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Loop unrolling is a well-known code-transforming method that can enhance program 

efficiency during runtime. The fundamental advantage of unrolling a loop is that it 

frequently reduces the execution time of the unrolled loop when compared to the original 

loop. Choosing a large unroll factor might initially save execution time by reducing loop 

overhead and improving parallelism, but excessive unrolling can result in increased cache 

misses, register pressure, and memory inefficiencies, eventually slowing down the 

program. Therefore, identifying the optimal unroll factor is of essential importance. This 

paper introduces three ensemble-learning techniques—XGBoost, Random Forest (RF), 

and Bagging—for predicting the efficient unroll factor for specific programs. A dataset 

comprises various programs derived from many benchmarks, which are Polybench, 

Shootout, and other programs. More than 220 examples, drawn from 20 benchmark 

programs with different loop iterations, used to train three ensemble-learning methods. The 

unroll factor with the biggest reduction in program execution time is chosen to be added to 

the dataset, and ultimately it will be a candidate for the unseen programs. Our empirical 

results reveal that the XGBoost and RF methods outperform the Bagging algorithm, with 

a final accuracy of 99.56% in detecting the optimal unroll factor. 
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1. INTRODUCTION

A considerable percentage of a program's execution time 

spent in a small portion of its code, usually loop constructs. 

Research reveals that about ninety percent of the time spent 

executing a program focuse on only ten percent of its code. 

Thus, improving these frequently run parts can significantly 

improve the program's total execution speed [1-4]. Therefore, 

code optimization approaches for efficient loop execution are 

critical. Loop unrolling is one such technique, wherein the 

body of the loop repeats several times and the loop termination 

code is adjusted. This technique can speed up execution by 

lowering the number of branch instructions required upon 

completing the loop body [2, 5, 6]. Table 1 shows the loop 

unrolling technique that if the unrolling factor is set to 2, the 

loop unrolls. When the factor is set to 4, as illustrated in Table 

2, the unrolling technique improves program speed by 

allowing many iterations to run concurrently. 

Table 1. Original loop and the the result after unroll the loop 

with loop unroll factor set to 2 

Before Loop Unroll After Loop Unroll 

       For (k=0; k<N; k++){ 

    b[k]=k+1;} 

    For (k=0; k<N; k+=2){ 

         b[k]=k+1; 

         b[k+1]=(k+1)+1;} 

Table 2. Unroll factor set to 4 

After Loop Unroll 

     For (k=0; k<N; k+=4){ 

         b[k]=k+1;   

         b[k+1]=(k+1) + 1; 

         b[k+2]=(k+2) + 1; 

         b[k+3]=(k+3) + 1;} 

Probably a particularly essential aspect of loop unrolling is 

the capability to show instruction-level parallelism (ILP) to the 

compiler. Unrolling loops enables the compiler to rearrange 

activities within the expanded loop body to achieve iteration 

overlap [7, 8]. Bulldog is the compiler that used this approach 

for the first time and is still required when compiling on 

computers with a high level of ILP [9]. The unrolling approach, 

when used with additional transformation passes, will expand 

the size of the scheduled window. Similar techniques comprise 

trace scheduling and hyperblock generation. 

These methods are especially beneficial for scheduling 

loops with control flow or function calls, which pose 

significant challenges to software pipelining [9]. 

Loop unrolling is critical for various optimizations, 

particularly those focused on improving the memory system. 

Moreover, the process of loop unrolling creates numerous 

static memory instructions that can be rearranged to benefit 
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from memory locality. In practical use, unrolling the loop 

leads to performance gains in the majority of instances when 

it is used. However, if performed poorly, this technique might 

interfere with other vital optimizations, slowing down overall 

performance. Therefore, selecting the suitable unrolling factor 

is critical. In spite of the unrolling technique having many 

benefits, possible drawbacks should also be considered. 

-Unrolling has a well-known drawback of reducing 

instruction Cache speed. 

-Increased scheduling flexibility can result in longer 

variable live ranges, increasing register pressure [10-14]. 

