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Driver identification is vital in connected transport and has various benefits like usage-

based insurance, personalized assisted driving, fleet management, etc. The data collected 

from behind the wheel makes it possible to identify unique driving styles as an alternative 

to adding extra costs or compromising drivers' biometric fingerprint privacy, such as facial 

recognition. The variable nature of drivers causes problems for traditional techniques 

because they become less accurate when faced with new drivers. This paper presents an 

innovative method of driver identification using few-shot learning techniques based 1D 

CNN-LSTM Attention model that can effectively solve the N-driver identification 

problem, given very few training examples on driving. Our findings reveal that this model 

can be generalized correctly from just a few examples, making it essential in real-life 

situations. We compare our proposed method with several baseline models such as LSTM 

Attention, LSTM, CNN, and ANN. Furthermore, applying our model to 3-way and 5-way 

classification problems using 1-shot and 5-shot methods further evidences its effectiveness 

in changing environments. Consequently, from this research, it is clear that knowledge 

based on the training dataset could be applied successfully to new drivers. Impressive 

results obtaining when trained on all raw databases but still getting correct identifications 

even with a small number of instances per driver label.  
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1. INTRODUCTION

Acquiring a distinct representation of driving styles from 

vehicle in-built sensor (vehicular controller area bus) data in 

automobiles presents a formidable challenge. This distinctive 

style is a digital fingerprint for applications requiring driver 

identification or recognition while upholding privacy 

concerns. For example, an insurance company offering a pay-

as-you-drive program must ensure that the designated driver 

listed in the policy is driving the insured vehicle. Similarly, a 

fleet management system overseeing many delivery vehicles 

must track which driver undertook specific delivery trips to 

trace any lost cargo.  

Numerous methods for driver identification based on 

unseen features and measurements have been extensively 

researched. These features include vehicle RPM, accelerator 

pedal usage, speed, steering angle, and other data obtained 

from the vehicle's CAN-Bus. Among all the driver 

identification methods explored in previous studies, the most 

advanced models have been reported to utilize deep learning 

techniques combined with windowing strategies. Despite the 

success of the previous deep learning methods in driver 

identification, they face significant limitations when dealing 

with unanticipated scenarios or new drivers not seen during 

the training phase. Traditional deep learning models typically 

require large volumes of labelled data to achieve high 

accuracy. This dependency on vast datasets makes traditional 

deep-learning models less adaptable to real-world conditions 

where new drivers are frequently added or removed from the 

system. The new drivers often carry much less existing data, 

leading to an imbalanced dataset. This imbalance in data can 

hinder the model from accurately identifying and adapting to 

new drivers since it is skewed towards more abundant data 

from previously seen drivers. Moreover, these models may be 

computationally expensive and time-consuming to retrain, 

which poses practical challenges for dynamic environments. 

Depth models which can quickly cope with a fluctuating 

number of drivers (output classes), even if there are only 

several driving samples. Our method is designed to overcome 

the problem of data imbalance and insufficiently large training 

datasets to ensure that the system remains accurate and reliable 

as new drivers appear. This paper also suggests using a hybrid 

deep learning model containing one dimension convolution 

neural network (1D CNN), Attention and Long short-term 

memory (LSTM) for few-shot driver identification. This 

method ensures the privacy of individuals by exclusively using 

data from the CAN-BUS network. The 1D CNN with 

Attention is employed to extract and emphasize relevant 

features effectively. At the same time, LTSMs capture 

temporal dependencies and sequences in driving data. 

Combining two models enables the utilisation of the strong 

points of both models, thus enhancing the overall adaptability 
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and accuracy of the driver identification system. The proposed 

hybrid deep learning model performs superior on public 

dataset experiments than previous models. Accuracy increases 

when we use a hybrid approach in driver identification. This is 

achieved through robust performance for fewer driving 

samples that solve the challenges posed by constraints such as 

data imbalance and rapid adaptation to new drivers. This paper 

makes a significant contribution.  

• A new hybrid deep learning model that combines parallel 

1D CNN, attention mechanisms, and LSTM cells is presented. 

1D CNN extracts the most essential patterns in driving data 

with Attention, emphasising them and capturing temporal 

dependencies from LSTM unit, leading to a strong and 

accurate driver identification system. 

