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Establishing model parameters is fast becoming more complex especially with generalized 

linear mixed models (GLMMs); which comprises of generalized linear models and 

classical linear mixed models. Evaluating generalized linear mixed models (GLMMs) 

parameters with maximum likelihood techniques involves some levels of complexity, to 

proffer solutions to this challenge, techniques involving approximation of integrals were 

considered in this paper. Some approximation methods for parameter estimation were 

considered to establish the most effective and adaptive model using a good number of 

model performance metrics/criteria. Penalized quasi-likelihood, adaptive gauss-Hermite 

quadrature, and Laplace approximation estimation techniques were considered to fit the 

real clinical data set with binary outcomes. Real-life data analysis showed some better 

fitness and superiority of an adaptive gauss-Hermit quadrature technique over some other 

existing estimation techniques using a set of model performance metrics. Data users at 

various levels of analysis may now consider adaptive gauss-Hermite quadrature technique 

over other estimation techniques in fitting GLMMs with binary responses. Coefficients of 

the model with good performance metrics were also considered in establishing effects of 

clinical follow-up on medical diagnoses of individual patients. 
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1. INTRODUCTION

Data analysis and collection procedures without any 

consideration for statistical assumptions of indecency within 

observations are becoming major challenges in statistical 

analysis. This type of data involves repeated observations on a 

particular subject with time is mostly seen in medical data. A 

good number of computationally advanced analytical 

techniques have been used to handle such data complex 

structures but limited to some specific models. 

According to Bolker et al. [1], GLMMs accommodate 

analyses that their responses are not normally distributed by 

using appropriate link functions (e.g., log link for Poisson 

models, logit link for binary models). This makes GLMMs 

suitable for a wide range of real-world problems. In count data, 

over dispersion often poses challenges, where the variance is 

more than the mean, or under-dispersed with lower variance 

than the mean. GLMMs incorporates solves the problem or 

non-normality by adding random effects, which can account 

for the extra variability. GLMMs are an extension of 

Generalized Linear Models (GLMs) with the incorporation of 

random effects to account for the correlation and variability 

within these clusters. Gelman and Hill [2] emphasized that 

data collections in many real-world events are often done in 

hierarchical or clustered structures (e.g., patients within 

hospitals, repeated measurements on individuals).  

Data with binary response are categorical data where the 

variable of interest has only two possible outcomes such as 

true or false, pass or false, and many other dichotomy cases. 

Often coded as 0 and 1 but are generally considered to exist 

just on a nominal scale; meaning they denote qualitatively 

different values that cannot be compared numerically.  

Generalized linear mixed models (GLMMs) are tools for 

accommodating correlation effects that arise from repeated 

measures. Repeated measures are multiple observations 

collected from the same subjects over a period or under 

different conditions [3, 4]. These measures are correlated 

because they are from the same subject area or experimental 

unit, and the correlation must be taken into consideration in 

the analysis to avoid model misspecification due to biased 

estimates. Random effects refer to model components that 

describe variability due to different clusters or other grouping 

factors in data that are not modeled by the fixed effects. These 

random effects define deviations from the overall fixed-effect 

trend and assume to follow a normal distribution. 

1.1 Model distributions 

Lee et al. [5] examined outcomes with non-normal 

distributions in fitting linear mixed models using a good 

number of maximum likelihood estimation techniques. 

Breslow [6] established a submission on generalized linear 
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mixed models, which suggests the assumption of random 

effects as normally independently distribution. Adesina et al. 

[7] used Bayesian Dirichlet process mixture prior for 

generalized linear mixed models with Metropolis Hasting on 

Monte Carlo. 

Markov Chain (M-H MCMC) to estimate parameters of a 

posterior distribution. 

Breslow and Clayton [8] made assumptions for binary 

outcomes and second order structured correlation for subjects 

in the same cluster. GLMMs regression estimates are 

estimated on random effects, which has a subject-specific 

interpretations. Bates et al. [9] offered a comprehensive guide 

to fitting linear and generalized linear mixed models with the 

lme4 package in R, featuring numerous practical examples 

and detailed discussions on computational methods. 

Misspecification of data with multiple observations over time 

may tamper with statistical results in some way. Adesina et al. 

[10] applied both Bayesian and frequentist approach in fitting 

Zero truncated distributions such as the Poisson, Binomial and 

Geometric models.  

Authors in generalized linear mixed models with non-

normal data structures examined different model parameter 

estimation techniques [11, 12]. A good number of them faced 

some challenges mainly in the area of parameter estimation 

due to lack of adaptive estimation techniques that would 

generate analytic solutions for maximizing marginal 

likelihoods. 

Methods involving maximum likelihoods are frequently 

applied in GLMMs for estimating their parameters especially 

for high-dimensional integrals that indicate some analytical 

complexity, most especially with response variables that are 

not normally distributed. A good number of authors made 

some contributions in handling such data complex structures 

[7, 13-15]. Related studies on model selection based on count 

data [16, 17], some other related estimation techniques [18, 

19].  

