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This work continues the assessment of the application of carbon nanotubes (CNTs) mixed
with zirconia (ZrO2). The study examined the compressive, bending, and bond strengths of
samples containing and lacking carbon nanotubes. Zirconia carbon nanotubes (ZrOz) in the
concentrations of 0.00 %, 0.01 %, 0.02 %, 0.03 %, 0.04 %, and 0.05 % were the subjects
of six mixtures whose resistance was measured. The results were analyzed using the finite
element method with the ANSY'S 15.0 program. ANSYS 15.0 software is used to analyze
compressive and bending loads as well as the conventional zirconia model. Showcase the
advantages of moderately utilizing carbon nanotubes. Zirconia's mechanical properties can
be improved more effectively by mineral/chemical mixtures or fibers without the issues
related to carbon nanotube dispersion. Provide evidence of the advantages of moderately
utilizing carbon nanotubes. Without the issues related to carbon nanotube dispersion or the
health hazards of handling Nanomaterials, zirconia's mechanical properties can be
improved more effectively by mineral/chemical mixtures or fibers. The maximum and
ideal load for the load was found to be 163.5 MPa, which was approved in all tests after
the six models were finished with their designs in the ANSY'S program. This was based on
the von mises stress value and the maximum shear stress value less than the yield strength
of the basic material used. After making numerous attempts, this load was selected by
increasing the load by a specific percentage until it reached the ideal load, at which point
the original model was able to support the load without experiencing any problems. The
results of the ANSYS program were compared and examined, and they showed that the
models' resistance to deformations, displacements, stresses, and various strains greatly
increased when carbon nanotubes were added. By adding more carbon nanotubes, those
models will be more resilient to the strains and deformations caused by compressive loads.
The deformation rate decreased by 60%, which was a very noticeable decrease, especially
in the sixth model where the carbon percentage was 5%.

1. INTRODUCTION

Owing to their exceptional potential and distinct
characteristics, ceramic matrix composites offer a new
generation of technically advanced applications with
exceptional efficiency. Thanks to their strength, light weight,
and exceptional resistance to wear, ceramic matrix composites
are a great class of materials for use in great tribological
applications, aerospace engineering (think hot structures), and
automotive applications (think oxygen sensors and brake
systems) [1-5].

Furthermore, ceramic materials have a strong reputation for
being chemically inert, resistant to corrosion, strong, and
thermally stable, which makes them ideal for applications that
involve exposure to high temperatures or harsh environmental
conditions. Low density ceramic materials with high wear and
break resistance are needed in related industries like
metallurgy and chemical to use them in cutting-edge
applications [6-8]. Well-known biomaterials are ceramics
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based on the simultaneous presence of diopside (CaMg (SiO3),)
and wollastonite (CaSiOs). The majority of the experiences are
related to glass-ceramics from the regulated crystallization of
glasses with B>O3, Na,O, CaF2, and P,Os additives that belong
to the CaO-MgO-Si0O2 system [9-11]. However, recent studies
have shown the high bioactivity and biocompatibility of
ceramics based only on the two silicate phases (in particular,
based on eutectic point of the pseudo binary CaSiO,-CaMg
(Si03), system [12]. The additives may cause the formation of
additional phases, such as fluorapatite [11]. One of the most
extensively studied and technologically resilient ceramic
materials utilized in numerous applications are ZrO,-based
nanocomposites. Highly ionic conductivity, low density,
chemical inertness, good wear resistance, high mechanical
strength, and stability at elevated temperatures are just a few
of the significant properties of ZrO, that have made it widely
applicable in a variety of difficult structural, tribological, and
multifunctional applications [13, 14]. Common uses are made
to withstand challenging conditions and to meet the growing
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global demand for clean energy. This can be achieved directly
through the use of electrochemical power generation, as in the
case of solid oxide fuel cell (SOFC) devices, or indirectly
through the use of engines' thermal barrier layer, which
guarantees that customers will be able to purchase inexpensive
electricity because of the motor's high efficiency [15]. Further
significant uses are in the domain of dental implants and load-
bearing prostheses [16], where mechanical characteristics are
crucial [17]. The first significant advancement in the synthesis
and characterization of various structures containing zirconia
nanotubes (ZNTs) was reported in 1997 [18]. Single-walled
Zirconia nanotubes (SWZNT) have been synthesized and
characterized using a variety of techniques, including
hydrothermal treatments [19], the sol-gel method [20],
anodization [21], bottom-up synthesis by impregnation [22],
template-assisted depositions [23], and others. Numerous
experimental studies [18, 24-26]. Determined a number of
ZNT's physical, thermal, optical, electrical, and other
properties. The scientific communities have been very
interested in carbon nanotubes (CNTs) since their discovery
[27], as evidenced by [28, 29]. These days, it is possible to
produce large amounts of carbon nanotubes through the
pyrolysis of hydrocarbons [30] or arc discharge [31]. Efficient
growth of carbon nanotubes in terms of length, diameter, and
straightness is crucial for prospective uses as well as in-depth
property characterization. The direct pyrolysis of hydrocarbon
gas to create insulated carbon nanotubes could be one new

