database ‘D’ as the collection of original RGB 

images of individual teeth. Initially, the database was 

organized into two primary folders namely “train and test”. 

Each of these folders was further divided into subfolders 

corresponding to different classes, with images manually 

sorted according to the type of “dental caries” with the 

assistance of a dental practitioner. Upon conducting a 

statistical analysis, it was discovered that the database is 

significantly imbalanced, as class 0 contains nearly 4,000 

images, while classes 1 and 2 have considerably fewer images. 

To address this imbalance, “data augmentation techniques” 

such as image scaling, zooming, flipping, and shearing were 

applied. This process also involved filling in missing values 

and encoding the dataset to prepare it for further processing. 

Let Ii(x,y) represents the images where i=1,2,3,4. Each 

image is located in the dataset ‘D’ either in train or test folders. 

The size of each image Ii(x,y) is (150×150). After this rescaling 

of the image was carried out as shown in Eq. (1).  

1. Rescaling 
 

𝐼𝑟(𝑥′, 𝑦′)=I(
𝑥

𝑆𝑥
,

𝑦

𝑆𝑦
)=I(

𝑥

255
,

𝑦

255
) (1) 

 

2. Shear transformation 
 

𝐼𝑠(𝑥′, 𝑦′) = 𝐼𝑠[𝐼𝑟(𝑥′, 𝑦′)] = 𝐼(𝑥′ + 𝑘𝑦′, 𝑦′) =
𝐼(𝑥′ + 0.2𝑦′, 𝑦′)  

(2) 

 

3. Zoom transformation 

Pixel values of the image x' and y' are updated in this phase 

of augmentation. It is scaled up by a factor of 20%. Nearest 

neighbour interpolation method is used.  
 

𝐼𝑧(𝑥′, 𝑦′) = 𝐼𝑠 (
𝑥′

𝑆𝑥
,

𝑦′

𝑆𝑦
) = 𝐼𝑠 (

𝑥′

0.2
,

𝑦′

0.2
)  (3) 

 

4. Horizontal flip 
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𝐼𝑓(𝑥′, 𝑦′) = 𝐼𝑧 ((𝑊 − 𝑥′), 𝑦′) (4) 

 

where, W=width of the image. 

5. Sequential operation for augmented output image 
 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑥′, 𝑦′) = 𝐼𝑟((𝑊 −
𝑥′−𝑘𝑦′

𝑆𝑥
) ,

𝑦′

𝑆𝑦
)  (5) 

 

This equation represents the final pixel value after applying 

the rescaling, shear, zoom, and horizontal flip operations 

sequentially. Figure 2 showcases sample augmented sample 

images. 

 

 
(a)                      (b)                           (c)                  (d) 

 

Figure 2. Augmentaged (a) Class 0 (b) Class 1 (c) Class 2 (d) 

Class 3 

 

3.2 Methodology 

 

3.2.1 Deep neural network models 

“ResNet” and “DenseNet” variants were chosen for their 

proven performance in complex image classification tasks, 

including medical imaging, due to their ability to handle deep 

network training and feature extraction effectively. ResNet's 

residual learning framework helps mitigate the vanishing 

gradient problem, enabling it to train very deep networks and 

extract features from intricate dental images with high 

accuracy. DenseNet’s feature reuse mechanism enhances 

gradient flow and feature propagation, which is advantageous 

for detecting subtle patterns in dental images. Both models are 

also known for their efficiency in training and inference, 

which is crucial given the computational resources available 

for dental datasets. Their previous success in medical and 

dental imaging tasks further validates their suitability for this 

study. The advanced feature extraction capabilities of ResNet 

and DenseNet, along with their scalability to various dataset 

sizes and image resolutions, align well with the diverse nature 

of dental images. Supported by existing literature, these 

models are confirmed to be effective for dental image analysis, 

ensuring they are well-suited to deliver high accuracy and 

reliable results for this research. 

The study was conducted in three phases, each utilizing 

different numbers of images across all classes. Phase I 

involved 240 images, Phase II utilized 800 images, and Phase 

III used 967 images. During each phase, the performance of 

residual networks and dense networks was compared for 

dental caries classification on the novel dataset. Standard 

architectures of Residual networks and DenseNet were 

adapted to accommodate the customized dataset, with certain 

layers modified as needed. Hyperparameter tuning was 

conducted to enhance performance. In total, three models of 

residual networks and three models of dense networks were 

implemented. Fine-tuning and adjustments were made to these 

models to improve accuracy and training. The following 

architectures were employed. Python was used for 

implementation of the models. Libraries like “Numpy, Pandas, 

Matplotlib, Sklearn, Seaborn, Tensorflow, Keras” etc. were 

used.  

