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Among many methods used to predict the cost, parametric cost analysis is widely used. 

This technique employs parameters not directly correlated to the product cost, like 

quantity/quality characteristics, to predict the aircraft cost. The data used in this paper 

for prediction relates to aircraft still “in production” and “in service” and presents cost-

estimation models for light general aviation aircraft whose maximum take-off weight 

(MTOW) is less than 2000 kg. The Aircraft are classified into two categories based on 

the landing gear configuration. Important design parameters that are mostly known or 

easily calculated at the beginning of the preliminary design phase and affect the aircraft 

design are considered. Multi-linear regression analysis based on the p-value (also 

known as p-value analysis) is applied to develop the cost-estimation models. These 

empirical models presented in the paper can predict the cost to an error accuracy of less 

than ± 5% for all categories, and in the majority of cases, the cost prediction error 

accuracy of less than 3%. In addition, the models offer the possibility of performing 

parametric studies to obtain the cost sensitivity to the key design parameters. 
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1. INTRODUCTION

The global forecast for the aircraft industry is set to rise due 

to the growing adoption of light and ultralight aircraft in the 

military, commercial, and civil arenas. According to a report 

from MarketsAndMarkets [1], the CAGR (compound annual 

growth rate) is currently 5.9%. Thus, the light aircraft market 

is planned to rise from $7.5 to $11.9 billion between 2022 and 

2030. This report classified the light and ultralight aircraft 

market according to Region (North America, Europe, Asia 

Pacific, and rest of the world), System (airframes, avionics, 

cabin interior, and aircraft systems), Flight operation (CTOL 

and VTOL), Material (aluminium, composites, titanium, and 

others), Propulsion (conventional fuel and electric-hybrid), 

Technology (manned and unmanned), End Use (civil & 

commercial, and military), and Aircraft Type (light and 

ultralight). However, new opportunities will arise that require 

a competitive advantage with this growth. The utilization of 

new materials and technologies would inevitably mean new 

designs that address technical, legal, ecological, and 

operational aspects. The growth in the light aviation area 

inevitably means many new designs that are fit for specific 

purposes. The greatest challenge that befalls the designer, is to 

determine the sensitivity of key design parameters that affect 

not only the performance but the overall cost of the aircraft. 

The overall cost affects the direct operating cost (DOC) and 

the seat mile cost (SMC) which in turn are key financial 

metrics that determine the viability of the design for 

commercial exploitation. Additionally, the maximum take off 

weight (MTOW) which is a function of wing size, fuselage 

size, geometric layout, aerodynamic and propulsive aspects, 

determines the cost. Each design aspect ultimately results in 

the utilization of resources such as Material, Manpower, 

Equipment, Services, Facilities, and Time, resulting in costs 

that can be direct or indirect. 

In many business and engineering decisions, including the 

aircraft industry, cost estimation is challenging since it needs 

to factor in various expenses such as materials, labor quantities, 

sales, floor space, utilities, and overheads. These expenses are 

utilized as inputs to analysis like decision tree analysis or 

Monte Carlo simulation [2, 3]. Therefore, the cost estimation 

must be accurate to avoid making wrong decisions or 

overrunning the total developed cost [4]. Reliable cost 

estimation may also improve the chances of getting external 

funding - a vital point for start-ups. To tackle this issue, the 

authors developed a research method to investigate potential 

cost models for GA aircraft that can serve as a guideline for, 

e.g., start-ups and research works. More specifically, Shahriar

et al. [5] presented a comprehensive summary of all the cost-

estimating techniques in design, development, manufacturing,

and production cycles. Although parametric models exist,

usually not of high fidelity. DAPCA-IV was developed by

RAND Corporation in the late ’60s and is based on empirical

relations where information on the airframe, engine, avionics,

labor, and material is processed. Furthermore, the DAPCA-IV

program requires information that is generally not available

during early design phases.

The analogous cost estimation method is the most common 
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approach for estimating a new product cost. “Similar products 

have similar costs” is the basis for this technique [6, 7].  The 

benefit of using the available past cost data is obtaining a 

valuable estimate with minimal time [8, 9]. References [10-12] 

offer additional research on the analogous cost estimation 

method. Parametric cost estimation is another widely used 

method to estimate a new product cost. Its main principle is to 

generate what is known as “cost estimation relationships”. 

Furthermore, a single model may have several relationships 

[13-15]. The engineering build-up method is another approach 

for cost-estimating a new product. In this approach, the part 

design details, the process interactions, and a deep process 

understanding should be available [16, 17]. More information 

is available in the references [18-20]. The commonly used 

method's strengths and weaknesses and related applications 

are presented in the reference [21], point to note is that 

software development, data-driven risk analysis, sensitivity 

analysis, long-range planning, architectural studies, cross-

checking, design-to-cost trade studies are cited as the main 

advantages in parametric methods. The models developed 

later on in this work are particularly suited to performing 

sensitivity analysis, and design-to-cost trade studies. These 

methods are significantly important in the Preliminary and 

detailed phases of development [22]. 