• We tested our proposed approach on publicly available 

driving datasets for three- and five-way classification 

problems. Five-shot and one-shot learning methods were used 

to evaluate its usefulness with less data and show it 

outperforms previous works in such scenarios. 

 

 

2. RELATED WORK 
 

Drivers have been identified using a variety of techniques 

based on their behaviors. These techniques can be classified as 

deep learning (DL), machine learning (ML), or hybrid 

approaches. The features derived from CAN-BUS data, 

internal measurement unit (IMU), and smartphone data. 

Wakita et al. [1] introduced a driver identification method 

that relies on analyzing driving behaviour signals observed 

during car following scenarios. The researchers employed a 

Gaussian Mixture Model (GMM) to examine and categorize 

these signals. They gathered driving behaviour signals using a 

driving simulator, which included inputs, from the accelerator 

and brake pedals, vehicle velocity and distance, from the car 

ahead. Meng et al. [2] proposed an intelligent-vehicle security 

system. The focus of the researchers was centered on creating 

a dynamic human behaviour family model performed with 

driving simulation data in reference to acceleration, brake and 

steering wheel movement. The authors used a classifier hidden 

Markov model (HMM) which is one of the algorithms that 

were used to govern and interpret wealth predictions in the 

acquired data. The system was developed to be able to clearly 

identify and basically outline what humans do when they are 

driving their vehicles in an attempt to find out how the 

behavioral patterns associated with human driving can be 

improved so as improve vehicle security, reduce losses and 

eventually avoiding thefts. Del Campo et al. [3] analyzed the 

signals that were picked up from the CAN-BUS system 

through Artificial Neural Network (ANN) technique. Authors 

employs windowing strategy towards the pre-processing data, 

with the identification accuracy of those drivers reaching 84%. 

Kwak et al. [4] suggested driver identification model that used 

CAN-BUS time series signals. The researcher extracted 

statistical features such as mean, median, and standard 

deviation from collected CAN-BUS data, to capture important 

characteristics. Random Forest (RF) algorithm was employed 

by the authors for driver identification, which proved highly 

effective. The model achieved high accuracy rate of 99% for 

ten drivers (Security Driving Dataset). In their research, Zhang 

et al. [5] discussed how they used window-based support 

vector machines (SVM) for driver categorisation purposes. 

Their study also examined any relationships between data 

sources, such as single phone sensors, single automobile 

sensors, combined phone and car sensors, and classification 

accuracy. According to the author's considerations, combining 

data from several sources yielded the highest accuracy score 

of 86.67% in driver categorisation. Different processing 

strategies were completely assessed on various datasets over 

different time windows by Ezzini et al. [6]. As part of their 

evaluation, they tried to see if traditional machine learning 

techniques such as Random Forest, Extra Trees and KNN 

would do any better. Their study results showed that these 

algorithms can achieve a good cross-validation score. 

Specifically, the study identified two distinct attributes for 

driver evaluation. The first category includes features related 

to driving behaviour, and the second contains features related 

to driver heart rate, etc. Li et al. [7] introduced a driver 

recognition model using data collected from in-vehicle 

sensors, especially LSM330DLC sensors. Data collected 

included vehicles’ lateral speed, height and position. The 

authors used four machine learning models in their study: RF, 

KNN, Adaboost, and ANN. These models were used to 

classify and identify drivers based on sensor data—the 

proposed model aimed to accurately distinguish between 

different drivers using this machine learning algorithm. The 

study focused on investigating the effectiveness of these 

models for driver recognition based on collected sensor data. 

Khan et al. [8] proposed a comprehensive method for driver 

identification using seven different models, including SVM, 

Naïve Bayes, Logistic Regression, k-NN, Random Forest, 

Decision Tree, and Gradient Boosting. The study focused on 

safe driving databases, particularly two of the 51 available 

features: fuel consumption and engine speed. Features Used 

Using machine learning algorithms, the authors aimed to stop 

these selected items by accurately identifying and 

differentiating the drivers.  