A. Modified residual networks 

The residual networks comprise skip connections, due to 

which the issue of vanishing gradients is resolved up to great 

extent in backward propagation. Three different layer models 

were implemented, namely “ResNet50, ResNet101 and 

ResNet152”. The number in the name of the model indicates 

the depth of the model. For example, ResNet50 is 50 layers 

deep and so on. In the model implemented, we changed the 

pooling function from Maxpooling to Average pooling. Figure 

3 shows the implementation of “ResNet50V2” for the 

collected database. 

The implemented ResNet model comprises functional 

layers such as “average pooling, batch normalization, dropout, 

and dense layers”. The input image size used was (256×256). 

It incorporates skip connections, enabling direct connections 

from input to output to mitigate the issue of vanishing 

gradients. The network is pretrained on the large-scale 

"Imagenet" database with millions of images. Base model of 

the residual network is frozen and top layers were added to 

deal with novel database. The model employs the “categorical 

cross-entropy loss function” and the “Adam optimizer” with a 

standard learning rate, along with early stopping. A batch size 

of 32 was employed for training. Dropout layer with a factor 

of 0.2 was added to avoid overfitting of the model. The 'Relu' 

activation function was employed, while the “softmax” 

activation function was used in the last dense layer to reduce 

data dimensionality from 2048 to 256 in this study. Similar 

configurations and layers are utilized for ResNet101 and 

ResNet152 models.  

 

 
 

Figure 3. Modified ResNet50v2 architecture 

 

 
 

Figure 4. Modified DenseNet201 model architecture 

 

B. Modified DenseNet 

DenseNet is a parametrically efficient model that has been 

pre-trained on large datasets such as "ImageNet." In our 

approach, we utilized transfer learning by leveraging the 

pretrained DenseNet model. Unlike residual networks, 

DenseNet exhibits strong connectivity between all previous 

and future layers. This dense connectivity allows even smaller 
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features from the initial layer to influence the final feature 

maps. This connectivity proves advantageous, especially in 

smaller object databases like dental images. Additionally, 

DenseNet is known to perform better in mitigating the 

vanishing gradient problem compared to other models. Figure 

4 presents the proposed DenseNet201 model for the 

classification of dental diseases.  

1. Base model (DenseNet201) 

The primary base model employed in this study utilizes 

“DenseNet201”, which features four dense blocks. Each dense 

block incorporates a bottleneck layer with a (1×1) 

convolutional filter, preceding a (3×3) “convolutional layer”. 

This design is computationally efficient to reduce the size of 

the feature maps maintaining high feature extraction quality. 

A transfer learning approach was employed, leveraging the 

“DenseNet201 architecture” pre-trained on the “ImageNet 

dataset”, which includes millions of labelled images across 

thousands of classes. The pre-trained weights provide a robust 

foundation for feature extraction. During training, the weights 

of the “DenseNet201 base model” were frozen. Thus, only top 

layer weights were updated resulting adaptation of the model 

for the specific task of dental caries classification without 

altering the foundational features learned. This selective 

training approach contrasts with the standard DenseNet201 

model, where all weights, including those in the base 

architecture, are typically trainable by default unless specified 

otherwise. 

2. Top layers of the model 

Following the DenseNet201 base model, the proposed 

algorithm integrates several additional layers designed to tailor 

the model's learned features to the specific task of dental caries 

classification across four classes. These top layers include 

“Global Average Pooling, Batch Normalization, Dropout, and 

Dense layers”. The “Global Average Pooling layer 

(GlobalAvgPool2D ())” replaces traditional flattening layers, 

reducing spatial dimensions by averaging each feature map, 

thereby capturing global spatial information while minimizing 

overfitting risks. Furthermore, to decrease the dimensionality 

of the feature matrix and reduce the number of trainable 

parameters, a (2×2) average pooling with a stride of 2 was 

applied.  

"Batch Normalization" is implemented to stabilize the 

output by normalizing it to have a "zero mean and unit 

variance," which speeds up training and minimizes internal 

covariate shifts. The “Dropout layer” randomly set 20% of the 

input units to zero during training updates that prevent 

overfitting. The architecture included two “fully connected 

Dense layers” each with 128 units, utilizing “ReLU (Rectified 

Linear Unit) activation function” to introduce “non-linearity” 

and identify complex patterns within the data. The 

combination of these layers effectively transforms the 4D 

tensor output from DenseNet201 into a 1D tensor suitable for 

the final classification task. 