Various parameters, such as time constraints, availability of 

data, level of detail required, and adequacy of project/program 

definition, are used to decide the type of cost estimation 

method. However, in selecting a methodology, the analyst 

should note that the cost-estimating task predicts upcoming 

costs by extrapolating the existing schedule data and historical 

costs. Figure 1 shows the relative significance of each method 

throughout the product development phases [22], Phase A 

(Conceptual), Phases B and C (Preliminary), and Phase D 

(Detailed).  

 

 
 

Figure 1. Relative significance of cost-estimating methods 

during the aircraft design phases [22] 

 

For the preliminary design phase (phases B and C), it is 

clear that the parametric method has the highest relative 

significance. Therefore, it is recommended to use it where data 

and samples are lacking. Moreover, the aircraft design process 

is complicated, more often than not iterative, and often has a 

long development cycle due to many uncertainties and often 

due to the incorporation of new technologies, which directly 

impact the overall costs. Consequently, the prediction of 

aircraft cost is not only tricky but also a complex task. 

Accurate cost predictions at an early design stage allow the 

design drivers' impact to be evaluated and avoid the risk of bad 

decision-making or overrunning the total developed cost [4]. 

It is true for estimating the cost of both commercial and light 

aircraft [23].  

However, parametric cost estimation is a widely used 

method to estimate a new product's cost in the early stages [24]. 

Its main principle is to generate what is known as “cost 

estimation relationships”. These relationships correlate the 

product cost with a number of its parameters, usually 

identified as “cost drivers”. For instance, the product size can 

be a parameter; the manufacturing costs will increase as the 

size increases. Thus, cost and size can be mathematically 

correlated through statistical analysis. The mathematical 

relationship (the model) can have a number of parameters or 

design variables like weight, size, density, thickness, etc. Note 

that these parameters (cost drivers) should greatly impact the 

cost changes. Further, a single model may have several 

relationships [14, 23, 25].  

Conversely, most textbooks and design references use a 

simple linear regression model, defining the cost as a function 

of the MTOW. This approach is commonly adopted, with a 

prediction error of around 10%. Thus, the main contribution of 

this paper is to develop more accurate cost estimation models 

(with prediction error less than ±5%) for light general aviation 

aircraft (MTOW less than 2000 kg). In addition, the linearity 

of the models facilitates the process of investigating the impact 

of each design variable on the aircraft cost. Thus, these models 

help, simplify, and accelerate the decision-making process. 

 

 

2. PARAMETRIC COST-ESTIMATION ANALYSIS 
 

It is a method of generating and applying equations to 

explain the relationships between measurable system 

attributes and cost. For n parameters p=(p1, …, pj), the typical 

statistical process is to obtain a value in which it can predict 

the cost reasonably well using Eq. (1). It represents the general 

form of the response surface approach [26]: 

 

𝑐 = 𝑓(𝑚, 𝑝) + 𝑒 (1) 

 

where, m=(m1, …, mn) is a set of system characteristics values, 

which change over x cases (ci m1i … mni), and it is different for 

each i=1, x. In addition, e is the prediction error. Therefore, a 

parametric cost analysis can be considered a practical use of 

the response surface approach from a statistical perspective. 

Since f is a linear function in p, Eq. (1) can be written as: 

 

𝑐 = ∑ 𝑝𝑘  𝑓𝑘(𝑚)
𝑗
𝑘=1   (2) 

 

Note that the least squares, which reduce the Euclidian 

distance between the case value (c1, …, cx) and the predicted 

value (t1, …, tx), represent a criterion to define “predicted 

reasonably well” [27]. These parameters can be calculated 

using the generalized least squares equation: 

 

𝑝 = (𝑀′ 𝑀)−1 𝑀′ 𝑐 (3) 

 

where, M' is the transpose of M, M is a matrix of x rows 

(f1i(m) …. fji(m)), (M' M)-1 is the inverse of the matrix product 

𝑀′ 𝑀, and c is a vector of x rows ci. The following estimator 

is used to predict the cost c reasonably well using an arbitrary 

m: 

 

𝑡 = 𝑓(𝑚, 𝑝) (4) 

 

Consequently, the standard formula for parametric cost 

equations [28] is: 
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𝑡 = 𝑒𝑎0  𝑒𝑎𝑖𝑤𝑖 … 𝑒𝑎𝑟𝑤𝑖𝑚1
𝑏1 … 𝑚𝑙

𝑏𝑠 (5) 

 

where, i and l are indices associated with the type of variables 

w and m, respectively, the linear least squares method is 

applied to find the coefficients ai and bl, wi and ml are 

statistically important measures associated with the product, 

and ml are standard size measures that normally contain the 

number of code lines for software or weight for hardware. The 

a0 indicates the base class complexity, and al is created with 

the unit binary variables wi, which refer to the membership of 

classes, and the other ai are the relative associated subclass 

complexities. Thus, w1=0 and 𝑒𝑎𝑖𝑤𝑖=1 if the particular product 

is not in subclass i. In contrast, wk=1 and 𝑒𝑎𝑖𝑤𝑖 = 𝑒𝑎𝑖  will 

modify the base complexity a0 to offer the subclass complexity 

a0+ai. For a given part, this technique offers, for example, a 

method of differentiating between various manufacturing 

processes [29]. 

