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Deoxyribonucleic acid (DNA) profiling is an important branch of forensic science that 

aids in the identification of missing people, particularly in mass disasters. This study 

presents an artificial intelligence system that utilizes DNA-Short Tandem Repeat (STR) 

data to identify victims using Deep Neural Network (DNN), Gated Recurrent Unit 

(GRU), and Bidirectional GRU (Bi-GRU) deep learning models. The identification of 

STR information for living family members, such as parents or brothers, poses a 

significant challenge in victim identification. Familial data are artificially generated 

based on the actual data of distinct Iraqi individuals from the province of Al-Najaf. Two 

people are selected as male and female to create a family of 10 members. As a result of 

this action, 151,580 individuals were generated from 106 different people, which helps 

to overcome the lack of datasets caused by restrictive policies and the confidentiality of 

familial datasets in Iraq. These datasets are prepared and formatted for training deep 

learning models. Based on various reference datasets, the models are built to handle 

five different scenarios where both parents are alive, only one parent is alive, or the 

siblings are available for reference. The three models’ performances were compared: 

Bi-GRU performed the best, with a loss of 0.0063 and an accuracy of 0.9979, followed 

by GRU with a loss of 0.0102 and an accuracy of 0.9964, and DNN with a loss of 0.2276 

and an accuracy of 0.9174. The evaluation makes use of a confusion matrix and receiver 

operating characteristic curve. Based on the literature, this is the first attempt to 

introduce deep learning in DNA profiling, which reduces both time and effort. Despite 

the fact that the proposed deep learning models have good results in identifying missing 

persons according to their families, these models have limitations that can be confined 

to the availability of familial DNA profiles. The system doesn’t work well if no relative 

samples are available as references, such as a father, mother, or brother. In the future, 

DNN, GRU, and Bi-GRU models will be applied to mini-STR sequences that are used 

in cases of degraded victims of incomplete STR sequences. 
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1. INTRODUCTION

Since its inception in the mid-1980s, the use of forensic 

DNA profiling has significantly increased [1, 2]. It is well-

known as a technique used in forensic investigations for 

purposes such as identifying criminals from crime scene 

samples, determining paternity, and identifying the human 

remains of missing persons. It has become the gold standard 

for identifying victims, especially in mass-casualty incidents 

(MCIs) [3, 4].  

MCIs can be defined as any sudden and unexpected events 

that have a negative impact on a community and cause more 

fatalities than the community is able to handle [5, 6]. There are 

several potential causes for MCIs, including natural disasters, 

armed conflicts, terrorist attacks, or accidents. After the 

Scandinavian Star ferry fire in 1990, DNA analysis was used 

for the first time to identify mass disaster victims.  

For instance, on June 12, 2014, the Islamic State of Iraq and 

the Levant (ISIL) killed about 1700 members of the Iraqi army 

and security forces at Camp Speicher in Tikrit, Iraq, resulting 

in numerous casualties [7]. 

A forensic examination of human remains discovered in the 

aftermath of a war or other violent incident has two objectives. 

First, as part of criminal investigations, it is important to 

ascertain the cause and manner of death; second, it is important 

to identify any human remains and, if at all possible, return 

them to the victim's family. This paper takes the second 

objective into consideration.  

The research proposes deep learning models for missing 

person identification in mass casualty incidents. rather than 

manual matching in the traditional approach that manually 

compares the human profiles of the missing person with those 

of his or her relatives. In manual matching, only three to four 

profiles can be compared simultaneously because it takes 

significant human effort to analyze 15 loci, each locus with 

two alleles for one short tandem repeat (STR) profile. 

Introducing an artificially intelligent system for missing 

person identification minimizes both effort and time 
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consumption while maximizing the efficiency. The suggested 

system can also perform the identification regardless to the 

samples number. Familial dataset generation offers a good 

chance to create a familial database that may be useful in any 

other cases of missing person identification. 

This paper introduces a deep learning modelling system to 

assess how closely human DNA profiles of missing persons 

and samples from living people are similar (mother, father, and 

brothers). The DNA-short tandem repeat (STR) profile, which 

consists of 15-loci with two alleles in each locus, is used as 

input data for this proposed deep learning system. The value 

that this system outputs indicates whether the missing person 

is a member of the reference family. The proposed system’s 

strength lies in the development and management of the 

dataset as well as in the optimal structuring of a deep learning 

model for the most accurate missing person identification. 

Figure 1 clarifies a clear overview of the proposed system. 

 

 
 

Figure 1. Missing person identification 

 

This paper is arranged as follows: Section 2 gives an 

overview of missing person identification based on DNA STR. 

Section 3 presents deep learning in general and gives a 

description of the three models used. Section 4 describes how 

the system was modelled and the simulations that were run. 

Section 5 presents a discussion of the results. Finally, the 

conclusions are given in Section 6. 