Machine learning is an important tool in artificial 

intelligence that improves program performance via 

experience. However, a single machine-learning model can 

often suffer from issues such as overfitting, which occurs 

when the model performs well on training data but badly on 

unseen data. Furthermore, certain models may be sensitive to 

noise in the data or fail to reflect the entire complexity of the 

problem. To solve these constraints, we introduce ensemble 

learning, which combines different models' predictions to 

produce a more accurate and robust system. Ensemble 

approaches decrease mistakes, increase generalization, and 

deliver more trustworthy predictions by combining the 

capabilities of various models [15]. The contribution of this 

paper is an investigation into the use of ensemble learning 

techniques with program dynamic features. Additionally, this 

research seeks to develop a model capable of predicting the 

ideal unrolling factor using ensemble learning. Three 

ensemble-learning techniques are used to train our dataset, 

which are Bagging, XGBoosting, and Random Forest. The 

remainder of the paper organizes as follows: Section 2 

provides an overview of the related studies on loop unrolling. 

Section 3 covers three ensemble-learning approaches are 

introduced in this study. Section 4 describes the proposed 

approach. Section 4 includes the findings from benchmark 

programs. Finally, Section 5 summarizes our findings and 

offers concluding observations. 

 

 

2. RELATED WORK 

 

Some researchers have pointed to loop unrolling as an 

established approach for reducing loop overhead. This 

approach was frequently employed to enhance average-case 

speed in code by duplicating statements within the loop body, 

which causes fewer loop iterations, lower jump overhead, and 

less branching. Loop unrolling additionally expands the size 

of the basic block, making scheduling more efficient. 

Stephenson and Amarasinghe [9] concentrated on loop 

unrolling, an important optimization approach for revealing 

instruction-level parallelism. Employing the Open Research 

Compiler as a platform, they show how to use supervised 

learning approaches to assess the suitability of loop unrolling. 

They use almost 2,500 loops from 72 benchmarks to train two 

separate learning algorithms to estimate unroll factors (i.e., 

how much a loop should be unrolled) for each new loop. The 

approach accurately estimates the unroll factor for sixty-five 

percent of the loops in the dataset, resulting in a five percent 

overall improvement for the SPEC 2000 benchmark suite (9 

percent for the floating-point benchmarks). 

Booshehri et al. [14] investigated the impact of loop 

unrolling on consumption of power, consumption of energy, 

and program speed by utilizing instruction-level parallelism 

(ILP). They investigated the concept of extended loop 

unrolling and presented a new method for traversing linked 

lists to improve loop-unrolling results. Their research carried 

out using a Pentium 4 CPU, which represents a superscalar 

design, which as well as a supercomputer outfitted with 

superscalar node computers. The studies revealed that, while 

loop unrolling has little effect on both power and energy 

utilization, it can be a useful strategy for speeding up 

applications. 

As mentioned in the study [11], the machine learning model 

improve the unrolling capabilities by anticipating its factor. 

Initially, they enhance a basic Random Forest model by 

applying weighting and the imbalanced dataset. After creating 

the training set, they train the model. Experimental findings 

show that the model can accurately estimate the optimal or 

suboptimal unrolling factor 81% of the time. The model has 

also been tested on numerous SPEC2006 test sets. While 

Open64's built-in loop unrolling model increases program 

performance by an average of 5%, the method suggested in 

this study, which predicts the factors of unrolling through 

applying a weighted decision forest, improves the 

performance of program by approximately 12%. 

To improve the precision of the compiler's loop unrolling 

factor, Singh et al. [1] suggested an improved loop unrolling 

technique that utilizes a modified random choice forest. 

Initially, the standard Random Forest improved by including 

weight values. Second, they addressed the issue of unbalanced 

datasets using a BSC technique based on the SMOTE 

algorithm. Nearly 1,000 loops were selected from different 

benchmarks, and the characteristics extracted from them 

served as the training set for the suggested method to 

anticipate the unroll factor. The model predicted the unrolling 

factor with 81% precision, compared to 36% for the current 

Open64 compiler. 

 

 

3. ENSEMBLE LEARNER (EL) 

 

Ensemble Learning is a subset of Machine Learning that 

seeks to improve task performance, such as classification and 

regression, by training a group of relatively weak learners and 

integrating their results using voting or averaging. Despite 

their particular weaknesses, these learners can create strong 

results when they work together. The ensemble method's 

effectiveness is intuitive: a group of learners, each good in a 

specific work, can complement one another. Their 

collaboration frequently results in superior overall 

performance than a single learner could achieve alone. 