 

2.1 Use of parametric cost analysis (PCA) 

 

Al-Shamma and Ali [30] used PCA in estimating the cost 

for large civilian aircraft, where the aircraft were classified 

into 4 groups. They Presented 4 Models for predicting aircraft 

Costs and classified the aircraft based on their classification 

using MTOW. 

However, the very light aircraft in GA are considerably less 

than 2000 kg, the presented models are unlikely to predict the 

cost accurately as the bounds of the data would be invalidated. 

Therefore, predicting the cost for lighter general aviation 

aircraft still poses a problem. Conventionally MTOW has been 

used to predict costs, and that does not allow parametric 

changes to be investigated. On the other hand, there is a 

substantial market for Light General Aviation aircraft, and cost 

estimation tools for new designs based on current production 

aircraft that take into account new materials and technologies 

are all the more important. In this paper, we present cost 

estimation models for very light General aviation aircraft. 

 

 

3. AIRCRAFT DESIGN PARAMETERS 
 

Lappas and Bozoudis [31] used fuselage length, empty 

weight, MTOW, SFC, max speed, and ceiling parameters in 

their paper to predict cost per flying hour. The choice of the 

variables is logical, as the variables chosen affect the capital 

costs and recurrent costs. For example, wing area affects many 

aspects, principally the weight, therefore more material has to 

be used, as well as increasing lift and drag, to obtain the impact 

of many performance aspects. Noticeably, the choice of the 

variables and their relative significance and impact on the 

desired objective function is not obvious and dependent on the 

experience and wider knowledge base of the aircraft designers. 

The TLAR (top level aircraft requirements) allows few design 

choices to be made and performance and operational 

requirements impact the other choices, which are often honed 

by trade-off analysis, for which parametric is essential. 

Having accurate and up-to-date data for obtaining cost 

estimation models is the first and foremost requirement. The 

knowledge of the Cost in design passes B and C is critically 

important. Any model of any significant fidelity must only use 

variables that are known in these phases. Later in the section 

we outline such variables. Data from retired or even old 

aircraft is discarded as it is based on old technologies, 

manufacturing methods, and materials. Therefore, only 

aircraft that are in production and also in service are included 

in this paper. 

Moreover, only piston-engine aircraft with the same 

features and design characteristics are considered. Although 

there is a growing trend toward all-electric aircraft, internal 

combustion engines will continue to be used and designed for 

the foreseeable future. The sampled data (aircraft) used in 

modeling and testing are classified into two categories, namely 

the tricycle (category A) and taildragger (category B). The 

aircraft used to build the cost-estimation models are listed in 

Table 1 for category A and Table 2 for category B. 

 

Table 1. The prices and maximum takeoff weights of 

category A 

 
Aircraft Type Price (M$) MTOW (kg) 

Beechcraft Bonanza 0.815 1656 

Cessna 172 Skyhawk 0.438 1160 

Cessna 182 Skylane 0.480 1406 

Cessna 206 Stationair 0.665 1633 

Cirrus SR20 0.440 1383 

Cirrus SR22 0.710 1633 

Diamond DA40 0.455 1198 

Mahindra GA8 Airvan 0.827 1814 

Mooney M20 0.779 1528 

Piper PA-28 0.467 975 

Tecnam P2010 0.4 1160 

 

Table 2. The prices and maximum takeoff weights of 

category B 

 
Aircraft Type Price (M$) MTOW (kg) 

American Champion Citabria 0.190 748 

American Champion Explorer 0.216 820 

American Champion High-country 

Explorer 
0.245 820 

American Champion Scout 0.247 975 

American Champion Denali Scout 0.272 975 

CubCrafters Top Cub 0.270 1043 

CubCrafters XCub 0.317 1043 

Maule M-7 0.255 1134 

Aviat Husky 0.314 1021 

Maule M-9 0.327 1270 

American Champion Citabria 0.190 748 

 

From the list above, it can be noted that both conventional 

and composite aircraft have been included. All electric aircraft 

are relatively new, with just a few certified; hence, they have 

been excluded. So, the design variables need to be generic, 

specifically, those that are not a function of technology. 

In order to establish the cost models, a typical set of 

variables has been chosen [30]. In this work, the selected 

parameters critically affect almost all design and cost-

estimation aspects and are evaluated, estimated, or known at 

the conceptual design phase. The selected variables have by 

far the most impact on the overall cost and are described in the 

following: 

1. Wto – The maximum take-off weight – is the primary 

parameter and must be considered during all design phases. Its 

importance impacts endurance, range, wing loading, thrust 

loading, and all aspects of aircraft performance (including 

take-off, climb, cruise, turning, etc.). Various techniques are 

available for estimating this parameter in the conceptual 

design phase. 