Current methods relying on machine learning exhibit two 

notable limitations. First, artefacts and prior knowledge must 

be built, providing more efficient and accurate attribute 

extractions for only a limited number of drivers. Second, 

materials technology curriculum types often require iterative 

adjustments to ensure optimal results. It turns out that many 

recent scholars have successfully used deep learning models 

to identify drivers. In addition, many researchers have 

conducted research using hybrid deep learning models for 

driver detection, using combined deep learning methods to 

improve accuracy and efficiency. These models are usually 

CNNs [9-12] and RNNs [13-15] to capture spatial and 

temporal features from diverse sensor data sources. 

Wang and Ho [16] came up with an innovative approach for 

driver identification by using large-scale GPS sensor data. The 

authors provided a joint-histogram-based feature map 

construction method. Furthermore, Deep Neural Network 

(DNN) models show highly accurate, exceeding 94% in the 

driving manoeuvres classification. Moreover, the Long Short-

term Memory (LSTM) achieved high accuracy 92% for the 

driver identification task. Jeong et al. [17] proposed a driver 

identification system based on CNN deep learning model. In 

this research study, the author using real-world collected 

dataset using vehicle CAN-BUS network, which consisting 

data from four drivers over an average of 30 minutes daily for 

eight days. The model mention above achieved high accuracy 

90% using 4-5 minutes window size for training model. Xun 

et al. [18] employed Convolutional Neural Networks (CNN) 

and Support Vector Domain Description (SVDD) as a method 

for vehicle driver identification. The model was built to 

enhance the accuracy of identifying. This model achieves high 

414



 

accuracy 98.216% for driver identification within the 300 

seconds window period, and total of 20 drivers. Girma et al. 

[19] used LSTM deep learning model one of the best 

performing models as an ovel approach for driver 

identification task. The authors used three public datasets 

including, Vehicular Data Trace Dataset-1, Security Driving 

Dataset, and Vehicular Data Trace Dataset-2 to train their 

model. An exceptional F1 score of 98%, LSTM-based model 

achieved when evaluated using the Security Driving Dataset 

using overlapping time windows (120-60) s. El Mekki et al. 

[20] presented a remarkable hybrid technique for driver 

identification using fully convolution Neural Network-Long 

Short-Term Memory (FCN-LSTM) hybrid model. The 

proposed system trains the model on four public datasets 

including, UAH-Drive dataset, Security Driving Dataset, OSF 

and HCILAB. Furthermore, using window size technique (60-

30) s to enhance the detection of driver behaviour. The 

proposed model achieves high accuracy when train using 

Security Driving Dataset. Zhang et al. [21] presented a novel 

deep learning framework that seamlessly integrates CNNs and 

RNNs with conceptual methods into a comprehensive end-to-

end solution delivery see the driver. and the standard deviation 

was subtracted. Remarkably, the proposed model achieved an 

impressive mean accuracy of 98.36% with a negligible 

accuracy standard deviation of 0.0015 when employing an 

overlapping window of (60-54) s with a step size 6. Chen et al. 

[22] presented the development, architecture, and 

technological aspects of the cognitive internet of vehicles. The 

authors covered real-time driver monitoring methods that can 

significantly lower traffic accidents. Abu-Gellban et al. [23] 