Below we are going to present three popular ensemble 

methods named Bagging, Boosting, and Random Forest. 

These methods employ resampling algorithms to generate 

distinct training sets for each classifier [15]. 

 

3.1 Random Forest (RF) 

 

Random Forest, the most popular ensemble method 

produced, was introduced separately by the studies [16, 17] 

around that exact time. It is becoming increasingly popular, 

thanks to their flexibility and predictive effectiveness. 

Furthermore, RF is regarded as a simple way to adjust in 

comparison to other systems that necessitate precise tuning. It 

consists of a large number of decision trees that operate 

independently to estimate the outcome of a class, with the 

ultimate prediction determined by their majority vote. Figure 

1 illustrates how the separate trees are built. 
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Figure 1. Random Forest 

 

3.2 Bagging 

 

Bagging [18] is a straightforward but efficient approach for 

creating an ensemble of independent models. This strategy 

envolves training each model on a portion of the main dataset's 

occurrences. To guarantee that each model has enough 

instances, these samples are typically the same size as the main 

dataset. The ultimate anticipate for an unseen occurrence is 

chosen by a majority vote on the models' projections. Because 

sampling uses replacement, certain instances from the original 

dataset may appear several times in a sample, while others may 

be excluded entirely. Because the models are trained 

independently, Bagging can be done in parallel, with each 

model trained on a separate processing unit. 

 

3.3 Extreme gradient boosting (XGBoost) 

 

The XGBoost algorithm, presented by Chen and Guestrin 

[19], was created to break the computational limits of boosting 

trees, resulting in quick computation and superior performance. 

XGBoost brings various advancements over classic gradient 

boosting algorithms and is known for its exceptional 

performance in both classification and regression problems. In 

XGBoost, the prediction for a given sample is the sum of the 

leaf weights from each weak classifier. A fundamental feature 

in XGBoost is the introduction of a regularization term to limit 

tree models' inherent tendency to overfit, allowing for little 

overfitting before pruning. Furthermore, XGBoost balances 

model performance and computation speed using an objective 

function that combines a standard loss function with a 

regularization term to manage model complexity [20]. 

 

 

4. PROPOSED METHOD 

 

Figure 2 depicts the suggested model, which consists of four 

steps. 

 

4.1 Constructing dataset 

 

For this step, we gathered more than 220 samples—drawn 

from 20 benchmark programs with different problem sizes. 

The execution time of each program was calculated using a 

variety of loop unroll factors. Four unroll factors—2, 4, 6, and 

8—were chosen based on prior testing showing a considerable 

impact on program performance. Each program was executed 

at least five times for each unroll factor, implying that the same 

program was run five times with the same unroll factor, and 

the average execution time was computed. The unroll factor 

(2, 4, 6, or 8) with the minimum execution time was chosen as 

the optimal factor for the program. To unroll the loop, two 

LLVM optimization passes were used: --loop-unroll and --

unroll-count. 

 

Applying set of 

machine learning 

algorithms

Trained machineTest set

 building the 

dataset

Predicted class

Benchmark 

program

Features extraction

 
 

Figure 2. The suggested approaches 

 

Features extraction 

The dynamic dataset includes features that vary during 

program execution. These dynamic characteristics are 

obtained using the Linux 'perf' tool, which provides an 

empirical picture of the program's dynamic behavior as it 

interacts with the computing machine while running. For each 

program, 35 dynamic features are collected. Table 3 shows the 

dtnamic features [21, 22]. 

 

Table 3. Perf event 

 

Event Type 
instructions,LLC-loads,LLC-load-misses,L1-

dcache- loads, L1-dcache-load-mises, cache-misses, 

cache-refernces, dTLB-loads,LLC-stores,LLC-

store-misses,dTLB-loads,dTLB-load-miss, iTLB-

loads, iTLB-load-miss, dTLB-store,dTLB-store-

misses,itlb_misses.walk_completed,branch-

instructions,branch-misses,L1-dcache-stores-

misses,L1-dcache-stores,cpu-cycles,bus-cycles,ref-

cycles,page-faults,context-switches,cpu-

migrations,minor-faults,major-faults,alignment-

faults,emulation-faults,cpu-clock,task-clock,mem-

loads,mem-stores 

Hardware 

& 

software 

events 

 

4.2 Features preprocessing 

 

In the field of machine learning, data preparation is an 

important step before modeling.  