technological advancement. Using atomic force microscopy or
transmission electron microscopy, numerous studies on
physical properties, including flexural stiffness [32] and
Young's modulus [33], have been conducted to date. Single-
walled zirconia nanotube (SWZNT) properties have already
been the subject of numerous simulations; however, these
studies were limited to their physical and chemical aspects,
including surface adsorption and diffusion, phonon dispersion,
and atomic structures [34-42]. The ANSAS program will be
used to run finite element method simulations on the
mechanical properties (compressive loads, bending loads) of
SWZNTS. For this study, ratios (Zirconia (ZrO;) with carbon
nanotubes in the concentrations of 0.00%, 0.01%, 0.02%,
0.03%, 0.04%, and 0.05%) will be used to create SWZNT
structural models, which will then be subjected to various
mechanical simulation forces. Lastly, an analysis and
discussion of the deformations, stresses, and strains seen in
SWZNT will be conducted.

2. MATERIALS USED

A total of twelve mathematical models were constructed,
six for bending tests and six for compression tests. The first
model was composed entirely of zirconia, while the other five
models, as indicated in Table 1, included varying amounts of
Nano carbon mixed with zirconia.

Table 1. Ratios of zirconia and carbon added to it in various models [43-47]

: Modulus . .
Density, . - Tensile Yield
Model Materials Friction Weight P, Weight, Volurr;e, Vqu_me | o_f . Passion’s Strength  Strength
(g/mm?) g mm Fractions EEa?gtlzjlt))/, Ratio MPa MPa
s a
Model - 1 Zirconia, (ZrOy) 0.005832 3.5192 603.429 1.00 200 0.32 330 230
Zirconia & Zirconia; (99%) 0.005832 2.6135 448.131 0.74 200 0.32 330 230
Model -2 4 hon Nanotubes Carbon 000017 00264 155288 0.26 1200 0.34 150000 102000
Nanotubes; (1%)
Zi ia& Zirconia; (98%) 0.005832 2.0700 354.931 0.59 200 0.32 330 230
Model - 3 Irconia Carbon
Carbon Nanotubes . 0.00017 0.0422 248.494 0.41 1200 0.34 150000 102000
Nanotubes; (2%)
. . Zirconia; (97%) 0.005832 1.7101 293.229 0.49 200 0.32 330 230
Model - 4 Zirconia & Carbon
Carbon Nanotubes . 0.00017 0.0529 311.171 0.51 1200 0.34 150000 102000
Nanotubes; (3%)
Zi ia& Zirconia; (96%) 0.005832 1.4484 248.362 0.41 200 0.32 330 230
Model - 5 treonia Carbon
Carbon Nanotubes . 0.00017 0.0604 355.012 0.59 1200 0.34 150000 102000
Nanotubes; (4%)
Zi ia& Zirconia; (95%) 0.005832 1.3167 225.772 0.36 200 0.32 330 230
Model - 6 treonia Carbon
Carbon Nanotubes . 0.00017 0.0693 407.647 0.64 1200 0.34 150000 102000
Nanotubes; (5%)
Table 2. The mechanical characteristics of composite materials produced by the software Mathcad 15
Models Materials K E,GPa G GPa u
Model - 1 | Zirconia, (Zroz) - 200 76 0.32
Model - 2 Zirconia & Carbon Nanotubes 74% - 26% 0.375 265 99.98 0.325
Model -3 |  Zirconia & Carbon Nanotubes 59% - 41% 0.431 330.2 1243  0.328
Model - 4  Zirconia & Carbon Nanotubes 0.49% - 0.51% 0.469  384.9 1447  0.330
Model -5 |  Zirconia & Carbon Nanotubes 41% - 59% 0.499 435.1 1634  0.332
Model - 6 Zirconia & Carbon Nanotubes 26% - 74% 0.518 524 195.3  0.342
Table 3. Results of compression deformations, stresses and strain
Model Maximum Co(:‘ﬁil)Deformalions Maximum Stresses Compressive (MPa) Maximum Strains Compressive (pg)
Ux Uy Uz Usum Ox Oy o, Ty Tyz Txz 51 [ [y Oint Ovon Ex gy & Exy Eyz Exz Eint. Eyon
M-1 0.0011 0.0011 0.0096 0.0967 142.61 143.19 304.31 15.00 80.78 92.29 99.76 143.20 347.315 247.40 230.02 0.00041 0.00040 0.00106 0.00203 0.00110 0.00122 0.00163 0.00115
M-2 0.0008 0.0008 0.0073 0.0073 147.28 147.86 307.14 1558 85.03 94.02 102.80 147.87 351.60 248.80 230.84 0.00032 0.00031 0.00079 0.00016 0.00085 0.00094 0.00124 0.00087
M-3 0.0006 0.0006 0.0058 0.0059 150.14 150.73 308.86 15.71 85.92 95.06 104.67 150.74 354.32 249.65 231.33 0.00025 0.00024 0.00063 0.00012 0.00069 0.00076 0.00101 0.00070
M-4 0.0005 0.0005 0.0050 0.0050 152.07 152.67 310.02 15.80 86.51 95.60 105.93 152.68 356.15 250.21 231.66 0.00022 0.00032 0.00054 0.00010 0.00059 0.00066 0.00086 0.00060
M-5 0.0005 0.0005 0.0044 0.0044 254.03 154.63 311.18 15.88 87.11 96.45 107.21 154.64 357.99 250.78 231.99 0.00020 0.00019 0.00048 0.00009 0.00053 0.00059 0.00077 0.00053
M-6 0.0004 0.0004 0.0037 0.0037 164.18 164.79 317.14 16.30 90.11 99.97 113.83 164.81 367.47 253.64 233.63 0.00017 0.00016 0.00039 0.00008 0.00046 0.00051 0.00065 0.00044
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Table 2 shows the findings of the mechanical characteristics
of the composite materials as determined by the Mathcad-15
program. Table 3 lists the models, codes, particular disciplines,
element kinds, and load types applied by the ANSYS 15.0