2. PAX – Number of passengers (Number of Seats) – is one 

of the crucial requirements and has a bearing on fuselage 
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length and/or the diameter of the fuselage. This requirement is 

generally available at the conceptual phase. As the number of 

seats increases, the aircraft's structural weight goes up, and 

hence, the aircraft cost increases. The increased fuselage 

length increases the tail arm, which affects static and dynamic 

stability, requiring larger volume coefficients, leading to larger 

empennage areas, and, eventually, the cost indirectly affects 

the PAX parameter. Since the occupants' weight is significant 

compared to the empty weight, it is likely to be significant. 

3. R – Aircraft range – is largely dependent on the amount 

of fuel that can be carried and computed by the Breguet Range 

Equation, which requires the knowledge of including initial 

and final weights (Wo and Wf), drag and lift (D and L) 

characteristics, specific fuel consumption (SFC), and cruise 

speed (Vc). For example, increasing the range requires a robust, 

lightweight structure, a higher L/D ratio, and efficient engines. 

All of these improvements will result in increased costs. 

4. F – Fuel capacity – is directly proportional to aircraft 

range, limited by the maximum take-off weight and 

performance. It also affects the wing geometry and fuselage 

design due to volume storage requirements. 

5. Vc – Cruise speed – directly impacts the stage or mission 

time. Increasing the cruise speed involves obtaining increased 

power. This situation translates into larger engines, which 

implies heavier engines, and in turn, the wing loading 

(structure) and aircraft cost go up. 

6. P – Engine power – A certain excess power is needed to 

obtain good performance. This case limits the permitted total 

drag, affecting the aerodynamic design and, to a large extent 

the structural design, as well. 

7. Lf – Aircraft length – mainly depends on the seating 

arrangement, the number of passengers, and fore and after 

body requirements. 

8. b – Wing span affects wing loading and aspect ratio 

selection. 

9. S – Aircraft wing area – depends on wing loading 

obtained from the constraint analysis that requires several 

simultaneous constraints to be met. 
 

 

4. THE PROPOSED METHOD 
 

There is a dearth of information on aircraft prices, and very 

little is available in the public domain in this respect. Of the 

few sources, one is Wikipedia [32], where the prices presented 

are based on the year 2018. This source was referenced in the 

Flyer magazine entitled “2018 buyers guide” by Pope [33]. 

Although Wikipedia is not regarded as a reliable source for 

academic writing or research [34], the costs presented are used 

to illustrate the cost prediction methods. The presented method 

uses verifiable design variables for the class of aircraft under 

consideration to predict not only the cost but also to highlight 

the cost sensitivity to the design variables. The variability in 

the aircraft cost comes from many options that the 

manufacturers offer, and all the prices presented in reference 

[32] seem plausible. The presented models can easily be 

modified on the availability of more accurate costs. 

This work uses multi-linear regression analysis based on p-

value to establish the aircraft cost estimation models. It is 

employed to minimize a collection of design parameters into a 

smaller set with high prediction accuracy. Thus, it is a 

dimensionality reduction technique. In the previously 

published literature, cost prediction was based only on the 

maximum take-off weight. Additional design parameters will 

enhance the estimation accuracy, and additional variables will 

make parametric trade-offs possible. In the preliminary design 

phase, simple linear regression is often used based on price per 

kilogram ($/kg); the same technique is also presented here as 

a fast prediction method for comparative purposes only and to 

show the case that a multi-variable cost prediction method 

produces more refined cost estimates. 

 

4.1 Linear regression (LR) method 

 

The direct operating costs (DOC) are a key measure of the 

financial viability of the aircraft. A good estimate of the 

aircraft cost is needed to estimate this measure in the 

preliminary design stage. In the early design stages, a simple 

cost-estimation technique called linear regression (LR) uses 

only the maximum take-off weight as the independent variable. 

The LR method is fast, easy, and widely used in nearly all 

modern aircraft design textbooks [35, 36]. However, it has 

poor accuracy, which is its main disadvantage. Low accuracy 

is acceptable at early stages, but many trade-offs are required 

at advanced stages, rendering this method unsuitable. Due to 

the main design parameters changes, better cost-estimation 

models are required, since all design trade-offs have a cost 

implication. As mentioned in the previous section, the list of 

key design variables directly or indirectly affects the total cost. 

Note that not all parameters are needed to estimate the cost. 

The final models will retain only the parameters that 

significantly affect the cost, as the p-value analysis identifies. 

The aircraft prices for each category used to establish cost 

estimation models are listed in Table 2. The maximum take-

off weights of the relevant aircraft are also included in the table, 

whereas Figure 2 shows the graphical representation of the 

data in categories A and B. 

 

 

 
 

Figure 2. The cost-weight relationships of categories A and 

B 

 

The best empirical model is obtained by applying the LR 

method is represented by Eqs. (6) and (7). It may be noted that 

the extrapolation of the empirical relationships below 750 kg 

may produce an invalid prediction: 

 

𝐶𝑒𝑠𝑡.𝐴[𝐿} = 0.0006 × 𝑊𝑡𝑜 − 0.2002 (6) 

 

𝐶𝑒𝑠𝑡.𝐵[𝐿} = 0.0002 × 𝑊𝑡𝑜 + 0.0678 (7) 
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4.2 Multi-linear regression (MLR) 
 

MLR is applied to obtain the correlations between more 

than one variable, which have cause-impact relationships. It is 

also performed to get estimates for the topic by the relationship. 