This paper presents some approximation methods for 

estimating parameters of generalized linear mixed models on 

a binary clinical data set with the aim of examining the power 

of estimation and suitability of gauss-Hermite quadrature 

technique over some exiting methods of estimation. Recent 

studies have adopted GLMM procedures in tackling 

challenges involving dependency across observations in count 

and binary modelling with little reference to modelling fitness 

and predictive strength across various estimation techniques. 

In this paper, gauss-Hermite quadrature was proposed and 

compared with penalized quasi-likelihood and Laplace 

approximation techniques.  

 

 

2. METHODOLOGY 

 

2.1 Linear models 

 

Linear models are the most common statistical models in 

regression analysis. It is commonly applied for its simplicity 

in many different statistical regression frameworks. A one-

dimensional type of the model is defined: 

 

𝑦 = 𝛽𝑜 + 𝛽𝑖1𝑥 + 𝑒𝑖         𝑖 = 1,2 …. (1) 

 

where, x and y represent the predictor and response variable 

respectively. βo and β1 are model parameters. The ei values are 

error terms, which follows normal distribution.  

Models involving multiple predictors can be represented 

using a matrix format where p indicates number of parameters 

β1, ..., βp. The model can be represented as follows: 

 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+, … … … … + 𝛽𝑝𝑥𝑖𝑝 + 𝑒𝑖 (2) 

 

We can rewrite Eq. (2) in vector as follows: 

 

𝑦 = 𝑋𝛽 + 𝑒 (3) 

 

Assuming an intercept in X such that xi1=1, the matrix 

format of the model for y and x can be written in matrix form 

as: 

 

𝑌 = [

𝑦1

⋮
𝑦𝑛

] , 𝑋 = [

1 𝑥12 𝑥13

1 𝑥22 𝑥23
⋯

𝑥𝑝

𝑥1𝑝

⋮ ⋱ ⋮
1 𝑥𝑛2 𝑥𝑛3 ⋯ 𝑥𝑛𝑝

] 

𝛽 = [

𝛽1

⋮
𝛽𝑝

], 𝑒 = [

𝑒1

⋮
𝑒𝑛

] 

(4) 

 

Following Eq. (1), ei~N(0, σ), E(ei)=0; Var(ei)=σ2. In this 

case, a maximum likelihood method is engaged for parameter 

estimation. For classical linear models (LMs), the estimated 

parameters using maximum likelihood estimation technique is 

equivalent to minimized least squares method. 

 

2.2 Maximum likelihood estimation techniques 

 

The point in the parameter space that does the maximization 

of the likelihood function is referred to as maximum likelihood 

estimate. The maximum likelihood is flexible, and it has 

become a dominant means in statistical inference. 

Since y~N(xβ,σ2l), the function of the likelihood is given by: 

 

𝐿(𝛽, 𝜎2) = (
1

2𝜋2)

𝑛

2
𝑒𝑥𝑝 (

1

2𝜎2
(𝑦 − 𝑥𝛽)′(𝑦 − 𝑥𝛽))  (5) 

 

Using logarithms, we have: 

 

𝐿(𝛽, 𝜎2) = −
𝑛

2
𝑙𝑜𝑔2𝜋 −

𝑛

2
𝑙𝑜𝑔𝜎2 −

1

2𝜎2
(𝑦 −

𝑥𝛽)′(𝑦 − 𝑥𝛽) = −
𝑛

2
𝑙𝑜𝑔2𝜋 −

𝑛

2
𝑙𝑜𝑔𝜎2 −

1

2𝜎2
(′𝑦 −

2𝑦′𝑥𝛽 + 𝛽′𝑥′𝑥𝛽)  

(6) 

 

To maximize the likelihood function, we set Eq. (6) to zero 

and take partial derivatives with respect to β and σ2: 

 
𝜗

𝜗𝛽
𝑙𝑜𝑔𝐿(𝛽, 𝜎2) = −

𝑛

2𝜎2 +
1

2𝜎4
(𝑦 − 𝑥𝛽)′(𝑦 − 𝑥𝛽)  (7) 

 

Equating to zero, we have: 
 

�̂�(𝑥′𝑥)−′𝑥′𝑦    and   �̂�2 =
1

𝑛
(𝑦 − 𝑥𝛽)′(𝑦 − 𝑥𝛽)  (8) 

 

Assuming a variable Y relates to k predictor variables x1, x2, 

x3, ..., xk and a disturbance term e. If we have a sample of 𝑛-

observation on y and the X’s, as we have in Eq. (2) we can 

write: 

 

𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 𝑒𝑖    𝑖 = 1,2, … , 𝑛  (9) 

 

The beta coefficients and the parameter of the 𝑒 distribution 
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is unknown. To estimate the unknown parameters, where 

βo=intercept and β1, …, βk=partial slope coefficients. 

Unknown parameters can be obtain using matrix: 

 

𝛽 = (𝑋′𝑋)−′𝑋′𝑌  (10) 

 

The sum of squared residuals of n-residuals of (y-xβ) can be 

expressed as: 

 

∑ 𝑒𝑖
2 = 𝑒′𝑒𝑛

𝑖=1 = (𝑦 − 𝑥𝛽)′(𝑦 − 𝑥𝛽)  

= 𝑌′𝑌 − 2𝛽′𝑋′𝑋′𝑌 + 𝛽′𝑋′𝑋𝛽 
(11) 

 

Noting that β'X'Y is a scalar that equals to its transpose Y'Xβ. 