3. Output Layer 

The proposed model culminates in an output layer 

specifically designed for the classification of dental caries into 

four classes. It features a "dense layer" with a number of units 

equal to the four classes, using the "Softmax activation 

function" to produce a "probability distribution" over the 

classes, making it ideal for multi-class classification tasks. 

Unlike the standard DenseNet architecture, which typically 

concludes with classification layers following four dense 

blocks, this study modifies the architecture by incorporating a 

combination of global average 2D pooling and three BDD 

layers (“Batch Normalization, Dropout, and Dense layers”). 

Image batch size used was of 32 and dropout factor of 0.2 was 

utilized. The final “Dense layer” applies the “Softmax 

activation function” to output a flattened vector representing 

the model's confidence in each class. The model is trained 

using the “Adam optimizer with a standard learning rate”, 

ensuring efficient and effective convergence. 

This proposed model’s architecture, with its customized top 

layers and output configuration, presents a novel approach for 

the task of dental caries detection, capitalizing on the strength 

of DenseNet201's feature extraction capabilities while 

adapting the model to the specific needs of this classification 

problem. 

C. Modified DenseNet201’s architectural benefits for dental 

caries classification 

1. Leveraging DenseNet201 for feature extraction 

a. Dense connections: It allows reuse of all features 

reducing the need for redundant parameters resulting in more 

compact and efficient representations. “DenseNet” 

architecture inherently mitigates the “vanishing gradient 

problem”, maintaining high efficiency and reduced 

computational costs.  

b. Pre-trained Weights: Since the proposed model was 

already pre-trained on the “ImageNet dataset”, it is beneficial 

in scenarios with limited data availability, enabling the model 

to generalize more effectively on smaller, domain-specific 

datasets. 

c. Adaptability: In the proposed model, the weights of the 

DenseNet201 base layers are frozen, allowing the network to 

retain the features learned from "ImageNet" while 

concentrating on fine-tuning the newly added dense layers. 

2. Efficient dimensionality reduction 

a. Dimensionality Reduction: “Global Average Pooling 

(GAP)” reduces each feature map to a single value, 

transforming high-dimensional tensors into lower-

dimensional vectors without losing spatial information. This 

technique not only reduces the risk of overfitting, particularly 

in complex models, but also maintains translational invariance, 

making the model robust to different spatial configurations. 

b. Contrast with Flattening: Traditional flattening methods 

can lead to a high number of parameters, thereby increasing 

the risk of overfitting. GAP addresses this issue by minimizing 

the number of parameters while preserving crucial features. 

3. Robust Regularization with Batch Normalization and 

Dropout 

a. Combination of “Batch Normalization and Dropout: 

Integrating “Batch Normalization and Dropout” between 

layers is a novel approach that ensures model stability during 

training. Batch Normalization reduces internal covariate shifts 

by normalizing inputs, accelerating training and improving 

gradient flow through the network. Dropout, as a 

regularization technique, randomly drops neurons during 

training, preventing co-adaptation and improving the model's 

generalization. 

b. Effect on Convergence: The sequential application of 

Batch Normalization and Dropout enhances convergence 

speed and stability, often leading to better accuracy and 

robustness against noise in the input data. 

D. Mathematical Model of modified DenseNet201 

Let ‘D’ be the image database containing the images of 

“class 0, class 1, class 2 and class 3”. As explained in section 

3.1, Data augmentation was carried out for increasing the 

number of images and balancing the class-wise dataset. 

Following mathematical operations were carried out on the 
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images of the dataset.  

1. Base Model Transformation 

Each input image 𝑋(𝑖) = 𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 (𝑥′, 𝑦′)  from the 

database is transformed into feature maps 𝑋𝐵𝑎𝑠𝑒
(𝑖)

 using the 

Modified DenseNet201 architecture. 
 

𝑋𝐵𝑎𝑠𝑒
(𝑖)

= 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡201(𝑋(𝑖)) (6) 
 

where, X(i)=ith Image in the database ‘D’; 𝑋𝐵𝑎𝑠𝑒
(𝑖)

=feature map 

with shape (4,4,1920). 

2. Global Average Pooling 2D 

The feature maps 𝑋𝐵𝑎𝑠𝑒
(𝑖)

 are reduced to a 1D vector 𝑋𝑃𝑜𝑜𝑙𝑒𝑑
(𝑖)

 

by applying global average pooling. Eq. (7) represents 

standard equation for global average pooling and Eq. (8) 

shows Global average pooling implemented in Modified 

DenseNet201 model.  