In the MLR technique, an effort is considered to describe 

synchronically the disparity of the independent variables in the 

dependent variable. The mathematical formula of the MLR 

model is: 
 

𝑚 = 𝑝0 + 𝑝1𝑎1 + ⋯ + 𝑝𝑛𝑎𝑛 + 𝜀 (8) 
 

where, pi is a parameter, ai is the independent variable, m is the 

dependent variable, 𝜀 is the error. 

Consequently, the MLR assumptions are linear, with 

freedom from risky values, normal distribution, and the 

absence of multiple links between the independent variables. 

The MLR analysis is available in most statistical platforms like 

MS Excel. Section 5 explains how to apply the MLR and the 

source data (the values of the dependent and independent 

variables) [37]. 
 

4.3 p-value analysis 
 

This analysis aims to reduce the number of parameters used 

in the model, built using correlation analysis with acceptable 

error. This reduction of parameters in the resultant model can 

simplify the aircraft cost prediction, identify the significance 

in terms of parametric analysis, and accelerate decision-

making. The importance of each design parameter is obtained 

by examining the p-value of the regression model coefficients. 

It is inversely proportional to the p-value (i.e., if the p-value is 

low, the parameter importance is high, and vice versa). 

However, this analysis is an iterative process. The 

parameter of the highest p-value is removed from the 

parameter regression list at the end of each iteration. When the 

p-value of all parameters becomes lower than 0.05, the 

iteration process is stopped. The parameters with the lowest p-

value are used to formulate the final model. 

 

 
5. ESTABLISHING COST-ESTIMATION MODELS 

 

Table 3 lists the input values of the design parameters for 

each aircraft, which are used to establish the cost estimation 

models using multi-linear regression analysis. For comparison 

purposes, Eqs. (6) and (7) are also used for estimating the 

aircraft cost.  

 

Table 3. Input design-parameter values of all categories 

 
Aircraft 

Category 
Aircraft Type 

Design Parameters 

Wto (kg) P (kW) Lf (m) S (m2) b (m) Vc (km/h) R (km) F (L) PAX 

A 

Beechcraft Bonanza 1656 220 8.38 16.8 10.21 325 1700 280 6 
Cessna 172 Skyhawk 1160 134 8.3 16.2 11 230 1300 201 4 

Cessna 182 Skylane 1406 170 8.84 16.2 10.97 260 1700 329 4 

Cessna 206 Stationair 1633 220 8.61 16.2 10.97 285 1300 329 6 
Cirrus SR20 1383 150 7.92 13.5 11.68 265 1100 229 5 

Cirrus SR22 1633 230 7.92 13.5 11.68 340 1960 348 5 

Diamond DA40 1198 134 8.1 13.5 11.9 255 1500 155 4 
Mahindra GA8 Airvan 1814 220 8.95 19.32 12.28 222 1500 340 8 

Mooney M20 1528 209 8.13 16.3 11.13 430 2000 250 4 

Piper PA-28 975 120 7.1 15 9.14 210 900 189 4 
Beechcraft Bonanza 1160 130 7.97 13.9 10.3 240 1150 240 4 

B 

American Champion 

Citabria 
748 110 6.91 15.33 10.2 210 864 150 2 

American Champion 
Explorer 

820 120 6.74 15.98 10.25 204 900 136 2 

American Champion 
High-country Explorer 

820 130 6.74 15.98 10.25 212 860 136 2 

American Champion 

Scout 
975 130 7 16.72 11 209 1737 260 2 

American Champion 

Denali Scout 
975 156 7 16.72 11 237 1737 260 2 

CubCrafters Top Cub 1043 130 7.15 16.5 10.7 204 920 189 2 
CubCrafters XCub 1043 130 7.25 16.24 10.5 246 1300 185 2 

Maule M-7 1134 130 7.2 16.14 10 222 1287 151 4 

Aviat Husky 1021 142 6.9 17 10.8 226 1330 189 2 

Maule M-9 1270 175 7.2 16.14 10 260 1985 310 5 

 

Table 4. The correlation matrix of Category B 

 
 Price P PAX S Wto Vc R F Lf b 

Price 1          

P 0.792 1         

PAX 0.394 0.738 1        

S 0.609 0.372 -0.098 1       

Wto 0.803 0.848 0.781 0.449 1      

Vc 0.621 0.729 0.690 0.002 0.585 1     

R 0.618 0.779 0.633 0.431 0.734 0.712 1    

F 0.578 0.788 0.529 0.388 0.658 0.541 0.913 1   

Lf 0.585 0.416 0.527 0.184 0.735 0.367 0.520 0.492 1  

b 0.023 -0.241 -0.745 0.666 -0.293 -0.497 -0.064 0.036 -0.308 1 
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In applying multiple linear regression (MLR) properly, it 

should be noted that the number of independent and dependent 

parameters must be less than one than the number of aircraft 

in the specified category under consideration. However, this 

work uses nine design (independent) parameters listed in 

section three and one independent (aircraft cost) parameter. 