 

 

2. MISSING PERSON IDENTIFICATION 

 

The following section discusses the increasing demand for 

DNA analysis in forensic investigations, essentially in cases 

involving missing persons and disaster victims. The use of 

DNA profiling, specifically focusing on short tandem repeats 

(STRs), is highlighted as a crucial technique for identifying 

individuals. This section also emphasizes the importance of 

considering broader family relations when direct comparisons 

are not possible. Furthermore, it provides an overview of the 

process involved in DNA-STR profiling, including sample 

collection, amplification, separation, and comparison to 

reference databases, highlighting its applications in 

identifying individuals, missing person cases, and paternity 

testing. 

Due to cases involving the identification of missing persons, 

where DNA profiling and matching are crucial techniques 

used to identify victims in a disaster, there is an increasing 

demand for DNA analysis in forensics investigations. The use 

of DNA analysis was advised by Interpol guidelines, along 

with dactyloscopy and odontology [8]. 

For example, in Camp Speicher, according to the Iraqi 

Ministry of Health, approximately 1153 bodies have been 

recovered and over 704 victims have been identified, but at the 

time of writing, 503 corpses are still undergoing verification 

[7]. 

Identification is defined as "individualization", the process 

of comparing DNA samples taken from human remains with 

living reference family members. However, there is a critical 

situation that may be difficult to solve, and there is no doubt 

that such a comparison can be held. For instance, if the 

victim’s parents are deceased or they are very far away from 

the victim’s place, in this situation there is a necessity to define 

the DNA profile of wider family relations, including brothers, 

grandfathers, grandmothers, uncles, aunts, cousins, and any 

other potential living relatives [9]. 

 

2.1 DNA–STR 

 

DNA is the molecular blueprint that encodes the genetic 

information necessary for the growth and operation of all 

living organisms [10]; these genetic materials are passed down 

through the generations. 

DNA is a long, double-stranded molecule composed of four 

different types of nitrogenous bases: adenine (A), guanine (G), 

cytosine (C), and thymine (T) [11]. DNA is useful for 

determining paternity, finding missing persons, and 

identifying victims of mass disasters. Therefore, it is essential 

to try to determine ancestry using STR inference for living 

relatives [12]. STR is a repeating pattern of two or more 

nucleotides (the building blocks of DNA) found in a specific 

region of a chromosome and accounts for approximately 3% 

of the human genome [13]. STR analysis is a common 

technique for forensic DNA analysis and personal genotyping; 

it is used as a genetic marker for human identification. 

Different genetic markers are used for different purposes in 

forensic DNA analysis, but STR typing is still the mainstay 

[14]. This is because of the number of times the pattern is 

repeated varies from person to person; this variation offers a 

high degree of discrimination and makes each individual's 

STR pattern a unique profile [15]. This profile can then be used 

to identify individuals, either by comparing it to a reference 

sample (a family member) or by searching it against a database 

of known profiles. 

STRs are inherited like any gene or DNA segment, with 

each individual having two alleles per STR-one from each 

parent. An allele refers to one of the alternative forms of a gene 

that takes a particular locus on a chromosome. In the case of 

STRs, the alleles are defined by the number of repeats at a 

particular STR locus. 

When an individual inherits alleles for an STR locus, they 

receive one allele from their biological mother and one allele 

from their biological father. The combination of alleles 

determines the individual's genotype for that particular STR 

locus. For instance, an individual may inherit an allele with 9 

repeats from their mother and an allele with 10 repeats from 

their father, resulting in a genotype of (9, 10) for the D7S820 

locus. Paternity can be determined if a child shares about half 

of a parent’s DNA because each parent is responsible for 

transmitting half of their genetic material [16]. 

Human profiling and identification based on DNA-STR 

involve collecting a DNA sample from an individual and then 

amplifying the STR regions using the polymerase chain 
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reaction (PCR) method [17]. Then the amplified products are 

separated based on size using techniques such as capillary 

electrophoresis [18], after that the resulting STR profile is 

ready to be compared with a reference database of known 

DNA profiles in order to identify the individual or to find the 

likelihood that two DNA samples came from the same person. 

It is also used in paternity testing and in missing person cases 

to help identify individuals [19]. Figure 2 shows DNA and 

STR regions that are found in non-coding regions within 

DNA. 

 

 
 

Figure 2. DNA and STR region 

 

 

3. ARTIFICIAL INTELLIGENCE: DEEP LEARNING  

 

This section gives an overview of deep learning and its 

application in the field of bioinformatics. Techniques that are 

used in this work; DNNs, GRUs, and Bi-GRUs are described 

as well. 

Artificial intelligence (AI) is becoming increasingly 

important in forensic science as it offers the potential to 

increase the accuracy and effectiveness of various forensic 

tasks [20]. For example, AI can be used to analyse vast 

amounts of data in a relatively short length of time, automate 

tedious tasks, and identify patterns that humans might miss. 

However, it should be kept in mind that AI must be used in 

conjunction with human knowledge and judgment [21]. 