Minimizing the sum of squared residuals, and differentiating 

Eq. (11), we have: 

 
𝛿(𝑒′𝑒)

𝛿𝛽
= −2𝑋′𝑌 + 2𝑋′𝑋𝛽 

𝛽 = (𝑋′𝑋)−′𝑋′𝑌 

𝛽 = (𝛽0  𝛽1 …  𝛽𝑘)′ 

(12) 

 

where, 

 

𝑋′𝑋 = [

1 1 … 1
𝑋11 𝑋12 … 𝑋1𝑛

⋮
𝑋𝑘1

⋮
𝑋𝑘2

⋮ ⋮
⋯ 𝑋𝑘𝑛

] [

1 𝑋11 … 𝑋𝑘1

1 𝑋12 … 𝑋𝑘2

⋮
1

⋮
𝑋1𝑛

⋮ ⋮
⋯ 𝑋𝑘𝑛

] 

[

1 1 … 1
𝑋11 𝑋12 … 𝑋1𝑛

⋮
𝑋𝑘1

⋮
𝑋𝑘2

⋮ ⋮
⋯ 𝑋𝑘𝑛

] [

𝑌1

𝑌2

⋮
𝑌𝑛

]=[

∑ 𝑌𝑖

∑ 𝑋1𝑖𝑌1𝑖

⋮
∑ 𝑋𝑘𝑖𝑌𝑘𝑖

] 

(13) 

 

2.3 Generalized linear models 

 

Using central limit theorem assumptions, many real events 

are not normally distributed. Linear models (LMs) commonly 

used sufficient models for tackling such assumptions. 

Generalized linear models (GLMs) tackles the non-normality 

challenges by providing solutions to such statistical analyses. 

Nelder and Wedderburn [20] established the theory of 

generalized linear models (GLMs). The generalized linear 

models are extensions of classical linear models that allows 

the mean of a population to depend on a linear predictor 

through a nonlinear link function. GLM uses probability 

distributions that belongs to the exponential class of family. 

GLM consists of the following components, it is of the form: 

 

𝑓(𝑦𝑖 ; 𝜃𝑖) = 𝑒𝑥𝑝 (
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝑎𝑖(𝜑)
+ 𝑐(𝑦𝑖𝜑))  (14) 

 

For a random sample Y1, ..., Yn, the linear component is 

defined as ɳi=Xiβ where i=1, 2, ..., n for some vector 

parameters β=(β1, ..., βp and covariate X=(xi1, ..., xip) associated 

with observations Yi. For a careful choice of αi≠0, b and c, φ 

represent the scale parameters 𝜃  representing the natural 

parameter. A monotonic differentiable link function g 

describes how the expected response μi=E(Yi) is related to the 

linear predictor g(μi)=ηi. Link functions express a connection 

between a function E(Y) to a linear predictor ɳ. Classical linear 

regression models express the identity link g(μi)=ɳi. Gamma 

or Poisson distributions use links that are strictly positive like 

in claim counts and severity. The summary of link functions 

for exponential family members of distributions are expressed 

in Table 1. 

Table 1. Link functions of some exponential distributions 

 
Y~ Gamma Poisson Binomial 

𝐸(𝑦) = 𝜇(𝜃) -𝜃−1 =
∝

𝛽
 𝑒𝜃 =⋋ 𝑒𝜃

1+𝑒𝜃  = q 

𝑉(𝑦) = 𝑉(𝜇)𝜙 
1

𝜃2 ∝
=

∝

𝛽2 𝑒𝜃 =⋋ 
𝑞(1 − 𝑞)

𝑚
 

𝑉(𝜇) 𝜃−2 𝑒𝜃 =⋋ 𝑞(1 − 𝑞) 

𝜙 ∝−1 1 
1

𝑚
 

𝑐(𝑦, 𝜙) 
𝛼In𝛼𝑦 + In𝑦 −

Inᴦ(𝑎) 
In(y!) In(

𝑚
𝑚𝑦) 

Link 𝑔 reciprocal log logit 

 

2.4 Parameter estimation of GLMMs 

 

The condition where various methods of estimating the 

parameters of GLMMs remains unclear in literature which this 

study aim to shed more light on. Estimating parameters of 

models is fundamental in statistical analyses. GLMMs 

parameters are described as fixed and random-effect 

parameters. Normal response variables help in fixing models 

using maximum likelihood (ML).  