program.
Fiber Composites with Random Orientation and
Discontinuity ~ Typically, in situations where short,

discontinuous fibers with random orientation are employed, an
expression known as the "rule-of-mixtures" for the elastic
modulus can be employed, which is comparable to equations:

Ec = K.Ep.Vs + Ep.Vp, (1)
U = Uf + Uy 2
E;
Gpr=—— 3
=20+ o) ®

where, Ec=Randomly Oriented Composite Modulus of Elasticity;
K=Fibre Efficiency Parameter; Ei=Elastic Modulus of the Fibre;
Em=Elastic Modulus of the Matrix; V=Volume Fraction of the Fibre;
Vm=Volume Fraction of the Matrix.

The fiber efficiency parameter (K) is dependent on the of (Vs
& E+/En ratio). Its magnitude will, of course, be less than unity;
typically, it will be between 0.1 and 0.6. The fibers are
uniformly and randomly distributed within a specific plane,
which accounts for the value of (K=0.375) [48-50].

3. SIMULATING AND MODELING
3.1 Zirconia nanotube structures

For each of the six models, pressure screening specimens
are created and prepared using composite materials in
compliance with ASTM E9 standards. ANSYS software was
utilized to conduct compression tests utilizing the finite
element technique. For the purpose of compression testing,
specimens measuring 8 mm in diameter and 12 mm in height
were ready, as seen in Figure 1.

P = 163.4 MPa

All dimensions in mm

Figure 1. Schematic illustration of a compression test
sample's dimensions [43]

4. RESULTS AND DISCUSSION

Table 3 and Figures 2-14 present the most significant
findings from this investigation, which came from applying a
compressive load of (163.4 MPa) to the models, (To find the
load at which the first model collapses, the load was achieved
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through numerous attempts to load the model). By adding
more of these materials to each model, the amounts of
nanomaterial’s in the various models were varied.

Table 3 and Figures 2-4, deformation, sum displacement,
and displacement in direction - Z results, which were acquired
by loading the six models, show a decline in its value, when
comparing the five models to the first model in the following
proportions: 24.6, 39.5, 48.1, 54.1, and 61.9%, respectively,
with increasing ratios the Carbon Nanotubes in the models.
Figure 5, which shows the normal stress in direction - Z results
obtained by loading the six models, shows an increase in its
value when comparing the five models to the first model in the
following proportions: 0.93, 1.48, 1.87, 2.26, and 4.22%,
respectively, as the ratio of carbon nanotubes in the models
increases. Shear stress in direction-XZ results obtained by
loading the six models are displayed in Figure 6, which
demonstrate an increase in its value with increasing ratios of
carbon nanotubes in the models. This increase is seen when
comparing the five models to the first model in the following
proportions: 1.87, 2.99, 3.75, 4.51, and 8.14%, respectively.
Figure 7 present the shear stress in direction-ZY results
obtained by loading the six models, showing an increase in its
value with increasing ratios of carbon nanotubes in the models.
The following proportions show this increase: 1.77, 2.84, 3.43,
4.27, and 7.86%, respectively, when comparing the five
models to the first model. Figure 8 shows the intensity stress
results of loading the six models, showing a marginal increase
in its value as the models' carbon nanotube ratios rise. The
percentages that demonstrate this increase between the first
model and the five models are: 0.57, 0.91, 1.14, 1.77, and
2.52%, respectively.