Thus, to include all these parameters in constructing the cost 

models, the number of aircraft in each category should be more 

than ten. Otherwise, correlation analysis is applied first to 

reduce the number of independent parameters by removing 

parameters with the lowest correlation coefficients. Starting 

with Category A, there are 11 aircraft, and thus there was no 

need to apply correlation analysis. After performing the first 

pass of MLR, the fuel parameter with the biggest p-value was 

eliminated. The aircraft length was removed in the second pass, 

while the span parameter was removed in the third. The fourth 

pass showed that all parameters had a value less than 0.05, and 

the process was stopped. Thus, the mathematical equation of 

the cost-estimation model (category A) is: 
 

𝐶𝑒𝑠𝑡.𝐴 [𝑝−𝑣𝑎𝑙𝑢𝑒] = 16184.74 × 𝑆 + 195 × 𝑅 

                        +1514 × 𝑉𝑐 + 2622.74 × 𝑃 

      +156908 × 𝑃𝐴𝑋 

                     −860.82 × 𝑊𝑡𝑜 − 384648  

(9) 

 

Logically all the retained variables affect aircraft cost, while 

investigating category B showed that the number of sampled 

data is ten aircraft. Thus, only eight design parameters should 

be considered in performing the MLR. Correlation analysis 

should be performed to decide which parameters should be 

eliminated. The correlation matrix is obtained in Table 4. 

The wing span (b) has the lowest correlation coefficient 

value and is removed in the first pass. In subsequent passes, 

more variables are dropped, resulting in a reduced 

mathematical model of category B, which is: 

 
𝐶𝑒𝑠𝑡.𝐵 [𝑝−𝑣𝑎𝑙𝑢𝑒] = 1123.798 × 𝐹 − 235.5 × 𝑅 

                          +2896.625 × 𝑉𝑐 + 254.8 × 𝑊𝑡𝑜 

+82245.46 × 𝑆 

                 −1959.83 × 𝑃 − 1614.28  

(10) 

 

The aircraft in these categories are covered by the CAA 

requirements for experimental aircraft, known as e-Conditions 

[38]. The empirical models will benefit small-scale aircraft 

designers and manufacturers up to a maximum take-off weight 

of 2000 kg for accurately estimating the aircraft cost quickly. 

 

 

6. RESULTS AND DISCUSSION 

 

After establishing the cost-estimation models, either Eq. (9) 

(Tri-Cycle) or Eq. (10) (Taildragger) is used to predict the cost 

of a new aircraft. Table 5 lists the aircraft category, type, and 

actual price. It also lists the predicted cost, the error (difference 

between actual and predicted cost), and the error percentage, 

which are calculated using both methods (MLR and LR). 

Statistical analysis has several measures for evaluating the 

performance of the empirical cost-estimation models. One of 

these measures is the mean value of the variations between the 

actual and estimated values, denoted as the mean error (ME). 

In contrast, the mean value of the percentage variations is 

called the mean percentage error (MPE). 
 

Table 5. The results of MLR and LR models for each category 

 

Category Aircraft Type 
Actual Aircraft 

Cost (M$) 

Multi-Linear Regression 

(p-value Analysis) 
Linear Regression (LR) 

Estimated 

Cost (M$) 

Error 

(Diff.) 

Error 

(%) 

Estimated 

Cost (M$) 

Error 

(Diff.) 

Error 

(%) 

A 

Beechcraft Bonanza 0.815 0.804 - 0.011 - 1.382 0.793 0.022 2.650 

Cessna 172 Skyhawk 0.438 0.460 0.022 4.976 0.496 - 0.058 - 13.196 

Cessna 182 Skylane 0.480 0.466 - 0.014 - 2.944 0.643 - 0.163 - 34.042 

Cessna 

206 Stationair 
0.665 0.675 0.010 1.544 0.780 - 0.115 - 17.233 

Cirrus SR20 0.440 0.437 - 0.003 - 0.683 0.630 - 0.190 - 43.091 

Cirrus SR22 0.710 0.713 0.003 0.402 0.780 - 0.070 - 9.803 

Diamond DA40 0.455 0.460 0.005 1.15 0.519 - 0.064 - 13.978 

Mahindra GA8 

Airvan 
0.827 0.827 0.000 0.047 0.888 - 0.061 - 7.400 

Mooney M20 0.779 0.781 0.002 0.21 0.717 0.062 8.010 

Piper PA-28 0.467 0.455 - 0.012 - 2.65 0.385 0.082 17.602 

Tecnam P2010 0.4 0.398 - 0.002 - 0.508 0.496 0.096 23.950 

B 

American Champion 

Citabria 
0.190 0.195 - 0.005 - 2.601 0.222 0.032 16.727 

American Champion 

Explorer 
0.216 0.219 0.003 1.568 0.237 0.021 9.537 

American Champion 

High-country 

Explorer 

0.245 0.235 - 0.010 - 4.035 0.237 - 0.008 - 3.429 

American Champion 

Scout 
0.247 0.243 - 0.004 - 1.585 0.269 0.022 8.720 

American Champion 

Denali Scout 
0.272 0.273 0.001 0.436 0.269 - 0.003 - 1.27 

CubCrafters Top 

Cub 
0.270 0.271 0.001 0.354 0.283 0.013 4.650 

CubCrafters XCub 0.317 0.312 - 0.005 - 1.532 0.283 - 0.034 - 10.873 

Maule M-7 0.255 0.257 0.002 0.778 0.301 0.046 18.126 

Aviat Husky 0.314 0.319 0.005 1.741 0.278 - 0.036 - 11.502 

Maule M-9 0.327 0.328 0.001 0.251 0.329 0.002 0.68 
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Table 6. The measures’ results of the MLR and LR models 