Deep learning is a branch of machine learning and AI that 

uses neural networks with multiple layers to analyze and 

model complex data patterns [22, 23].  

In deep learning, large datasets are processed by neural 

networks, enabling them to autonomously learn patterns and 

relationships. This technique has been successfully applied 

across various bioinformatics applications to enhance 

classification accuracy. For instance, many studies have 

shown that deep learning outperforms traditional methods like 

random forest or support vector machine algorithms in 

predicting protein binding and accessibility to DNA sequences 

[24-28]. 

Using deep learning in missing persons identification 

through DNA matching has not been extensively studied. 

However, there are two relevant studies that apply artificial 

intelligence techniques to DNA analysis: Anggreainy et al. 

[29] utilize fuzzy inference for STR-DNA matching across 16 

loci, and Siino and Sears [30] employ gradient descent logistic 

regression for kinship analysis based on 13 loci. 

This paper explores and compares three deep learning 

techniques for an artificial intelligence system that uses DNA-

STR data from 15 loci to identify victims: DNNs, GRUs, and 

bidirectional GRUs (Bi-GRUs). These techniques are detailed 

in Sections 3.1, 3.2, and 3.3. 

 

3.1 DNNs 

 

DNNs are a type of artificial neural network constructed 

from multiple layers of artificial neurons, or “units”. This 

approach was inspired by the way the human brain processes 

information [31]. 

The neural network has several layers, each of which 

processes and abstracts information in a unique way. The input 

data is processed at each layer before being forwarded to the 

one below it, with the final layer producing the output 

prediction or classification. When compared to other machine 

learning techniques, this enables the network to recognize 

high-level features and representations of the data, improving 

accuracy and performance [32]. 

To minimize the error between the predicted output and the 

true output DNNs are trained by adjusting the weights of the 

connections between units [33]. This process, known as 

backpropagation, is repeated multiple times until the error is 

reduced to an acceptable level. DNNs have proven effective at 

a variety of tasks, like speech and image recognition, machine 

translation, and natural language processing. They are 

particularly proficient at solving problems that call for the 

discovery of intricate connections between input and output 

data [34]. 

However, DNNs can be computationally expensive to train, 

and the selection of hyperparameters, such as the number of 

layers and the learning rate, can affect how they perform. They 

can also be prone to overfitting if the training data is not 

sufficiently large or diverse. 

Each DNN neuron is mathematically represented in the 

formula below, where the output can be: 

 

𝑍 = 𝜎(∑ 𝑥𝑡 .𝑊𝑡 + 𝑏)
𝑡

 (1) 

 

where, xt is the input vector, Wt is the weight vector, b is bias, 

Z is the output from the network, and σ is an activation 

function that may be a leaky rectified linear unit (Leaky 

ReLU) in all hidden layers or sigmoid in the output layer.  

Leaky–ReLU: 

 

𝜎𝑙(𝑥) = max⁡(𝑎𝑥, 𝑥) (2) 

 

Sigmoid: 

 

𝜎𝑠(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

 

3.2 GRUs 

 

GRUs are a kind of RNN, and RNNs are a type of DNN 

specifically designed for processing sequential data [35]. 

RNNs are called “recurrent” because they have a loop 

structure that uses the output from one unit at a one-time step 

as input for the same unit at the following time step. The 

importance of processing sequential data lies in capturing 

temporal dependencies, understanding contextual information, 

modelling time series patterns, enabling natural language 

processing, supporting sequential decision-making, predicting 

future events, and facilitating sequential generation. These 

applications span a wide range of fields, highlighting the 

significance of effectively processing and analysing sequential 

data. RNNs offer these benefits by utilizing recurrent 

connections and memory mechanisms, allowing them to 
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process sequential data, capture dependencies, and model 

temporal information effectively [36]. 

GRUs were firstly proposed by Cho et al. [37], it enables 

each recurrent unit to capture dependencies adaptively on 

different time scales. GRUs uses gating mechanisms in order 

to control the flow of information between the input, output, 

and hidden states [38-40].  

The memory cell in a GRU is in charge of retaining and 

losing information over time. The memory cell is made up 

from two gates, an update gate and a reset gate [41]. Figure 3 

depicts a memory cell that is ready for DNA applications. 

 

 
 

Figure 3. GRU memory cell for DNA identification 

 

A typical GRU unit consists of the following [35, 42]: 

Reset gate: The reset gate control how much of the previous 

hidden state must be forgotten and how much of the current 

input must be incorporated into the updated hidden state. 

 

𝑅 = 𝝈𝒔[(𝑊𝑟 ⋅ 𝑋𝑡 + 𝑉𝑟 ⋅ ℎ(𝑡−1)) + 𝑏𝑟] (4) 

 

where, R is the reset gate at time t; ht−1 is the hidden state of 

the previous time step; Xt is the input at time t; Wr, Vr are the 

reset gate’s learnable weights for input and hidden state of 

reset gate and br is the bias; and σs is the sigmoid activation 

function. 