A the first, the columns that have the zero value are removed. 

After this the left features become 29. Then the standardization 

is applied, specifically the MinMax technique, which is used 

to calibrate the range of feature values, assuring scale 

consistency. The MinMax method is very useful for 

converting data to a bounded interval, often [0, 1]. The 

mathematical formula for this operation is as follows: 

 

Xscaled =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1) 
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where, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 indicate the minimum and maximum 

values of feature X, respectively.Thisrecalibration is required 

to guarantee that each feature contributes equally to the 

analytical results. Algorithm 1 show the steps of building the 

dataset. 
 

Algorithm 1 Building Dataset 

Input:set of programs Pro[ M] , set of loop unroll K=[2,4,6,8] 

Output: set of program M with less execution time 

Begin 

    for j =1 to M 

        X=Pro[j] 

        Execute each program X will all loop unroll factor K 

        Chose the one with less execution time. 

        Add this program X to the Dataset with its loop 

        unroll factor 

        Extract the dynamic fatures for X program using Perf tool 

            Features preprocessing. 

           Add this features to the Dataset. 

       End 

End 

 

As a consequence, our dataset has 31 columns. The first 

column contains the program name. The program features take 

up columns 2 through 30, while the label (the optimal unroll 

factor for this program) occupies column 31. 
 

4.3 Classifiers 
 

Set of machine learning techniques are use to classify our 

data set. These are RF, Bagging and XGBossting. These are 

ensemble methods that combine the predictions of multiple 

base estimators to improve overall performance. Firstly we 

train our dataset with all the ensemble learning techniques. 

Then we compare their outcomes to determine the best one. 
 

 

5. EXPERMENTAL RESULTS 
 

In this research, we use Google Colab, an online platform 

that provides a Jupyter notebook environment, to analyze data 

and execute ensemble learning models. The platform's smooth 

interface with Python, as well as its robust computational 

capabilities, enabled us to effectively process our dataset and 

train our models. The results from training and testing each of 

the proposed learning models discussed above are shown. The 

classification models are trained with various parametrs, and 

the results are very promising. 
 

5.1 Training set programs 
 

The constructed dataset is used to train three different EL 

models that estimate the program's time efficiency. The 

present research focuses on three ensemble learning models, 

as stated in Section 3. These classifiers take 29 dynamic 

characteristics as input, and the output is one of the loop unroll 

factors (2, 4, 6, and 8). Moreover, a result of the small size of 

the datasets, k-fold cross-validation is preferable to a separate 

training and testing split since it maximizes data consumption 

by using every data point for training and validation. This 

approach, by averaging findings across numerous folds, 

provides a more reliable performance estimate while lowering 

the risk of overfitting. 
 

5.1.1 Bagging classifier results 

The dataset is loaded into a pandas DataFrame, with all 

column names being strings. The data is then divided into two 

categories: features (X) and labels (y), with the first 29 

columns serving as features and the 30th column as the label. 

A Bagging classifier is built with a Decision Tree as the base 

estimator and ten decision trees (n_estimators=12). A 15-fold 

stratified cross-validation is used to ensure that each fold has 

a proportional representation of the classes. Log loss is 

determined for each fold to determine how closely the 

projected probabilities match the true labels, with smaller log 

loss indicating higher predictive accuracy. 

Mean accuracy with 15-fold cross-validation: 98.63% while 

the mean log loss with 15-fold cross-validation: 0.2960 as 

shown in Figure 3. 

 

 

 
 

Figure 3. The accuracy of 15 folds of cross validation and 

loss function of Bagging classifier 

 

5.1.2 Random Forest classifier results 

We employed a Random Forest classifier for this research. 