 

𝐺𝐴𝑃(𝑓) =
1

H×W
∑ ∑ 𝑓𝑖,𝑗

W

𝑗=1

H

𝑖=1
  (7) 

 

𝑋𝑃𝑜𝑜𝑙𝑒𝑑 
(𝑖)

=
1

4×4
∑ ∑ 𝑋𝐵𝑎𝑠𝑒

𝑖  (𝑥, 𝑦, 𝑐)
4

𝑦=1

4

𝑥=1
  

𝐹𝑜𝑟 𝑐 = 1,2,3, . . . . ,1920 

(8) 

 

where, 𝑋𝑃𝑜𝑜𝑙𝑒𝑑 
(𝑖)

 has shape (1920); c=Number of channels. 

3. Batch normalization Layer 1 

Batch normalization is applied to the pooled feature map 

𝑋𝑃𝑜𝑜𝑙𝑒𝑑 
(𝑖)

. Eq. (9) shows standard form of Batch Normalization 

and Eq. (10) shows implemented one.  
 

BN(𝑥) = 𝛾(
𝑥−𝜇

√𝜎2+𝜖
) + 𝛽  (9) 

 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑1
(𝑖)

= 𝛾1
𝑋𝑃𝑜𝑜𝑙𝑒𝑑

𝑖 −𝜇1

√𝜎1
2+𝜖

+ 𝛽1  (10) 

 

where, μ1 and 𝜎1
2=Mean and variance of 𝑋𝑃𝑜𝑜𝑙𝑒𝑑

𝑖  within the 

batch of 32 images respectively; γ1 and β1=learnable 

parameters 

4. Dropout Layer 1 

Dropout is applied to normalized feature map 𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑1
(𝑖)

. 

 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑1
(𝑖)

=Dropout (𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑1
(𝑖)

, p=0.2) (11) 

 

where, p=Dropout rate=20% of the neurons are randomly set 

to zero. 

5. Dense Layer 1 

A fully connected dense layer with ReLU activation was 

employed. 
 

𝑋𝐷𝑒𝑛𝑠𝑒1
(𝑖)

=ReLU(W1. 𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑1
(𝑖)

+B1) (12) 

 

where, W1=Weight Matrix of the dense layer; B1=Bias Vector. 

6. Batch normalization Layer 2 
 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
(𝑖)

= 𝛾2
𝑋𝐷𝑒𝑛𝑠𝑒1

𝑖 −𝜇2

√𝜎2
2+𝜖

+ 𝛽2  (13) 

 

where, μ2 and 𝜎2
2=Mean and variance of 𝑋𝐷𝑒𝑛𝑠𝑒1 

(𝑖)
within the 

batch of respectively; γ2 and β2=learnable parameters. 

7. Dropout Layer 2 

Dropout is applied to normalized feature map 𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
(𝑖)

. 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑2
(𝑖)

=Dropout (𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
(𝑖)

, p=0.2) (14) 

 

where, p=Dropout rate = 20% of the neurons are randomly set 

to zero. 

8. Dense Layer 2 

A fully connected dense layer with ReLU activation was 

employed. 
 

𝑋𝐷𝑒𝑛𝑠𝑒2
(𝑖)

=ReLU(W2. 𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑2
(𝑖)

+B2) (15) 

 

where, W2= Weight Matrix of the dense layer; B2=Bias Vector. 

9. Batch normalization Layer 3 
 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑3
(𝑖)

= 𝛾3
𝑋𝐷𝑒𝑛𝑠𝑒2

𝑖 −𝜇3

√𝜎3
2+𝜖

+ 𝛽3  (16) 

 

where, μ3 and 𝜎3
2=Mean and variance of 𝑋𝐷𝑒𝑛𝑠𝑒2

(𝑖)
 within the 

batch of respectively; γ3 and β3=learnable parameters. 

10. Dropout Layer 3 

Dropout is applied to normalized feature map 𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2 
(𝑖)

. 

 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑3
(𝑖)

=Dropout (𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑3
(𝑖)

, p=0.2) (17) 

 

where, p=Dropout rate=20% of the neurons are randomly set 

to zero. 

11. Output Layer 

Softmax function is given by the Eq. (18). 
 

𝜙(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 (18) 

 

𝑌𝑂𝑢𝑡𝑝𝑢𝑡
(𝑖)

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑂𝑢𝑡𝑝𝑢𝑡 . 𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑3
𝑖 + 𝐵𝑂𝑢𝑡𝑝𝑢𝑡) (19) 

 

where, WOutput=Weight Matrix of the output layer; BOutput=Bias 

Vector. 