Treatments with equal sample sizes (i.e. balanced design 

with all nested random effects like classical ANOVA methods 

based on computing differences of sums of squares with ML 

approaches). However, this equivalence breaks down for more 

complex LMMs or GLMMs. To fix the problem of finding the 

ML estimates, one must integrate likelihoods over all possible 

values of the random effects. To describe this, a computation 

of the likelihood can be expressed as: 

 

𝐿 = ∫ 𝑓𝑦/𝑢(𝑦/𝑢)𝑓𝑢(𝑢)𝑑𝑢  (15) 

 

Or individually 

 

𝐿 = ∫ ∏
𝑓𝑦𝑖

𝑢(
𝑦𝑖
𝑢

)

𝑛
𝑖−1 𝑓𝑢(𝑢)𝑑𝑢  (16) 

 

Evaluating exponential family functions, we have a 

likelihood equation of the form: 

 

𝐿 = ∫ ∏ 𝑒𝑥𝑝 [
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝜙
+𝑛

𝑖

𝑐(𝑦𝑖 ; 𝜙)]
1

𝜎𝑢√2𝜋
𝑒𝑥𝑝 [

−(𝑥−𝜇)2

2𝜎𝑢
2 ] 𝑑𝑢  

(17) 

 

With corresponding log-likelihood: 

 

L= 𝑙𝑜𝑔 [∫ ∏ 𝑒𝑥𝑝 [
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝜙
+𝑛

𝑖

𝑐(𝑦𝑖 ; 𝜙)]
1

𝜎𝑢√2𝜋
𝑒𝑥𝑝 [

−(𝑥−𝜇)2

2𝜎𝑢
2 ] 𝑑𝑢] 

(18) 

 

From Eq. (18), resolving to analytical solution is not in view, 

therefore numerical approximation procedures can be adopted 

in estimating the likelihood. Different methods of 

approximation are now considered. We now examine three 

different methods.  

 

2.5 Penalized quasi-likelihood estimation procedures 

 

If the exact distribution of data is unknown, then estimation 

of variance component is sorted out using quasi-likelihood 

methods by introducing a penalty term on random effects. The 

purpose of including penalty is to avoid some arbitrary values 

of random effects to force the random effect approximate to 

325



 

zero. Approximation for vector response data yi is given by: 

 

𝑦 ≈ 𝜇𝑖 + 𝜀𝑖 = 𝐸(𝑦𝑖/𝑏) + 𝜖𝑖 (19) 

 

where, e=h (𝑥𝑖
′𝛽 + 𝑍𝑖

′𝑏) +∈𝑖 and β=fixed vector parameter. 

Using Taylor expansion in Eq. (19), we have: 

 

𝑦𝑖 ≈ ℎ(𝑥𝑖
′ + 𝑍𝑖

′𝑏) + ℎ′(𝑥𝑖
′�̂� + 𝑍𝑖

′�̂�)𝑥𝑖
′(𝛽 − �̂�) +

ℎ′(𝑥𝑖
′�̂� + 𝑍𝑖

′�̂�)𝑍𝑖
′(𝛽 − �̂�) + 𝜀𝑖  

(20) 

 

=𝜇𝑖 + 𝑉(𝜇𝑖)𝑥𝑖
′(𝛽 − �̂�) + 𝑉(�̂�)𝑍𝑖

′(𝛽 − �̂�) + 𝜀𝑖 (21) 

 

Eq. (21) is expressed as 𝑦𝑖
∗ = 𝑉𝑖

−′(𝑦𝑖 − 𝜇𝑖) + 𝑥𝑖�̂� + 𝑍𝑖�̂�𝑖 , 

where, 𝑦𝑖
∗ = 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒. 

The mode fitting is done iteratively using algorithms that 

give conditional variance for 𝑦𝑖
∗ as: 

 

𝑣𝑎𝑟(𝑦𝑖/𝑏) = 𝑎𝑖
′(∅)𝑉(𝜇𝑖) (22) 

 

where, ∅ reprents the dispersed Parameter. 

 

2.6 Laplace with approximation methods 

 

This engages Taylor expression in an exponential format for 

approximates integrals: 

 

∫ 𝑒ℎ(𝑢) 𝑑𝑢 (23) 

 

where, u=q-dimensinal vector and h(u) sufficiency smooth 

function. 

Taylor expansion second order for h in uo can be described 

by: 

 

ℎ(𝑢) ≈ ℎ(𝑢𝑜) +
1

2
(𝑢 − 𝑢𝑜)′ℎ′′(𝑢𝑜)(𝑢 − 𝑢𝑜) (24) 

 

From Eq. (24) using a Laplace approximate function: 

 

∫ 𝑒ℎ(𝑢)𝑑𝑢 ≈ 𝑒𝑥𝑝[ℎ(𝑢𝑜)] (2𝜋)
𝑞
2| − ℎ′′(𝑢𝑜)|

−1
2  (25) 

 

Approximating the likelihood function with Laplace, we 

have: 

 

𝐿 = 𝑙𝑜𝑔 ∫ 𝑓𝑦/𝑢(𝑦/𝑢) 𝑓𝑢(𝑢)𝑑𝑢  

= 𝑙𝑜𝑔 ∫ 𝑒𝑥𝑝[𝑙𝑜𝑔𝑓𝑦/𝑢(𝑦/𝑢)] + 𝑙𝑜𝑔𝑓𝑢(𝑢)𝑑𝑢 
(26) 

 
𝜕2𝑙𝑜𝑔𝑓𝑢

𝜕𝑢𝜕𝑢| = −𝐷−1  (27) 

 