 

Estimation Method Measure 
Aircraft Category 

A B 

MLR 

(p-value analysis) 

ME -0.00006 0.000008 

MAE 0.00773 0.00374 

MPE 0.01467 0.058 

MAPE 1.49964 1.4879 

R2 0.99616 0.98829 

LR 

ME - 0.00006 0.00525 

MAE 0.06444 0.02173 

MPE 1.85 3.14 

MAPE 11.93 8.55 

R2 0.7497 0.3719 

 

Note that these differences may be negative or positive 

values with the possibility of canceling each other out. Thus, 

estimating costs can be employed as a biased measure. The 

absolute difference between the estimated and actual values is 

another measure denoted as the mean absolute error (MAE). 

A measure widely used in evaluating models, owing to its 

convenience and simplicity, is denoted as the mean absolute 

percentage error (MAPE). Lastly, the R2 measure determines 

how a set of observations (parameters’ values) fits with the 

linear model. Table 6 lists these measures’ values applied to 

all categories. 

Examining the measures of the proposed method (MLR) 

shows that the ME measure has a value of less than ± 0.00006 

(i.e., less than $60) for both categories, while in considering 

the second measure (MAE), both categories have achieved a 

value of less than 0.0078 (i.e., less than $7800). A more 

indicatable measure is the MPE, where both categories have 

achieved a value less than 0.06. The MAPE measure performs 

similarly to the MPE but with higher values (less than 1.5). 

The Last measure is the R2, the best one to identify the 

prediction model's accuracy. Both categories have an R2 value 

of more than 0.98, meaning the model can predict with less 

error. 

The commonly used method (LR) has only been applied for 

comparison purposes. Aircraft designers have used the 

simplistic model in the past due to the non-availability of 

better empirical models. Accuracy measures (i.e., ME, MAE, 

MPE, MAPE, and R2) were significantly higher. Specifically, 

the R2 measure is sufficient to reflect the method's 

performance accuracy. Category A in the LR method has an 

R2 value of less than 0.75, whereas category B shows a very 

low value (0.3719). Hence, this method has a very poor cost 

estimation accuracy. 

The minimum and maximum values of the MPE measure 

are extracted to ease understanding of the proposed method's 

accuracy. The difference between them (max and min) is 

calculated, and the percentage of the highest difference value 

is considered the model error accuracy (error %). It should be 

noted that the error % in Table 5 is considered to highlight the 

model’s accuracy. These important statistical findings of all 

aircraft in each category are summarised in Table 7. 

It can be observed from Table 7 that the proposed method 

predicts cost with improved accuracy, with a difference 

between the predicted and the actual cost of less than ± 5% for 

the two categories of aircraft considered. In contrast, the 

traditional method (LR) shows very poor accuracy and is not 

applicable even in the early design stages. 

 

Table 7. The percentage error accuracies of MLR and LR models 

 

Aircraft 

Category 

MLR Model LR Model 

Max 

Error % 

Min 

Error % 

Variation 

Range % 

Error 

Accuracy % 

Max 

Error % 

Min 

Error % 

Variation 

Range % 

Error 

Accuracy % 

A 4.976 - 2.944 7.92 ± 4.976 23.950 - 43.091 67.041 ± 43.091 

B 1.568 - 4.035 5.603 ± 4.035 18.126 - 11.502 29.628 ± 18.126 

 

 

7. CASE STUDIES 

 

Two aircraft in each group not used in establishing the cost-

estimation models presented as Eqs. (9) and (10) are 

considered to evaluate their suitability. Actual prices for the 

test aircraft and the associated design parameter values are 

listed in Table 8. 

Table 9 presents the estimated aircraft cost using the 

developed models (Eqs. (9) and (10)). For comparison 

purposes, the LR method is also applied (Eqs. (6) and (7)). The 

error (difference) and the error accuracy between the actual 

and the estimated costs are also calculated (see Table 9). 

Most textbooks state that it is acceptable if the predicted 

cost is within 10% of the actual cost at early design stages. We 

have presented new empirical models that will allow designers 

to predict the cost of new designs with an accuracy of less than 

5%. The cost predictions using the test aircraft validate the 

developed model's suitability, using key design variables with 

the ability to perform parametric studies. 