After being transformed by the sigmoid function, the new 

values will all be between 0 and 1, which makes it possible for 

the gate to distinguish between unimportant and important 

data. 

Update gate: The update gate determines how much of the 

previous hidden state should be retained and how much of the 

current input should be incorporated into the updated hidden 

state. The update gate is calculated next using the same 

formula as the reset gate; the only difference is the weights of 

the input vector and hidden state are distinct because each gate 

has its own set of weights, which implies that the final output 

vectors of each gate are different. As a result, the gates can be 

used for their particular purposes. 

 

𝑈 = 𝜎𝑠[(𝑊𝑢 ⋅ 𝑥𝑡 + 𝑉𝑢 ⋅ ℎ𝑡−1) + 𝑏𝑢] (5) 

 

where U is the update gate at time t and Wu, Vu are the update 

gate’s learnable weights and bu is the bias, for the update gate 

respectively. 
Candidate hidden state: The candidate-hidden state is an 

intermediate value that is computed using the reset gate and 

the previous hidden state, as well as the current input. This 

process decides which information is preserved from the prior 

time steps alongside the new inputs. 

 

ℎ̃𝑡 = 𝝈𝒕𝒂𝒏𝒉[𝑊𝑥 ⋅ 𝑥𝑡 + (𝑅 ⊙ (𝑊ℎ ⋅ ℎ(𝑡−1))) + 𝑏ℎ] (6) 

 

where, ℎ̃𝑡 is the candidate hidden state at time t, σtanh is the 

hyperbolic tangent activation function, and ⊙ is the Hadamard 

(element-wise) product operator.  

Hidden state: The final hidden state is a weighted 

combination of the previous hidden state and the candidate's 

hidden state, as determined by the update gate. If the update 

gate is close to 1, the candidate hidden state is mostly used to 

update the hidden state; if it is close to 0, the previous hidden 

state is mostly retained. 

 

ℎ𝑡 = (1–𝑈) ⊙ ℎ(𝑡−1) + 𝑈 ⊙ ℎ̃𝑡 (7) 

 

3.3 Bi-GRUs 

 

Bi-GRUs are another kind of RNN that process input 

sequences in both forward and backward directions using 

GRUs [43, 44]. The motivation for using a bidirectional RNN 

is that the output at each time step may depend on the context 

from both past and future time steps. 

A Bi-GRU processes input sequences using two separate 

RNNs, known as the forward and backward RNNs, which 

handle sequences in opposite directions [44]. Each time step's 

output from both RNNs is concatenated and serves as input for 

the subsequent step. This setup allows Bi-GRUs to integrate 

context from both past and future data points in the sequence. 

Bi-GRUs have proven effective in various applications, such 

as speech recognition, time series forecasting, and natural 

language processing. They are particularly valuable in tasks 

like language modeling and translation, where understanding 

context from both directions is crucial [45-48]. 

The Bi-GRU model is calculated based on the state of two 

GRUs, which are unidirectional in opposite directions. At time 

step t, the hidden state of the forward GRU is denoted as ℎ𝑡
⃗⃗  ⃗ 

while the backward GRU at time step t is ℎ𝑡
⃖⃗ ⃗⃗ .   

 

ℎ𝑡
⃗⃗  ⃗ = GRUforward(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (8) 

 

ℎ𝑡
⃖⃗ ⃗⃗ = GRUbackward(𝑥𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (9) 

 

At each time step, the final result is obtained by concatenating 

the forward and backward hidden states: 

 

𝑦𝑡 = ℎ𝑡
⃗⃗  ⃗ ⊕ ℎ𝑡

⃖⃗ ⃗⃗  (10) 

 

where, ⊕ indicates the process of concatenating two vectors. 

 

 

4. SYSTEM MODELLING AND SIMULATION 

 

 
 

Figure 4. Proposed dataset scenarios 

 

The proposed system utilizes three deep learning models to 

identify human remains or missing persons. Due to the 
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absence of familial datasets for deceased individuals, it 

introduces a method to generate artificial STRs for family 

members, creating a synthetic familial dataset. This dataset is 

then manipulated to simulate various identification scenarios. 

The deep learning models are applied to implement human 

identification tasks based on these scenarios. Details of these 

dataset scenarios are illustrated in Figure 4. 

 

4.1 Data creation 

 

The first step in this system is data preparation, which 

verifies the missing identification of human remains. For the 

purpose of matching the deceased son’s alleles with his 

putative reference family, 15 loci of STR are used. Table 1 

shows the applied STR-15 loci. 

The proposed data creation model (Figure 5) uses 106 real, 

unrelated Iraqi individuals from the Najaf province of Iraq [49] 

and creates 53 familial datasets by using two individuals as 

male and female parents. The familial dataset structure 

consists of mother, father, and 10 created children, 5 of whom 

belong to the family, and 5 of whom do not, according to the 

530 data samples. The purpose of this step is to make the 

proposed system knows the relationship between the parents 

and their corresponding children.  