Exponential family with chain rules, we have the following: 

 
𝜕𝑙𝑜𝑔𝑓𝑦

𝑢(
𝑦
𝑢)

𝜕𝑢
=

1

𝜑
∑ (𝑦𝑖

𝜕𝜃𝑖

𝜕𝑢
−

𝜕𝑏(𝜃𝑖)𝜕𝜃𝑖

𝜕𝜃𝑖𝜕𝑢
)𝑖   

=
1

𝜑
∑ (𝑦𝑖𝑖 − 𝜇𝑖)

1

𝑣(𝜇𝑖)
 

1

𝑔"(𝑢𝑖)𝑍𝑖
′  

(28) 

 
𝜕2ℎ(𝑢)

𝜕𝑢𝜕𝑢′ =
𝜕

𝜕𝑢′ (
1

𝜑
𝑍′𝑊∆(𝑦 − 𝜇) − 𝐷−1𝑢) =

1

𝜑
(−𝑍′𝑊∆

𝜕𝜇

𝜕𝑢′ + 𝑍′ 𝜕𝑊

𝜕𝑢′
(𝑦 − 𝜇) − 𝐷−1)  

(29) 

 

𝜕2ℎ(𝑢)

𝜕𝑢𝜕𝑢′ = −
1

𝜑
(𝑍′𝑊𝑍𝐷 + 𝐼)𝐷−1  (30) 

 

𝐿 ≈ 𝑙𝑜𝑔𝑓𝑦/𝑢(𝑦/𝑢𝑜) −
1

2
𝑢𝑜

′ 𝐷−1𝑢𝑜 −
1

2
log | (

1

𝜑
𝑍′𝑊𝑍𝐷 + 𝐼) 𝐷−1|  

(31) 

 
𝜕𝑙

𝜕𝛽
=

𝜕𝑙𝑜𝑔𝑓𝑦/𝑢(𝑦/𝑢𝑜)

𝜕𝛽
+

𝜕

𝜕𝛽

1

2
log |

𝑍′𝑊𝑍𝐷

𝜑
+ 𝐼| ≈

1

𝜑
𝑋′𝑊∆(𝑦 − 𝜇)  

(32) 

 

Changing in β provides the estimate of β and u and by 

resolving the Eq. (32), we have: 

 
1

𝜑
𝑋′𝑊∆(𝑦 − 𝜇) = 0 and 

1

 𝜑
𝑍′𝑊∆(𝑦 − 𝜇) = 𝐷−1𝑢 

 

2.7 Gauss-Hermite quadrature steps 

 

The steps involving Gauss-Hermite quadrature (AGQ) 

apply a Gaussian technique, where gaussian functions replace 

the factor exp(-Z2) with suitable shift in the weights and 

approximation points by following the outline and subjecting 

it to GLMMs. Let ϕ(t:μ,σ) represent a probability density 

function of the normal distribution with μ and standard 

deviation 𝜎 .Let’s define a function g(t) in such a way that 

g(t)>0 is unimodal (i.e. with unique mode) and is sufficiently 

smooth. The aim is to approximate ∫(𝑔(𝑡))𝑑𝑡  by 

transformation. To establish this, we replace the gauss-

Hermite quadrature for the integral: 
 

∫ 𝑓(𝑡)𝜙(𝑡, 𝜇, 𝜎)𝑑𝑡 (33) 

 

It approximates the likelihood by taking optimal 

subdivisions at which to solve the integrand. Updates 

information from the initial fit to increase precision. This 

involves transforming sampling nodes xi to ti from exp[Zi] to 

ϕ(t:μ,σ) and 𝑡 = 𝜇 + √2𝜎𝑍𝑖  . 

However, we can sample the integral in region of g(t) with 

μ as the mode of g(t) and 𝜎 =
1

√𝑗
,  𝑗 =

−
𝜕2

𝜕𝑡2 log(𝑔(𝑡)) and defining ℎ(𝑡) as 
𝑔(𝑡)

𝜙(𝑡;𝜇,𝜎)
. 

Rewriting the integral for g(t), we have: 
 

∫ 𝑔(𝑡)𝑑𝑡 = ∫ ℎ(𝑡)𝜙(𝑡, 𝜇, 𝜎))𝑑𝑡  (34) 

 

Using the transformed Gauss-Hermite quadrature, we have: 
 

∫ 𝑔(𝑡)𝑑𝑡 = √2𝜎 ∑ 𝑤𝑖
∗𝑄

𝑖=1 𝑔(𝜇 + √2𝜎𝑍𝑖)  (35) 

 

Using a GLMM form, we present a procedure of a single 

random effect. This effect is seen as being clustered into 

different clusters. All clusters with random effects which are 

distributed as ui~N(0, σ2). Hence we determine the posterior 

mode of ui which depends on the parameters β, ϕ and σ and ui. 

We replace this by the current estimate (and in the first step a 

well-chosen value) β*, ϕ* and σ*. Applying these estimates on 

ui, we maximize𝑓(𝑦𝑖/𝑢𝑖)𝑓(𝑢𝑖ᴦ𝜎∗) ∝ 𝑓(𝑢𝑖/𝑦𝑖) Using ui as the 

mode for ui together with the gauss-Hermite quadrature to 

approximate. 
 