 

Table 8. The design parameter values of the additional aircraft for case studies 

 

Aircraft 

Category 
Aircraft Type 

Actual Aircraft 

Cost (M$) 

Design Parameters 

Wto 

(kg) 

P 

(kW) 

Lf 

(m) 

S 

(m2) 
b (m) 

Vc 

(km/h) 

R 

(km) 

F 

(L) 
PAX 

A 

Diamond DA20 0.235 800 93 7.16 11.6 10.87 250 1010 91 2 

Piper PA-46 

Matrix/M350 
0.917 1969 260 8.6 16.26 13.11 395 2487 454 6 

B 

American Champion 

Xtreme 
0.283 885 156 7 15.7 9.8 239 772 150 2 

American Champion 

Decathlon 
0.246 885 130 7 15.24 9.8 227 622 150 2 
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Table 9. Cost prediction accuracy of the models for the test aircraft 

 

Category Aircraft Type 
Actual Aircraft 

Cost (M$) 

Multi-Linear Regression 

(p-value Analysis) 
Linear Regression (LR) 

Estimated Cost 

(M$) 

Error 

(Diff.) 

Error 

(%) 

Estimated 

Cost 

Error 

(Diff.) 

Error 

(%) 

A 

Diamond DA20 0.235 0.232 - 0.003 - 1.404 0.246 - 0.011 - 4.83 

Piper PA-46 

Matrix/M350 
0.917 0.890 - 0.027 - 2.953 0.899 0.018 1.96 

B 

American Champion 

Xtreme 
0.283 0.274 - 0.008 - 3.035 0.250 - 0.033 - 11.7 

American Champion 

Decathlon 
0.246 0.238 - 0.007 - 3.079 0.250 - 0.033 - 11.7 

 

 

8. MODEL SENSITIVITY 

 

This study uses the year 2018 cost data to predict aircraft 

cost. For new aircraft designs, the estimated cost should be 

modified up to the year of production, taking into account the 

new technologies and all market measures like 

deflation/inflation, CPI, etc. Thus, these costs can be factored 

into the estimated cost as an appropriate weighting factor. 

On the other hand, testing the developed model sensitivity 

needs independent assessment. The feature of model linearity 

allows simpler calculations to be performed to estimate the 

aircraft cost. Moreover, it facilitates parametric studies using 

the design parameters to establish the impact of the change and 

sensitivity. Each parameter coefficient results in an impact. 

The highest impact is obtained with the largest coefficient 

value and vice versa. Additionally, the sign of the coefficient 

is significant in determining the proportionality direction. The 

estimated cost is directly proportional if the sign is positive, 

whereas a negative sign indicates inverse proportionality. For 

instance, the model of category A has five positive coefficients 

(direct proportional, which are S, R, Vc, P, and PAX) and only 

one negative coefficient (Wto). In addition, the PAX parameter 

has the greatest effect since it has the biggest coefficient value. 

Reducing one passenger will decrease the aircraft cost by 

157000$, whereas increasing one square meter of the wing 

area will increase the estimated cost by only 16200$. The 

range parameter has the lowest impact and the lowest 

coefficient value. Similar deductions can be made to the model 

predicting the category B aircraft cost. 

 

 

9. CONCLUSIONS 

 

Designing a new aircraft mostly starts with some mission 

requirements, which impact by many design choices. The 

design choices not only affect the MTOW of the aircraft, but 

also the cost. In this paper major design variables available in 

the preliminary design phase are used to predict the cost. The 

Power loading (P/W) and wing loading (W/S) are the key 

entities in satisfying the constraints, which could be takeoff 

distance, climb rate, turning, gliding or cruise performance. 

Changing the weight or the wing area or the power can greatly 

affect the overall cost. 

This work introduced the multi-linear regression analysis 

along with the p-value analysis as a parametric cost estimation 

approach to estimate the cost of light general aviation aircraft. 

The aircraft that are still “in production” and “in service” are 

used to develop the empirical models and are classified into 

two categories based on their landing gear configuration. 

Moreover, nine parameters that significantly affect the aircraft 

design, and its ultimate cost, are considered. Equations (9) and 

(10) can be used to predict the cost. The findings showed that 

the developed models could effectively estimate the aircraft 

cost at early design stages with a prediction error of less than 

± 5%., but in most cases the prediction error is less than ± 3%. 

Thus, giving the designers an accurate method for cost 

prediction, which will enable either venture capital or bank 

loans to be secured against an accurate cost forecast. Moreover, 

among the available cost estimation methods, this accuracy of 

the presented models is the best and offers the possibility to 

perform parametric studies to highlight the cost sensitivity to 

the changes in key design variables. 
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NOMENCLATURE 

 

b wingspan, m 

𝐶𝑒𝑠𝑡.𝑥 [𝑦]  
cost estimate where suffix x denotes, and suffix 

y denotes, $ 

F fuel capacity, L 

Lf aircraft length, m 

Vc Cruise speed, km/h 

PAX number of passengers (single class) 

R range, km 

S wing area, m2  

P engine power, kW 

Wto maximum take-off weight, kg 

 

Subscripts 

 

x Aircraft category A or B 

y 
L – (Linear regression) or  

p-value – (P-value analysis) 
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