Each family set has a unique number range from 0 to 52. All 

family datasets also have labels appended, with a label (1) 

indicating whether the son actually belongs to the family in 

question or not (0). The resulting datasets for one family are 

shown in Table 2, for instance the table shows the 10th family 

member set, like any family set it is consisting form father, 

mother, five correct sons, and five incorrect sons. Each of the 

15 STR loci has two alleles (A1 and A2). 

 

Table 1. Applied STR-15 loci [49] 

 
D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317 D16S539 D2S1338 D19S433 vWA TPOX D18S51 D5S818 FGA 

 

 
 

Figure 5. Data creation steps 

 

 
 

Figure 6. Locus shuffling 

2541



Table 2. Dataset of one family of 53 

 

Father Set Mother Set Child Set Family ID Label 

Father 1 Mother 1 Child 1 0 1 

Father 1 Mother 1 Child 2 0 1 

Father 1 Mother 1 Child 3 0 1 

Father 1 Mother 1 Child 4 0 1 

Father 1 Mother 1 Child 5 0 1 

Father 1 Mother 1 Child 6 0 0 

Father 1 Mother 1 Child 7 0 0 

Father 1 Mother 1 Child 8 0 0 

Father 1 Mother 1 Child 9 0 0 

Father 1 Mother 1 Child 10 0 0 

 

Table 3. Suggested dataset 

 
No. Set 1 Set 2 Target 

1 
Father Mother Missing Son 

Mother Father Missing Son 

2 
Mother Reference Son Missing Son 

Reference Son Mother Missing Son 

3 
Father Reference Son Missing Son 

Reference Son Father Missing Son 

4 Son Reference Son Missing Son 

 

The system also introduces a method for randomly shuffling 

these 15 loci of STR sequences, which is shown in Figure 6.  

The locus position sequencing is maintained across all 

family members during shuffling, so if the D8S1179 locus 

alleles values on the father dataset is moved to a specific 

position, the same locus values will be moved in a similar 

fashion on the mother and child datasets, and so on. The 

importance of this process is to train the three deep-learning 

models independently on the values of each locus by applying 

the shuffling procedure to the parents of 53 families. The 

dataset size will be 53,530 samples after 11 iterations of 

shuffling. 

The created datasets are managed in such a manner as to 

solve four cases, as presented in Table 3. The resultant dataset 

has a size equal to 151,580 samples. 
 

4.2 Proposed missing DNA deep learning systems 
 

Three deep learning models have been suggested in order to 

determine the identity of a missing person. These models, 

which are illustrated in Figure 5 and outlined in Section 3, 

consist of the DNN, GRU, and Bi-GRU. The rationale for 

choosing DNN, GRU, and Bi-GRU models lies in their 

respective strengths and suitability for the analysis of DNA-

STR data in the context of missing person identification. 

DNNs excel in capturing complex patterns; GRUs are 

effective in handling sequential data and long-term 

dependencies; and Bi-GRUs leverage bidirectional processing 

for a comprehensive understanding of DNA-STR 

relationships, all of which are advantageous for accurate 

identification in mass casualty incidents.  

One can deploy the optimal model as a web API by 

integrating it within a web framework like Flask or Django. 

This involves creating an API endpoint that processes input 

data and delivers predictions. The API can be hosted on a web 

server or a cloud platform to facilitate access over the internet. 

It is crucial to implement appropriate authentication and 

security measures to control access and ensure the reliable 

availability of the API for making predictions using the Bi-

GRU model. The following sections will detail the 

architectural design for each model. 
 

4.2.1 Missing DNA: DNN system design 

The proposed DNN-identification system (Figure 7) is 

constructed from embedded layer, flatten layer, dense layer 

and dropout layer. This model takes as its input the datasets 

for the deceased missing person and the corresponding living 

reference person. The output of this model is a decision as to 

whether or not the missing person belongs to the same family 

as the reference person. 

 

 
 

Figure 7. DNN model structure 
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Table 4. DNN parameters 

 

DNA Model: DNN 

Layer (Shape) Output Shape Parameters 

embedding (Embedding) multiple 2816 

Dense (Dense) multiple 245,888 

Dropout (Dropout) multiple 0 

dense_1 (Dense) multiple 245,888 

dropout_1 (Dropout) multiple 0 

dense_2 (Dense) multiple 32,896 

dropout_2 (Dropout) multiple 0 

dense_3 (Dense) multiple 245,888 

dense_4 (Dense) multiple 32,896 

dense_4 (Dense) multiple 129 

Total parameters: 806,401 

Trainable parameters: 806,401 

Non-trainable parameters: 0 

 

The model has 8 layers: an embedding layer, five dense 

layers, and three dropout layers, the total trainable parameters 

in the model is 806,401, and there are no non-trainable 

parameters. Table 4 summarizes the DNA-DNN model 

parameters.  