The aggregate count of parameters in the model is 

18,593,604, with 267,268 trainable parameters and 18,326,336 

non-trainable parameters. 
 

 

4. RESULTS AND DISCUSSION 
 

A total of 1064 intraoral images from 194 patients were 

initially captured and cropped tooth by tooth. Among these, 

200 images were specifically selected for a performance 

analysis study. The patients' ages ranged from 14 to 70 years, 

with an average age of 26 years. Both male and female samples 

were included in the dataset, and patient demographics such as 

age and sex were kept undisclosed. Various types of teeth 

(molars, premolars, canines, etc.) were considered, while teeth 

with root canal caps and implants were excluded from the 

study. The primary objective was to classify dental caries into 

four classes to aid in early detection. 

To enhance the model's robustness, data enrichment 

techniques were employed. The research primarily centers on 

early dental caries detection and was conducted in phases. 

Phase I involved training on 200 images and testing on 40 

images. Phase II expanded the dataset to 640 training images 

and 160 testing images. Finally, in Phase III, the dataset further 

increased to 888 training images and 79 testing images, with 

each phase building upon the results of the previous one. 

In Phase I, five different models—ResNet50V2, 

ResNet101V2, ResNet152, DenseNet169, and 
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DenseNet201—were implemented and meticulously 

evaluated for performance. Phase II focused on ResNet50V2, 

DenseNet169, and DenseNet201 models, while Phase III 

compared DenseNet201 and DenseNet169 models. The 

performance parameters considered for the study include 

precision, recall, F1 score, and overall accuracy. Additionally, 

a confusion matrix is presented in the results to justify the 

suitability of the chosen model. 
 

4.1 Phase I experimental results 
 

The accuracy levels ranged from 0.66 to 0.86 when utilizing 

50 images per class for training, calculated across random 

samples encompassing all classes collectively. For class 0, 

precision varied from 0.69 to 0.90 across different models. 

Notably, ResNet101 exhibited superior performance in 

identifying healthy teeth, whereas DenseNet169 demonstrated 

greater efficacy in early dental caries detection, achieving a 

precision of 0.86 for class 1. However, it showed lower 

precision (0.77) in detecting class 3 caries. DenseNet201 also 

yielded a precision of 0.83 for class 1 and achieved 100% 

precision for class 3. Overall, DenseNet201 emerged as a 

consistently reliable solution among the models under 

consideration. 

 

Table 1. Performance matrix for Phase I experimentation 

 
Sr. No. Model Number of Epochs Class 0 Class 1 Class 2 Class 3 Accuracy Recall F1 Score 

1 ResNet50V2 50 0.69 0.50 0.83 0.77 0.70 0.75 0.68 

2 ResNet101V2 50 0.90 0.80 0.71 0.82 0.81 0.8 0.78 

3 ResNet152V2 50 0.86 0.74 0.38 0.50 0.66 0.57 0.55 

4 DenseNet169 50 0.80 0.86 0.75 0.77 0.81 0.8 0.79 

5 DenseNet201 50 0.87 0.83 0.77 1.00 0.86 0.85 0.84 

 

Upon conducting comparative performance analysis, 

DenseNet models exhibited superior performance. The 

detailed performance results are tabulated in Table 1, while 

graphical representations of accuracy, class-wise precision, 

and Comparative F1 scores are depicted in Figures 5(a), 5(b), 

and 5(c) respectively. Figures 6-20 depict confusion matrices, 

as well as plots illustrating "training and validation accuracy" 

and "training and validation loss," for all models employed in 

the study. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5. (a) Comparison of accuracy (Phase I) (b) 

Comparison of class-wise precision (Phase I) (c) Comparison 

of class-wise F1 score (Phase I) 

 

 
 

Figure 6. Confusion matrix for ResNet50V2 
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Figure 7. Confusion matrix for ResNet101V2 

 

 
 

Figure 8. Confusion matrix for ResNet152 

 

 
 

Figure 9. Confusion matrix for DenseNet169 

 
 

Figure 10. Confusion matrix for DenseNet201 

 

 
 

Figure 11. Training and validation accuracy for ResNet50V2 

 

 
 

Figure 12. Training and validation loss for ResNet50V2 
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Figure 13. Training and validation accuracy for 

ResNet101V2 
 

 
 

Figure 14. Training and validation loss for ResNet101V2 

 

 
 

Figure 15. Training and validation accuracy for ResNet152 

 

 
 

Figure 16. Training and validation loss for ResNet152 

 
 

Figure 17. Training and validation accuracy for 

DenseNet169 

 

 
 

Figure 18. Training and validation loss for DenseNet169 
 

 
 

Figure 19. Training and validation accuracy for 

DenseNet201 

 

 
 

Figure 20. Training and validation loss for DenseNet201 
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4.2 Phase II experimental results 

 
The accuracy ranged from 0.73 to 0.79 across the models. 