put out a method that uses Fully Convolutional Networks 

(FCN) and Gated Recurrent Units (GRU) to efficiently record 

both short- and long-term trends in driving behaviors. The 

Segmented Features Generation method was used to segment 

driving behaviour with an analysis window size, reducing the 

state space of driving behaviour and increasing training 

efficiency. Ullah and Kim [24] presented an innovative driver 

identification method based on a compact hybrid deep learning 

model. The authors parallelized the LSTM and GRU-based 

RNN models with a 2D CNN. They employed a public dataset 

to train their model and utilized an overlapping window of (40-

34) for feature extraction. Impressively, the model achieved an 

outstanding accuracy of 98.72%. Furthermore, the authors 

conducted experiments on three hardware platforms, namely 

NVIDIA DOCKER with Xavier, TX2, and Nano, and 

measured the training time for each device. Azadani and 

Boukerche [25] created several classification machine 

learning and deep learning models. Deep Neural Network 

(DNN), Random Forest, LSTM, Decision Tree, KNN, CNN, 

and DeepConvLSTM, a hybrid model that fused CNN and 

LSTM and achieved excellent accuracy—were among the 

models. Abdennour et al. [26] was utilized Residual 

Convolutional Network (RCN) as a hybrid model to achieve 

innovative driver identification approach. The proposed model 

achieves impressive degree of accuracy 99.3% when using 

Security Driving Dataset to train and evaluate the model. The 

authors used window size method (60-54) s as data 

augmentation method with time step six second. Lu and Xiong 

[27], three versions of a meta-learning model designed to 

quickly adapt to varying numbers of drivers, particularly when 

only a few examples are available. The models were tested on 

scenarios involving three and five drivers using a public 

driving dataset and 5-shot and 1-shot learning approaches. The 

proposed models achieved an accuracy of 68.05% for the 5-

shot approach with three drivers and 51.57% for the 5-shot 

approach with five drivers. Hu et al. [28] present a 

groundbreaking ensemble DL model that combines a 1-D 1D 

CNN and Bidirectional Long Short-Term Memory (BLSTM) 

models. Their approach utilizes two datasets: one collected 

using CAN-BUS sensors and another from a publicly available 

dataset. The authors employ four data augmentation methods 

and incorporate few-shot learning techniques to enhance the 

model's performance. Remarkably, the proposed model 

achieves an accuracy of 64.67% when using only 3% of the 

dataset and 90% when using 50%. 

 

 

3. METHODOLOGY 
 

3.1 Few-shot learning problem 

 

This study starts with a group of 5 drivers, for whom 

multiple trips are collected. The driving data is obtained from 

unobtrusive sensors onboard and transmitted via a CAN bus. 

The CAN bus data, which includes parameters such as speed, 

brake pedal usage, and engine torque, indirectly reflects the 

drivers' behaviour. Previous research has utilized these data to 

identify drivers without infringing on their privacy, unlike 

intrusive methods such as facial recognition. Traditional driver 

identification methods rely on sufficient training data. Still, 

our focus is on how to adapt a pre-existing 5-driver 

classification model when an additional driver joins group A 

and provides only a single trip. 

Consequently, a 6-driver classification model can be 

constructed based on the initial 5-driver model. In real-world 

engineering scenarios, waiting for sufficient data to establish 

a robust identification model for the 6-driver problem is 

impractical, as issues such as vehicle theft or insurance 

disputes may arise during the waiting period. We seek to 

develop a model with self-learning capabilities to address the 

general domain of N-driver identification problems, 

particularly when insufficient driving examples exist. Unlike 

conventional deep learning approaches tailored to a specific 

number of drivers, our challenge is framed as a few-shot 

problem, specifically the N-driver, few-trip identification 

problem. 

In the context of driver identification, N-way k-shot 

classification presents a compelling solution for scenarios with 

limited data. Here, N represents the number of distinct drivers 

(classes) the model needs to identify, while k denotes the 

number of example trips (shots) available per driver. The N-

way k-shot classification framework is particularly 

advantageous when dealing with the few-shot learning 

paradigm, where traditional supervised learning approaches 

falter due to the scarcity of labelled data. Leveraging state-of-

the-art models that can rapidly adapt to new drivers from few 

data allows for robust and accurate identification of drivers 

even with a limited number of trips. Thus, the N-way k-shot 

classification framework is very useful in real-world domains 

where drivers might be removed or new drivers added to the 

system. The model’s flexibility of the N-way K-shot 

classification framework also helps to quickly adapt to these 

changes, thereby maintaining high performance and reliability 

across various diverse and evolving scenarios. This 

characteristic is important in its application in areas such as 

fleet management or personalized insurance, where there must 

be timely identification of an accurate driver despite dynamic 

driver rosters. In line with this, the 1D CNN-LSTM attention 
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model seems an excellent match for solving the problem of 

identifying an N-driver. For instance, information learned by 

a 3-driver identification model can support the classifier 

regarding fewer or more drivers being involved in particular 

contexts. Such ability manifests itself through adapting and 

suitably capturing any change, thus allowing efficient learning 

of new patterns, making it suitable for dynamic driver 

recognition tasks. 

 

3.2 1D CNN LSTM attention model 

 

Deep learning techniques have been developed to tackle 

difficult applications like driver identification due to the swift 

progress in artificial intelligence. We provide a novel model 

that effectively addresses the inherent difficulties associated 

with driver identification by fusing the power of LSTM with 

the versatility of attention mechanisms parallel with separable 

1D-CNNs with attention units. Figure 1 showcases the 

proposed driver identification model, which features a 1D 

CNN LSTM with an Attention mechanism.  