∫ 𝑓𝑌/𝑢(𝑦𝑖/𝑢𝑖)𝑓𝑢(𝑢𝑖)𝑑𝑢𝑖 ≈ ∑ 𝑤𝑖
∗(∏ 𝑓𝑌/𝑛

𝑗=1
𝑄
𝑖=1

𝑢(𝑦𝑖𝑗 𝑍𝑖
∗))  

(36) 
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ui represent the size of the cluster i, yij shows j-th element of 

cluster i with have the adaptive weights given by: 

 

𝑊𝑖
∗ = √2𝜎𝑖𝑤𝑖 exp(𝑍𝑖

2) 𝜙(𝑍𝑖
∗; 0,1)  (37) 

 

where, σi represent approximation for 𝜎−1𝑢𝑖~𝑁(0,1). Hence, 

we have linear explanatory variables 𝑥𝑖
′ + 𝜎𝑍𝑖

∗  for 𝑓𝑌/
𝑢(𝑦𝑖𝑗𝑍𝑖

∗). 

 

2.8 Data description 

 

National Health Insurance Scheme (NHIS) data of three 

health facilities in Ota, Ogun State, Nigeria were collected. 

Medicare Private Hospital and Ogun State Government 

Hospital NHIS records of patients were collated during the 

visitation. Records of follow-up status of individual patients 

were picked as dependent variables while sex, age, number of 

diagnoses and blood group of concerned patients were 

categorized as predictor variables. 

This consists of clinical data of 1500 patients visiting the 

facilities between July 2016 and July 2017. The data set was 

collated to examine the impact of predictors on a binary 

response variable (follow-up). Follow-up, Sex (gender), Age 

is biological age, Ndiagnosis stands for the number of 

diagnoses, Bgroup stands for blood group, coded as (A=1, B=2, 

AB=2 and O=4), Gnotyp stands for genotype, coded as (AA=1, 

AS=2, SS=3), Sstatus stands for smoking status, coded as 

(smoke=1, not smoke=0). For this research, the binary 

response was based on whether a patient was on follow-up or 

not following advice given by the physician. The descriptive 

statistics can be found in the Table A1.  

The area of application centers around doctor’s follow-up 

on Patient’s based on some variables. We illustrate 

applications of different GLMMs estimation techniques in 

analyzing the clinical binary response data with an inclusion 

of random effects. Leveraging on the model coefficients, 

factors associated with medical follow ups may influence 

frequent medical diagnoses. Four GLMM techniques were fit 

to the data and allowed the intercept to vary across the clusters. 

The model parameters were estimated using penalized quasi-

likelihood (PQL), Adaptive Gaussian Hermite quadrature 

(QUAD), and Laplace approximation techniques.  

 

 

3. RESULTS AND DISCUSSION 

 

In this section, results obtained are discussed. Starting with 

model coefficient and performance in Table 2. 

 

Table 2. Model coefficients and performance metrics for real 

data (glmmPQL) 

 
 Coeff. S. E 𝒁 P-Value 

Intercept -1.47770 0.3350 -4.408 1.04e-08*** 

Sex 0.14495 0.1431 1.006 0.314 

Age 0.05411 0.0043 8.054 8.00e-16*** 

Ndiag 0.01257 0.0343 1.595 0.111 

Bgrp -0.40868 0.0826 -4.948 7.49e-07** 

Gtype -0.15890 0.0838 -1.895 0.058 

Sstat 0.014729 0.1691 0.087 0.931 

Model Performance 

AIC BIC Null Dev Dev. DF 

1277.9.00 1335.15 835.45 729.97 1498 

 

Table 2 indicates corresponding model coefficients for 

glmmPQL with model performance metric parameters (i.e. 

AIC, BIC and Deviance). 

Figure 1 accounts for each predictor in such a way that, the 

main effect point, and its conditional effect points are not 

vertically aligned. This plot indicates the existence of 

interaction effects on the response variable. 

Figure 2 shows that the points in the residual plot are not 

randomly dispersed around the horizontal axis; this indicates 

glmmPQL might not be appropriate for the data.  

 

 
 

Figure 1. R-squared model and visualized standardized 

effect sizes for the clinical data 

 

 
 

Figure 2. Standard residuals versus fitted values of 

glmmPQL for health data 

 

Table 3 indicates corresponding model coefficients for 

glmmLA with model performance metric parameters. 

Figure 3 shows points in the residual plot which are not 

randomly dispersed around the horizontal axis, this indicates 

glmmLA might not be appropriate for the data. 

Table 4 indicates corresponding model coefficients for 

glmmGHQ with model performance metric parameters (i.e. 

AIC, BIC and Deviance).  

Figure 4 illustrates that for each predictor; the main effect 

point and its conditional effect points are not vertically aligned. 

This might indicate that the glmmLA is not suitable for fitting 

the clinical data. 