ResNet50v2 demonstrated a promising precision of 0.90 for 

class 0 (representing healthy teeth), but struggled to effectively 

identify and classify dental caries in other classes, particularly 

exhibiting poor performance with a precision of approximately 

0.58 for class 2 caries. Overall, DenseNet models 

outperformed other models. However, DenseNet169 

consistently struggled to accurately detect class 3 caries 

compared to DenseNet201. The performance metrics are 

summarized in Table 2. Graphical representations of accuracy, 

class-wise precision, and Comparative F1 scores can be found 

in Figures 21(a), 21(b), and 21(c) respectively. Confusion 

matrices, as well as plots illustrating training and validation 

accuracy, and training and validation loss for all models used 

in the study, are depicted in Figures 22-30. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 21. (a) Comparison of accuracy (Phase II) (b) 

Comparison of class-wise precision (Phase II) (c) 

Comparison of class-wise F1 score (Phase II) 
 

Table 2. Performance matrix for Phase II experimentation 
 

Sr. No. Model Number of Epochs Class 0 Class 1 Class 2 Class 3 Accuracy Recall F1 Score 

1 ResNet50V2 30 0.90 0.71 0.58 0.73 0.73 0.72 0.72 

2 DenseNet169 30 1.00 0.78 0.70 0.69 0.79 0.78 0.78 

3 DenseNet201 30 0.75 0.78 0.67 0.91 0.79 0.75 0.72 

 

 
 

Figure 22. Confusion matrix for ResNet50V2 

 

 
 

Figure 23. Confusion matrix for DenseNet169 
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Figure 24. Confusion matrix for DenseNet201 

 

 
 

Figure 25. Training and validation accuracy for ResNet50V2 

 

 
 

Figure 26. Training and validation loss for ResNet50V2 

 

 
Figure 27. Training and validation accuracy for 

DenseNet169 

 
 

Figure 28. Training and validation loss for DenseNet169 
 

 
 

Figure 29. Training and validation accuracy for 

DenseNet201 
 

 
 

Figure 30. Training and validation loss for DenseNet201 
 

4.3 Phase III experimental results 
 

The analysis of the initial two phases of experimentation 

indicated that DenseNet models exhibited superior 

performance in the early identification of dental caries. 

Consequently, only DenseNet models were utilized in this 

stage of the study. A greater number of images, including a 

higher volume of augmented images in classes 2 and 3, were 

incorporated to enhance the resilience of class 2 and class 3 

detection and classification by the models. This augmentation 

of data proved to be effective, as DenseNet201 achieved an 

overall accuracy of 93%. Moreover, DenseNet201 

demonstrated class-specific precision ranging from 0.87 to 

1.00, marking the most favorable outcome attained across all 

phases of experimentation. On the other hand, DenseNet169 

exhibited precision ranging from 0.82 to 0.91, with class 3 

showing a lower accuracy of 0.82. Thus, based on the 
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accumulated results, DenseNet201 emerged as the superior 

choice for early dental caries detection. The performance 

metrics are succinctly outlined in Table 3, while graphical 

representations showcasing accuracy, class-specific precision, 

and Comparative F1 scores can be found in Figures 31(a), 

31(b), and 31(c) respectively. Additionally, confusion 

matrices and plots illustrating "training and validation 

accuracy, as well as training and validation loss," for all 

employed models, were presented in Figures 32-37. Table 4 

shows comparison of mean confidence and standard deviation 

across dental caries classes. “DenseNet201” exhibits more 

stable and consistent confidence levels across all caries grades, 

while DenseNet169 shows slightly higher mean confidences 

but with some variability. This stability in DenseNet201 could 

make it a preferable choice for applications requiring reliable 

and consistent predictions across different classes. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 31. (a) Class-wise accuracy (Phase III) (b) 

Comparison of class-wise precision (Phase III) (c) 

Comparison of class-wise F1 score (Phase III) 

 

Table 3. Performance matrix for Phase III experimentation 

 
Sr. No. Model Number of Epochs Class 0 Class 1 Class 2 Class 3 Accuracy Recall F1 Score 