 

4.2.2 Missing DNA: GRU system design 

The proposed structure for the GRU model (Figure 8) is 

constructed from embedded layer, GRU layer and dropout 

layer. This model takes as input the datasets for the missing 

person and the corresponding living reference person. The 

output of this model is a decision as to whether or not the 

missing person belongs to the same family as the reference 

person. 

Table 5 gives the description of DNA-GRU model 

parameters. It has seven layers: an embedding layer, two dense 

layers, five GRU layers, and a dropout layer. The total number 

of model parameters equals to 157,377, all of which are 

trainable parameters. 

 

 
 

Figure 8. GRU model structure 

 

Table 5. GRU parameters 

 
DNA Model: GRU 

Layer (Shape) Output Shape Parameters 

embedding (Embedding) multiple 2816 

Gru (GRU) multiple 9408 

gru_1 (GRU) multiple 9408 

gru_2 (GRU) multiple 74,496 

gru_3 (GRU) multiple 9408 

gru_4 (GRU) multiple 43,392 

Dense (Dense) multiple 8320 

Dropout t(Dropout) multiple 0 

dense_1 (Dense) multiple 120 

Total parameters: 157,377 

Trainable parameters: 157,377 

Non-trainable parameters: 0 

4.2.3 Missing DNA: BI-GRU system design 

The third model proposed is a Bi-GRU, which is 

constructed with an embedded layer, a Bi-GRU layer, and a 

dropout layer. Figure 9 illustrates the structure of the proposed 

Bi-GRU identification system. 

The DNA-Bi-GRU model parameters are presented in 

Table 6. This model has an embedding layer, five bidirectional 

GRU layers, two dense layers, single GRU layer, and a 

dropout layer. The model has a total of 422,273 parameters, all 

of which are trainable. 

No previous studies employed the same target of identifying 

missing persons using deep learning techniques, but research 

[29] is selected as the baseline model since it has the idea of 

DNA matching using artificial intelligence. This baseline 

model develops an algorithm for implementing fuzzy 
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similarity to evaluate the degree of similarity between human 

DNA profiles. The innovation of our research in this paper is 

highlighted by the fact that the deep learning models yield 

optimal results compared to the baseline model [29], and these 

results are achieved on the largest datasets with a size equal to 

1515580 samples, while [29] applied to only 100 samples. 

 

 
 

Figure 9. Bi-GRU model structure 

 

Table 6. Bi-GRU parameters 

 
DNA Model: Bi-GRU 

Layer (Shape) Output Shape Parameters 

embedding (Embedding) multiple 2816 

Bidirectional (Bidirectional) multiple 18,816 

bidirectional_1 (Bidirectional) multiple 18,816 

bidirectional_2 (Bidirectional) multiple 198,144 

bidirectional_3 (Bidirectional) multiple 18,816 

bidirectional_4 (Bidirectional) multiple 148,224 

dense (Dense) multiple 16,512 

dropout (Dropout) multiple 0 

dense_1 (Dense) multiple 129 

Total parameters: 422,273 

Trainable parameters: 422,273 

Non-trainable parameters: 0 

 

4.3 Performance evaluation metrics 

 

To compare and analyse the efficiency of the proposed deep 

learning model’s different metrics are used in this research, 

they are: 

Accuracy: The proportion of all true predictions to all 

predictions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

Sensitivity (Recall): It is the ratio of true positives to the 

total actual positives. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 

Precision: It is the ratio of true positives to the total 

predicted positives. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 

F1-Score: It is the harmonic mean of precision and 

sensitivity. It used to measure the performance of the test for 

the positive class.   
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2・
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦・𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (14) 

 

Receiver operating characteristic (ROC) curve: A graph 

illustrating the performance of a classification model across all 

thresholds. The ROC curve displays two metrics: the true 

positive rate and the false positive rate. The Area Under Curve 

(AUC) serves as a summary metric for the ROC curve, 

indicating the effectiveness of a binary classifier in 

distinguishing between classes. 

The predictions are evaluated based on four metric 

types: True positive (TP), false positive (FP), true negative 

(TN), and false negative (FN). 
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5. RESULTS AND DISCUSSION 

 

The results were carried out based on Google-Colab, which 

is based on the Python programming language. The necessary 

libraries, including TensorFlow, Numpy, Pandas, Matplotlib, 

Scikit-learn, Seaborn, and Keras, were imported. The 

subsequent sections detail the partitioning of the dataset into 

training and testing sets, as well as the performance 

evaluations of the three proposed identification systems. 

 

5.1 Training/testing dataset 

 

During the training and testing phases, the entire dataset 

(151,580) was divided into 80% training and 20% testing sets. 

The training dataset was further divided into balanced labels, 

with half of the data labelled as 1 (indicating true children) and 

the other half labelled as 0 (indicating false children). Figure 

10 shows the distribution of labels in a histogram. The training 

and testing processes were carried out separately for each of 

the proposed DNA deep learning models in order to make 

comparisons and evaluations. 