The von Mises stress results obtained from loading the six
models are shown in Figure 9, which indicates a very slight
increase in their value as the models' proportions of carbon
nanotubes increase. When comparing the five models to the
first model, the following percentages demonstrate this
increase: 0.36, 0.57, 0.72, 0.86, and 2.52%, respectively.
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Figure 11. The results of the shear strain (&y,) for each model

Carbon nanotubes cause the crystalline structure of the
material they are added to become rougher, which explains
why stress results change very slightly when the content of
carbon nanotubes is increased (*5% in most cases).

The results of loading the six models in Figure 10 show that
there is a noticeable increase in strain in the direction of Z as
the proportion of carbon nanotubes in the models increases.
The following percentages demonstrate this increase when



comparing the five models to the first model: 25.47, 40.57,
49.06, 54.72, and 63.21%, respectively. Figure 11 shows the
strain results in the direction of YZ that were obtained from
loading the six models. It shows that the strain increases
significantly as the proportion of carbon nanotubes in the
models increases. The following percentages demonstrate this
increase when comparing the five models to the first model:
22.73, 37.27, 46.36, 51.82, and 58.18%, respectively. Figure
12 shows the strain results in the XZ direction that were
obtained after loading the six models. It demonstrates that
when the amount of carbon nanotubes in the models rises, the
strain increases noticeably. When comparing the five models

to the first model, the following percentages show this increase:

22.95, 37.70, 45.90, 51.64, and 58.20%, respectively.

Figure 13 shows the intensity strain results that were
obtained after the six models were loaded. It shows that there
is a discernible increase in intensity strain with an increase in
the number of carbon nanotubes in the models. The following
percentages demonstrate this increase when comparing the
five models to the first model: 23.93, 38.04, 47.24, 52.76, and
60.12%, in that order. Figure 14 shows the von Mises strain
results that were obtained after loading the six models. It
shows that the von Mises strain increases significantly with an
increase in the number of carbon nanotubes in the models. The
following percentages demonstrate this increase when
comparing the five models to the first model: 24.35, 39.14,
47.83, 53.91, and 61.74%, respectively.
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Figure 14. The results of the von mises strain (exvon) for each
model

The material to which the carbon nanotubes are added has a
rougher crystal structure, which accounts for the very small
change in the stresses results when compared to the high
strains results.

5. CONCLUSIONS

The following was concluded from this theoretical study of
composite materials composed of materials of different
proportions by creating six models made of different materials,
testing each model's compressive resistance, and comparing
the results to one another in order to obtain materials with high



compressive resistance:

1. The results obtained show a significant decrease in
deformation and deflection in the models, when the percentage
of carbon nanotubes is increased at very high rates, which may
reach 61.9% in the sixth model.

The primary cause of deformation sensing in carbon
nanotube-polymer composites is the conductive carbon
nanotube network's compressive strength inside the polymer
matrices. Consequently, its deformation decreases due to the
change in the mechanical deformation of the carbon nanotube
network upon loading when its proportion in the material
increases to a certain amount.

2. It is observed that applying a load of 163.5 MPa is the
maximum optimal load for the models to bear this load without
any failure occurring in them when using von Mises theory to
compare the results obtained for the six models with the yield
compressive strength of these materials.

3. It is also observed that the applied load is suitable for
these models to function without failure when comparing the
results with the theory of maximum shear stress.

6. FUTURE STUDIES

The researchers propose to create a number of mathematical
models for different engineering materials, including
aluminum alloys, composite materials, and magnesium alloys
used in the medical field. They advise looking into how
different loads in daily life affect engineering materials.
withstand loads from impacts, twists, tensile and compression,
torsion and fatigue, heat, and other sources. Using state-of-the-
art engineering software, like the ANSYS program, carefully
examine them to determine the deformations, stresses, and
strains they experience during loading.
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NOMENCLATURE

0 Deformed and unreformed
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Uy Component of the displacement (x-direction)

Uy Component of the displacement (y-direction)
U, Component of the displacement (z-direction)
Ox Normal stress

Ty Shear stress

Txz Shear stress

Oint. Stress intensity

Gvon Von mises stress

&x Normal strain (x-direction)

Exy Shear strain (xy-direction)

&xz Shear strain (xz-direction)

Efirst First principal elastic strain

Ethird Third principal elastic strain

Sintensty Elatic strain intensty

&von VVon mises elatic strain

Greek symbols

E Modulus of elacitisty
p Density

G Modulus of rigidity
K Passions ratio
Subscripts

SNC Surface Nano Crystallization
Si Silicone

Mn Manganese

C Carbon

Ni Nickel

Ti Titanium

Cr Chrome

Fe Iron
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