1 DenseNet201 80 0.87 0.94 0.91 1.00 0.93 0.93 0.93 

2 DenseNet169 80 0.93 0.89 1.00 0.82 0.91 0.91 0.91 

 

Table 4. Comparison of mean confidence and standard deviation 

 
Sr. No. Model Metric Class 0 Class 1 Class 2 Class 3 

1 DenseNet201 
Mean Confidence 0.99 0.94 0.99 0.96 

Standard Deviation 0.02 0.12 0.03 0.09 

2 DenseNet169 
Mean Confidence 0.96 0.92 1.00 0.94 

Standard Deviation 0.09 0.14 0.00 0.10 

 

 
 

Figure 32. Confusion matrix for DenseNet201 

 
 

Figure 33. Confusion matrix for DenseNet169 
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Figure 34. Training and validation accuracy for 

DenseNet169 
 

 
 

Figure 35. Training and validation loss for DenseNet169 
 

 
 

Figure 36. Training and validation accuracy for 

DenseNet201 
 

 
 

Figure 37. Training and validation loss for DenseNet201 

Potential advantages of the modified DenseNet201 model 

1. Efficient parameter utilization: DenseNet's dense 

connectivity ensures efficient parameter usage, reducing 

redundant calculations and improving computational 

efficiency. This compactness contributes to faster training and 

inference times, which is beneficial for applications requiring 

real-time predictions. 

2. Improved generalization: Utilizing pre-trained weights, 

along with robust “regularization techniques” such as 

“Dropout and Batch Normalization”, enhances the model's 

generalization capabilities, even when data is limited. These 

techniques collectively improve the model's resilience against 

overfitting, resulting in more reliable performance on unseen 

data. 

3. Transfer learning and domain adaptation: The 

model's architecture supports transfer learning, allowing 

adaptation to specific domains or datasets while leveraging the 

robust features learned from DenseNet201. Fine-tuning 

through dense layers ensures the capture of domain-specific 

features, thus boosting accuracy in niche applications. 

4. Scalability and adaptability: The modular design of the 

architecture allows for easy modifications, such as adding 

more dense layers or adjusting dropout rates, to suit different 

datasets and problem complexities. This adaptability makes 

the model a versatile choice for various image classification 

tasks, ranging from medical imaging to natural scene analysis. 

5. Resource efficiency: Global Average Pooling and Batch 

Normalization contribute to resource efficiency by minimizing 

memory usage and computational overhead, making the model 

suitable for deployment on devices with limited resources. 

6. Computational efficiency: The model required 21min 

and 24.8 sec for training which is advantageous for clinical 

implementations where quick model updates or real-time 

training may be necessary. 

 

Evaluation of the proposed model for optimum results 

Table 5 shows the comparison of Densenet201 model 

variants. 

1. Increasing the dropout rate from 0.2 to 0.5 

The model with a dropout rate of 0.2 exhibits a high overall 

accuracy of 0.93, indicating strong overall performance and 

effective classification across all classes. The F1 scores for 

each class are consistently high, reflecting balanced precision 

and recall. Notably, the model achieves perfect recall (1.00) 

for class 3, suggesting it is very effective in identifying this 

class. Lower dropout rates tend to retain more information 

during training, which can be beneficial in capturing detailed 

features from the dataset. However increased dropout rate 

shows trade-off between regularization and model 

performance. Thus, the model with a dropout rate of p=0.2 

appears to be the optimum choice based on overall 

performance metrics, including accuracy, recall, and F1 score. 

2. Performance of 4BDD DenseNet201 variant 

This model performed almost similar to DenseNet201 with 

3BDD layers for advanced classes detection however it lagged 

behind in early detection of the dental caries resulting in 0.77 

as class 1 accuracy. Also, overall accuracy reduced from 0.93 

to 0.85. The main disadvantage of additional BDD layer is that 

it makes proposed model computationally less effective 

resulting in requirement of 28 minutes and 35.5 seconds for 

training. In real time applications it may affect lot in critical 

detection.  

3. Modified DenseNet201 with learning rate scheduler 

Overall accuracy is bit lower than the proposed model. 
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Since the lesser amount of dataset proposed model is 

overfitting hence learning rate scheduler was implemented but 

it is also showing same results of overfitting of the model as 

that of proposed model. so proposed model is suitable for 

critical detection of early detection of dental caries.  

4. DenseNet201 with SGD optimizer 

The obvious choice of optimizer other than Adam is SGD. 

But proposed model shows reduced effectiveness in class 2 

(F1 score = 0.83). Even though, overall accuracy is similar to 

learning rate scheduler model, it does not show significant 

changes to the proposed model.  