 

 
 

Figure 10. Histogram of the training dataset 

 

5.2 Performance comparison of the three classifiers 

 

Applying deep learning models such as DNN, GRU, and Bi-

GRU on DNA-STR datasets yields varying results in 

identifying missing persons. 

The next step is the presentation of experimental results that 

support the work's primary goal, which is a binary 

classification for missing person identification in mass 

casualty incidents (MCI), the term MCI will be appended in 

each type of model results. 

  

 
(a) MCI-DNN model loss and accuracy 

 
(b) MCI-GRU model loss and accuracy 

 
(c) MCI-Bi-GRU model loss and accuracy 

 

Figure 11. Performance of loss and accuracy for the three 

models 

 

Accuracy results 

In Figures 11 (a)-(c) accuracy and loss for DNN, GRU and 

Bi-GRU are presented respectively. 

When comparing the performance of the three models over 

10 epochs in Figure 11, it can be deduced that Bi-GRU and 

GRU models give the best performance in terms of accuracy 

and loss, while DNN has a higher loss and a lower accuracy 

value. 

Confusion matrix results 

Also, to compare the performance of the three models, the 

confusion matrix is also shown in Figures 12 (a)-(c) for the 

three models DNN, GRU, and Bi-GRU, respectively. 

From the illustration of the confusion matrix, one can 

conclude that the Bi-GRU model gives the minimum total 

incorrect predictions (FP+FN) equal to 45, followed by GRU, 

which gives 53, and DNN, which gives the highest number of 

incorrect predictions equal to 2520. The TP and TN values are 

mostly equal due to equally distributed tested datasets. 

ROC results 

To support a more exhaustive analysis of the three binary 

classifier systems' performance, ROC is illustrated in Figures 

13 (a-c) for DNN, GRU, and Bi-GRU, respectively. 

The ROC curve is used to assess system performance as a 

binary classifier and demonstrates strong results, as seen in 

Figure 13. It visualizes the trade-off between the true positive 

rate (TPR) and the false positive rate (FPR), with a perfect area 

under the curve equal to 0.999 for the Bi-GRU model, 

followed by 0.998 for GRU, and ending with 0.917 at DNN. 

Tables 7 and 8 display a performance comparison of the 

three proposed models in terms of accuracy, loss, validation 

accuracy, and validation loss. 

2545



 

 
(a) MCI-DNN confusion matrix 

 
(b) MCI-GRU confusion matrix 

 
(c) MCI-GRU confusion matrix 

 

Figure 12. Confusion matrix for the three models 
 

Based on Table 7 provided, one can observe that the training 

and validation losses for the three models DNN, GRU, and Bi-

GRU, trained for ten epochs. As the number of epochs 

increases, the training and validation losses for all models 

decrease. However, it can be observed that the Bi-GRU model 

achieves the lowest training and validation losses comparing 

with DNN and GRU models. 

In terms of the DNN model, it can be seen that the validation 

loss decreases slower compared to the other models, indicating 

that the model may not be generalizing well to the validation 

data. 

 

 
(a) MCI-DNN ROC 

 
(b) MCI-GRU ROC 

 
(c) MCI-Bi-GRU ROC 

 

Figure 13. ROC curve for the three models 

 

Table 7. Comparison between loss and validation loss for the three models 

 

Models DNN GRU Bi-GRU 

Epochs Loss Validation Loss Loss Validation Loss Loss Validation Loss 

1 0.5678 0.4404 0.1681 0.0428 0.1455 0.0310 

2 0.4417 0.3808 0.0323 0.0221 0.0273 0.0134 

3 0.3866 0.3145 0.0168 0.0095 0.0144 0.0095 

4 0.3381 0.2913 0.0102 0.0081 0.0099 0.0064 

5 0.3044 0.2729 0.0079 0.0107 0.0068 0.0121 

6 0.2847 0.2449 0.0059 0.0114 0.0063 0.0056 

7 0.2667 0.2307 0.0050 0.0077 0.0054 0.0071 

8 0.2517 0.2264 0.0051 0.0101 0.0045 0.0072 

9 0.2377 0.2229 0.0043 0.0058 0.0044 0.0045 

10 0.2276 0.2082 0.0040 0.0053 0.0047 0.0053 
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Table 8. Comparison between accuracy and validation accuracy for the tree models 

 

Models DNN GRU Bi-GRU 

Epochs Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy 

1 0.6782 0.7904 0.9168 0.9844 0.9269 0.9889 

2 0.7910 0.8275 0.9884 0.9922 0.9902 0.9953 

3 0.8245 0.8630 0.9942 0.9966 0.9949 0.9966 

4 0.8529 0.8772 0.9964 0.9972 0.9966 0.9974 

5 0.8707 0.8861 0.9974 0.9962 0.9978 0.9958 

6 0.8809 0.9006 0.9980 0.9964 0.9979 0.9981 

7 0.8880 0.9055 0.9983 0.9970 0.9982 0.9974 

8 0.8966 0.9082 0.9982 0.9968 0.9984 0.9978 

9 0.9030 0.9101 0.9986 0.9977 0.9985 0.9985 

10 0.9079 0.9174 0.9986 0.9983 0.9983 0.9981 

 