0.0

0.1

0.2

0.3

Model x2:x3:x4 x2:x3 x1:x2:x3:x4

Fixed Predictor

R


2
  (

^
1)

327



 

Table 3. Coefficient of predictors using Laplace 

approximation model for health data (glmmLA) 

 
 Coef. S. E 𝒁 P-Value 

Int. -1.4770 0.33505 -4.408 1.04e-08** 

Ndiag 0.0547 0.03430 1.595 0.111 

Bgrp -0.4087 0.08259 -4.948 7.49e-07** 

Gtype -0.1589 0.08384 -1.895 0.058 

Sstat 0.01472 0.16906 0.087 0.931 

Model Performance 

AIC BIC Null Dev. Dev. DF 

1279.89 1345.15 836.45 729.97 1498 

 

 
 

Figure 3. Standard residuals versus fitted values of Laplace 

approximation model 

 

Table 4. Predictor coefficients with Gauss-Hermite 

quadrature (glmmGHQ) model for health data 

 
 Coef. S. E 𝒁 P-Value 

Int. -1.4770 0.33505 -4.408 1.04e-08*** 

Ndiag 0.05471 0.03430 1.595 1.11e-01 

Bgrp -0.4086 0.08259 -4.948 7.49e-07** 

Gtype -0.1589 0.08384 -1.895 5.80e-02 

Sstat -0.0147 0.16906 0.087 9.31e-01 

Model Performance 

AIC BIC Null Dev Deviance D.F 

1280.00 1325.15 835.45 729.97 1491 

 

 
 

Figure 4. Standard residuals versus fitted values of glmmLA 

for health data 

Figure 5 shows each predictor’s main and conditional effect 

point, which are almost vertically aligned. This plot indicates 

the suitability of the proposed model (glmmGHQ). 

The correlation coefficients across covariates for the real 

data can be found in Table A2. High multicollinearity is a 

result of two or more predictor variables in a regression model 

being highly correlated. A correlation coefficient of 0.8132 

between Age and follow-up indicates a strong positive 

relationship, using generalized linear mixed models and help 

to prevent the negative impact of the high correlation between 

these two variables.  

Figure 6 shows points in the residual plot, which are slightly 

randomly dispersed around the horizontal axis; this shows 

glmmGHQ being appropriate for the dataset. Table 3 

confirmed the model fitness and superiority of glmmGHQ 

over others and using the corresponding fixed regression 

coefficients of glmmGHQ, it is observed that the number of 

diagnoses within the period of investigation accounted for 

increase in clinical follow-up of individual patients. Using the 

regression coefficients, for every increase in follow-up status, 

there is a corresponding increase in number of medical 

diagnoses by a factor of 0.05471.  

 

 
 

Figure 5. Standardized effect sizes of model R squared for 

glmmGHQ model 

 

 
 

Figure 6. Standard residuals versus fitted values of 

glmmGHQ for health data 

 

The results in Table 4 also shows that for every unit increase 
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in follow-up of patients, there is a decrease in rate of smoking 

by 0.01473. 

The effects of adequate follow-up attributes have been 

clearly shown in the table with a reduction in the number of 

individual patients smoking during the period. The age factor 

effects have also been shown with an increase in the number 

of diagnoses among older patients. The study tends to 

influence a positive change of attitudes towards medical 

appointments. Medical ailments that may be deadly will be 

discovered early enough due to prompt medical follow-up 

attitudes. 

Figure 5 shows residuals versus fitted values of glmmGHQ 

approximation model. The points in the residual plot are 

slightly randomly dispersed around the horizontal axis, this 

might indicate a good fit for the model (glmmGHQ) 

appropriate for fitting the clinical data. Figure 1 shows points 

the residual plot, which are randomly dispersed are horizontal 

axis; this indicates that glmmPQL might not be appropriate for 

the data. Figure 2 shows points in the residual plot are not 

randomly dispersed around the horizontal axis; glmmLA 

might not be appropriate for the data.  

Figure 6 shows violation of normality assumptions on the 

plot since the points forming a line are not roughly straight. 

Figure 6 shows that for each predictor, the main effect point 

and its conditional effect points are almost vertically aligned. 

This plot indicates the suitability of the model glmmGHQ. 
Dependent variables (follow-up status) of 1500 patients 

attending the selected hospitals for twelve months were 

analyzed to justify the choice of generalized linear mixed 

models for this paper in Table 4. The covariates include sex, 

age, Range, Ndiag, Bgrp, Gtype and Sstat of patients within 

the period were also examined. Considering the mean and 

variance of the binary response variable (0.8470, 0.1506), a 

clear indication of non-normality suspected which justifies the 

option for fitting the clinical data with generalized linear 

mixed models in this paper. Table 5 shows the combined 

estimations based on the underlying models, and Table 6 

shows the model performance.  