 

Table 5. Comparison of DenseNet201 model variants 

 

Sr. 

No. 
Model Class 0 Class 1 Class 2 Class 3 Accuracy Recall 

F1 

Score 

Computational 

Complexity 

Inference 

Time 

1 

DenseNet201 

with 3BDD 

layer 

0.87 0.94 0.91 1.00 0.93 0.93 0.93 Moderate 
21min 

24.8sec 

2 

DenseNet201 

with 4 BDD 

layer 

0.85 0.77 0.91 1.00 0.85 0.85 0.85 High 
28 min 

35.5sec 

3 

DenseNet201 

with learning 

rate scheduler 

0.93 0.94 0.91 0.83 0.91 0.91 0.91 Moderate 
22min 

36.4sec 

4 
DenseNet201 

with p=0.5 
0.81 0.89 1.00 0.90 0.89 0.89 0.89 Moderate 

23min 

24.8sec 

5 
DenseNet201 

with SGD 
0.87 0.94 0.83 1.00 0.91 0.91 0.91 Moderate 

25min 

25.6sec 

 

 

5. CONCLUSION 

 

This paper presents a comprehensive analysis of “deep 

learning architectures”, particularly residual and dense 

networks, applied to a novel dental dataset for the early 

detection of dental caries. Among the evaluated models, 

“DenseNet201” emerges as the optimal architecture, 

achieving an overall accuracy of 93% and excelling in both 

precision and sensitivity across all classes, especially in 

detecting advanced caries (class 3). The dense connections in 

“DenseNet” proved advantageous in handling small-scale 

objects like dental caries, offering superior performance 

compared to residual networks, which faced challenges with 

classifying early-stage caries as the number of training images 

increased. 

Despite the promising results, the study is limited by the 

relatively small dataset size, which may hinder the model's 

ability to generalize to unseen data and introduce potential 

biases, such as class imbalance or demographic skew. 

Overfitting remains a concern, and the lack of validation 

across diverse populations limits the model's broader 

applicability. While computational complexity and inference 

time were considered, deploying the model in resource-

constrained environments, such as mobile devices, remains a 

challenge.  

Future research should focus on addressing these limitations 

by expanding the dataset to improve generalizability and 

reduce biases, exploring new architectures like transformers, 

and optimizing the model for mobile deployment to enable 

real-time, accessible dental caries detection in clinical and 

home settings. Furthermore, this framework could be extended 

to classify other dental diseases, making it a valuable tool for 

noninvasive, intelligent dental disease detection in preventive 

dentistry. 
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NOMENCLATURE 

Ii(x,y) Image i = 1, 2, 3, 4 in pixels 

D Dataset  

𝐼𝑟(𝑥′, 𝑦′) Rescaled image  

𝑋(𝑖) Augmented input image  

𝑋𝐵𝑎𝑠𝑒
(𝑖) Feature map from DenseNet201 

𝐺𝐴𝑃(𝑓) Global average pooling function 

𝑋𝑃𝑜𝑜𝑙𝑒𝑑
(𝑖) Pooled feature map 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑1
(𝑖) Batch-normalized pooled feature map 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑1
(𝑖) Feature map after dropout 

𝑋𝐷𝑒𝑛𝑠𝑒1
(𝑖) Dense layer output (ReLU) 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
(𝑖) Batch-normalized dense layer output 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑2
(𝑖) Feature map after dropout 

𝑋𝐷𝑒𝑛𝑠𝑒2
(𝑖) Second dense layer output 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑3
(𝑖) Batch-normalized second dense output 

𝑋𝐷𝑟𝑜𝑝𝑝𝑒𝑑3
(𝑖) Feature map after dropout 

𝑌𝑂𝑢𝑡𝑝𝑢𝑡
(𝑖) Output from softmax layer 

Greek symbols 

γ Scale parameter in batch normalization 

β Shift parameter in batch normalization 

µ Mean used for normalization  

σ2 Variance used for normalization 

ϕ(xi) Softmax function 

ϵ Small constant added to variance  

Subscripts 

i Index of the image in the dataset 

x Horizontal pixel coordinate  

y Vertical pixel coordinate  

x′ Transformed horizontal pixel 

coordinate  

y′ Transformed vertical pixel coordinate  

Base Feature map from the base model 

Pooled Feature map after global average 

pooling 

Normalized1,2,3 First/second/third batch-normalized  

Dropped1,2,3 Feature map after First/second/third 

dropout 

Dense1,2 Output of the First/second dense layer 

Output Output from the final softmax layer 
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