Table 9. Classification report 

 
Metrics\Models DNN GRU Bi-GRU 

Precision 0.92 1.0 1.0 

Recall 0.92 1.0 1.0 

F1-Score 0.92 1.0 1.0 

 

Table 10. Models comparison with other related artificial 

intelligence works 

 
Research Number of Profiles Accuracy 

Baseline fuzzy model [29] 100 80% 

Proposed DNN 151,580 91.7% 

Proposed GRU 151,580 99.6% 

Proposed Bi-GRU 151,580 99.7% 

 

Precision, recall, and F1-score results 

Table 9 appears to be a classification report showing the 

precision, recall, and F1-score for binary class (0 and 1) in a 

dataset of 30,316 instances. The metrics are compared among 

the three models (DNN, GRU, and Bi-GRU), and the DNN 

model has the lowest scores of the three models. 

The DNN model appears to be the least effective of the three 

models, as it consistently achieves lower accuracy and 

validation accuracy scores compared to the GRU and Bi-GRU 

models, in which GRU and Bi-GRU are more effective in 

capturing the temporal dependencies and patterns present in 

the STR sequences, The GRU and Bi-GRU models outperform 

the DNN model because of their recurrent connections and 

memory mechanisms, which let them remember and apply 

data from earlier time steps. This feature is especially useful 

when processing sequential data, such as STR sequences, 

where the order and context of the data elements are critical 

for precise analysis. It's worth noting that the GRU model 

performs well, but not as well as the Bi-GRU model. This is 

likely because the Bi-GRU can process input sequences in 

both forward and backward directions, enabling it to capture 

more contextual information from the input data. 

The average validation loss for the DNN model was found 

to be 0.2833, while the GRU model exhibited a significantly 

lower average validation loss of 0.01335 and the Bi-GRU 

model had the lowest average validation loss of 0.01021. A 

statistical analysis using a t-test revealed a highly significant 

difference (t-value = 11.0969, p < 0.001) between the mean 

validation losses of the DNN and GRU models, indicating that 

the GRU model outperformed the DNN model in terms of 

validation loss. Similarly, the Bi-GRU model also 

demonstrated superior performance compared to the DNN 

model. These findings suggest that the GRU and Bi-GRU 

models exhibit better predictive capability and are more 

effective in minimizing the validation loss compared to the 

DNN model. 

Table 10 compares the proposed models with the baseline 

model regarding the number of profiles used and reported 

accuracy. It indicates that the proposed MCI-Bi-GRU model 

achieves the highest accuracy, utilizing 151,580 sample 

profiles.  

To calculate the percentage of improvement, the accuracy 

of each proposed model can be compared with the baseline 

model [29]. It can be concluded that Bi-GRU improvement 

over Fuzzy is equal to 24.74%, GRU improvement over Fuzzy 

is equal to 24.55%, and DNN improvement over Fuzzy is 

equal to 14.68%. 

 

 

6. CONCLUSION 

 

The objective of this paper is to propose a method for 

identifying missing persons using DNA-STR and to evaluate 

the performance of three deep learning models (DNN, GRU, 

and Bi-GRU) in this task. The models are binary classifiers 

that aim to determine the correct family of the missing person 

by comparing their STR profile with the biological reference 

family.  

The results demonstrate that the GRU and Bi-GRU models 

show a significant improvement in the validation loss and 

accuracy compared to the DNN model, and the Bi-GRU model 

performs the best among all models, achieving the lowest loss. 

To calculate the percentage of improvement, one can compare 

the accuracy of each model with the lowest-performing model 

(DNN), Bi-GRU improvement over DNN is equal to 8.77%, 

while GRU improvement over DNN is equal to 8.60%. 

Overall, it can be concluded that the Bi-GRU model is the 

best choice for this task among other proposed models based 

on the provided metrics (accuracy, loss, confusion matrix, and 

AUC). It gives the highest accuracy equal to 0.99, a minimum 

loss equal to 0.004, a minimum number of false predictions 

equal to 45, an AUC equal to 0.999, and a precision, recall, 

and f1-score equal to 1.00. This is due to the fact that at each 

time step the Bi-GRU model uses inputs from both forward 

and backward directions, which leading to better performance. 

Despite the fact that the proposed deep learning models 

have good results in identifying missing persons according to 

their families, these models have limitations that can be 

confined to the availability of familial DNA profiles. The 

system doesn’t work well if no relative samples are available 

as references, such as a father, mother, or brother. 

The proposed Bi-GRU model can be deployed using a web 

API and involves wrapping the trained Bi-GRU model in a 

web framework to create an API endpoint to be used in real-

world applications for DNA profiling. In the future, DNN, 
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GRU, and Bi-GRU models will be applied to mini-STR 

sequences that are used in cases of degraded victims of 

incomplete STR sequences. 
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