The model was configured with a fixed random state 

(random_state=18) to ensure reproducibility of results.To 

evaluate the model, we used Stratified K-Fold Cross-

Validation with 15 folds. This method ensures that each fold 

has the same proportion of class labels as the entire dataset, 

which is crucial for maintaining the balance in class 

distribution across folds. Mean accuracy with 15-fold cross-

validation: 99.56% while the mean log loss with 15-fold cross-

validation: 0.1755 as shown with Figure 4. 

 

5.1.3 XGBoost classifier results 

XGBClassifier use the default parameters for 

XGBClassifier as of the latest version of the XGBoost library. 

XGBoost Classifier is built with (n_estimators=36) which is 

the number of gradient boosted trees. The performance of an 

XGBoost classifier on a dataset using 15-fold cross-validation 

is evaluated. Mean accuracy with 15-fold cross-validation: 

99.567% while the mean log loss with 15-fold cross-validation 

is 0.0453 as shown in Figure 5.  

Log loss is determined for each of three classifiers to 

determine how closely the projected probabilities match the 

true labels, with smaller log loss indicating higher predictive 
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accuracy. Additionally, precision, recall, F1 score, and 

standard deviation metrics are computed using 15-fold cross-

validation. Table 4 presents the results for all metrics. 

 

 

 
 

Figure 4. The accuracy of 15 folds of cross validation and 

loss function of Random Forest classifier 

 

 
 

Figure 5. The accuracy of 15 folds of cross validation and 

loss function of XGBoost classifier 

 

Table 4. Various evaluation metrics 
 

Classifier Mean Precision Mean Recall Mean F1 Score Mean Accuracy Mean Log Loss SD 

Bagging 99.29% 98.40% 98.60% 98.63% 0.2960 0.027 

Random Forest 99.78% 99.33% 99.43% 99.56% 0.1755 0.016 

XGBoost 99.56% 99.33% 99.29% 99.56% 0.0453 0.016 

 

Moreover, we experimented with three different k-fold 

cross-validation settings: 5-fold, 10-fold, and 15-fold. The best 

results were obtained with 15-fold cross-validation as present 

in Table 5.  

 
Table 5. Different k-fold cross validation 

 
Classifier 5-fold 10-fold 15-fold 

Bagging 97.73% 98.18% 98.63% 

Random Forest 99.55% 99.55% 99.56% 

XGBoost 99.55% 99.55% 99.56% 

 

5.2 Analysis the findings 

 

While building the dataset, we noted several key 

observations. First, the investigation revealed that, through 

using LLVM opt with the loop unroll optimization step, 

around half of the benchmark loops could not be unrolled 

Because of one or more of the following factors: 

i. a low initial value for the loop induction variable and ii. 

the utilization of conditional control inside the loop. 

We also found that an unroll factor equal to 8 is the highest 

value that effectively speeds up program execution time. 

Values greater than eight may maintain the same execution 

time or worsen program performance. 

The experiments also show that the loops with an efficient 

unroll factor, for instance 8, often perform satisfactorily with 

a smaller one, like 2, though the reverse isn’t always accurate. 

Furthermore, no single unroll factor is constantly dominant 

and performing well across all loops.  

 

 

6. CONCLUSIONS 

 

This research addressed the difficulty of recognizing the 

ideal unroll factor for a set of programs in order to increase its 

performance. We provided a method for identifying the most 

effective loop unroll factor by using multiple ensemble 

learning models such as Bagging, Random Forest, and 

XGBoost. We evaluated these models on the construction 

dataset. The dataset was comprised of a number of dynamic 

features of a set of programs with best loop unroll factors. 

XGBoost and RF outperformed the third model that trained on 

the dataset, predicting the most appropriate unroll factor with 

a precision rate of 99.56%. 

A key limitation of the study is the lack of a sufficiently 

large dataset, which can introduce biases and affect the 

generalizability of the results. Small datasets may not fully 
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capture the variability or diversity present in the population. 

This can also result in biased performance estimates, as the 

model may learn noise or specific patterns that are not 

representative of the broader problem. In the future, extending 

the dataset and training classification models on it will help 

increase the model's ability for generalization. 
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NOMENCLATURE 

 

EL Ensemble Learning 

RF Random Forest 

XGBoost Extreme Gradient Boosting 

LLVM Low Level Virtual Machine 

Bagging Bootstrap aggregating 

Perf CPU performance counters 

ILP Instruction level parallelism 
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