 

Table 5. Summary of model 

 

Models Variables 
Regression 

Cofficients 

Standard 

Errors 

glmmPQL 

Intercept -1.47770 0.335057 

Sex 0.14495 0.143100 

Age 0.05411 0.004341 

Ndiag. 0.01257 0.034307 

Bgrp -0.40868 0.082594 

Gtype -0.15890 0.083840 

Sstat 0.014729 0.169060 

glmmLA 

Intercept -1.47706 0.335058 

Sex 0.14396 0.143100 

Age 0.03497 0.004341 

Ndiag. 0.05471 0.034307 

Bgrp -0.40869 0.082594 

Gtype -0.15891 0.083840 

Sstat 0.01472 0.169060 

glmmAGH 

Intercept -1.47706 0.335057 

Sex 0.14496 0.143100 

Age 0.03497 0.004341 

Ndiag. 0.05471 0.034307 

Bgrp -0.40869 0.082594 

Gtype -0.15890 0.083840 

Sstat -0.01473 0.169069 

 

Table 6 shows that the glmmGHQ outperformed the two 

other models. Model fitness and suitability of glmmGHQ is 

better in terms of model performance metrics (AIC, BIC and 

Deviance). Comparing all models in this study with the 

glmmGHQ, it is obvious from the table using AIC, BIC and 

Deviance values that glmmGHQ fits better than all other 

models with minimum AIC and BIC of 1275.13 and 1325.20 

respectively in Table 6. This discovery may support a choice 

of glmmGHQ for data analysis involving binary responses 

subsequently. Researchers may adopt glmmGHQ in fitting 

data with binary response.  

 

Table 6. Model performance 

 
 AIC BIC 

glmmPQL 1277.9 1335.15.0 

glmmLA 1279.89.0 1345.15 

glmmGHQ 1275.13** 1361.2** 

 

 

4. CONCLUSIONS 

 

Appropriate modeling for medical data with binary 

response has some obvious and important implications for 

patient diagnoses in Health care system. In this paper, the 

observation of multiple correlation across covariates is an 

indication of the presence of random effects because of 

repeated measures on predictor variables. This made it 

extremely difficult to model such data using traditional 

generalized linear model, which does not accommodate 

random effects. The choice of GLMMs was to take care of 

multi-collinearity effects across covariates to avoid model 

misspecification. 

The statistical inference drawn from this study shows the 

fitness and superiority of a gauss-Hermite quadrature 

estimation technique over other estimation techniques based 

on some selected model performance metrics for the real data 

set.  

In addition, the study was not only meant to establish the 

fitness or superiority of the model (glmmGHQ) over others but 

to also validate effects of clinical follow-up on Patient’s 

medical diagnoses over a period of twelve months leveraging 

on the fitness of the model (glmmGHQ). Table 4 shows 

increase in medical diagnoses for more follow-up status of 

individuals. Using the statistics, for every unit increase in 

follow-up status, there is a corresponding increase of 0.05471 

of number of diagnoses. It is also an observation from Table 4 

that with a unit increase in the follow-up status, there is a 

decrease of 0.01473 in smoking habit of patients. The follow-

up effects also trigger an increase of 0.03497 factor in older 

individual patients. Older patients tend to have more diagnoses 

than other age categories according to the study results. 

Leveraging research results, patients with prompt response 

to clinical follow-up had a corresponding increasing number 

of diagnoses, which helped in early detection of ailments that 

could have been deadly. The result analysis showed patients 

with follow-up status with a decrease in smoking attributes, 

which might be a result of clinical counselling during medical 

appointments. 

Based on the research results, the gauss-hermite Quadrature 

technique might be preferred in estimating model parameters 

for generalized linear mixed models with binary responses 

better model results. Investigating effects of risk factors in 

health care systems may also be carried out using a gauss-

Hermite Quadrature technique.  
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APPENDIX  

 

Table A1. Descriptive statistics 

 

Desc.Stat. Followup Sex Age Ndiagnosis Bgroup 

Mean 0.184667 0.460000 30.02067 2.681333 1.656000 

Standard Error 0.010022 0.012873 0.471299 0.051015 0.022952 

Median 0.000000 0.000000 35.00000 2.000000 1.000000 

Mode 0.000000 0.000000 37.00000 1.000000 1.000000 

Std Dev. 0.388156 0.498564 18.25332 1.975784 0.790100 

Variance 0.150665 0.248566 333.1837 3.903721 0.888900 

Kurtosis 0.647809 -1.97680 -1.36130 4.242080 0.824400 

Skewness 1.626944 0.160675 -0.12010 1.748514 1.297400 

Range 1.000000 1.000000 77.00000 14.00000 3.000000 

Minimum 0.000000 0.000000 0.000000 1.000000 1.000000 
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Maximum 1.000000 1.000000 77.00000 15.00000 4.000000 

Sum 277.0000 690.0000 45031.00 4022.000 2484.300 

Count 1500.000 1500.000 1500.000 1500.000 1500.000 

 

Table A2. Correlation matrix of variables 

 

Variable Followup Sex Age Ndiagnosis Bgroup Gnotype Status 

Followup 1.0000 -0.025 0.8132** 0.0174 - -0.0187 0.0027 

Sex -0.0255 1.000 -0.0237 -0.0003 - -0.0470 0.0480 

Age 0.8132** -0.023 1.0000 0.6318* - 0.0821 0.0093 

Ndiagnosis 0.0174 -0.000 0.6318* 1.0000 - 0.0455 -0.0202 

Bgroup - - - - 1.0000 - - 
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