The model consists of two parallel components: the first is 

a 1D Separable CNN with an Attention mechanism, and the 

second is an LSTM with an Attention mechanism. The outputs 

from both parts are combined through a concatenation 

mechanism, merging the strengths of each to enhance the 

overall performance of the model. 

 

 
 

Figure 1. Driver identification proposed model 

 

 
 

Figure 2. 1D CNN depthwise separable architecture 
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3.2.1 Depthwise separable CNN 

The strength of 1D-CNNs lies in their ability to extract 

features using separable 1D convolution layers. At this level, 

we used three Separable 1D layers of convolution, each 

accompanied by a LeakyReLU activation function and batch 

normalisation (BN) layer. Separable convolutions are selected 

because they have better parameter efficiency than traditional 

ones. The method involves two steps: first, a depthwise 

separable convolution, and then, a pointwise convolution. This 

way, the process overcomes overfitting and efficiently extracts 

fundamental features from the input data. Eq. (1), and (2) 

present mathematical models for these methods, respectively. 

At this stage, the LeakyReLU activation function improves it 

by retaining abnormal patterns in its data and eliminating 

“dying ReLU”, see Eq. (3). The input is denoted as "I", the 

depth-wise filter is represented by "D", and the pointwise filter 

is represented by "P", as illustrated in Figure 2. 

 

(𝐼 ∗ 𝐷) =  ∑ ∑ 𝐼 (𝑥 − 𝑖, 𝑦 − 𝑗) ∗ 𝐷(𝑖, 𝑗)
𝑗𝑖

 (1) 

 
(𝐼 ∗ 𝑃)(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝑃 (2) 

 

𝑓(𝑥) = 𝑀𝐴𝑋 (𝛼𝑥, 𝑥) 𝑤ℎ𝑒𝑟𝑒 𝛼 =  0.15 (3) 

 

3.2.2 LSTM 

In this stage, we use one layer of LSTM with ten cell 

neurons. This selection of architecture enables us to perform 

the temporal dependencies analysis on the driving data time 

series efficiently. The LSTM layer is the memory block, 

allowing the model to remember critical information and 

detect long-term patterns in individual drivers' driving 

behaviour. With ten cell neurons, we equip the model with 

enough memory for learning and exhibiting complex driving 

patterns. This helps in precise feature extraction during the 

later stages of driver identification. 

 

3.2.3 Multi-head attention 

The next phase of our approach involves the Attention 

System, a revolutionary innovation in DL. Based on the design 

of the transformeration framework [29], this method provides 

a robust alternative to conventional recurrent layers, 

particularly in managing distant dependencies, as Figure 3 

illustrates. The ability of the self-attention mechanism to 

convert a query and a set of key-value pairs into an outcome, 

where the production, keys, values, and query are all expressed 

as vectors, is its basic working concept. The result is computed 

by taking a weighted total of the values, with the weights 

defined by a compatibility function that quantifies the 

relationship between the query and each respective key. The 

attention mechanism equations as: 

 

Attention (Q, K, V) = SoftMax(
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (4) 

 

MultiHead (Q, K, V) = Concat (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑ℎ) 𝑊𝑂 (5) 

 

ℎ𝑒𝑎𝑑𝑖= Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (6) 

 

where, Q represented for queries, K for keys, and V for values. 

Furthermore, dk denoited by the dimension of the keys. Eq. (4) 

represented the scaled dot product attention component which 

consists of several key operations. It first analyses the query 

and key vectors through a matrix multiplication that it calls 

MatMul. Subsequently, the dot product results are divided by 

square root of the dimension of the key vector in order to 

normalize the vector. This scaling is crucial as otherwise it is 

possible to obtain a very large dot product and hence the 

attention mechanism will not be very helpful. Next, the scores 

are passed through the softmax function that converts them 

into attention weights which sum up to one. The weights are 

of the attention mechanism and they define the attention given 

to each of the key-value pairs in the input sequence for the 

query. Lastly, another dot product, MatMul, calculation is 

carried out on the attention weights and the respective values. 

Eq. (6) maps the vectors Q, K, and V into different 

representation subspaces by use of learnt linear 

transformations, which are identified 

as 𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑎𝑛𝑑 𝑉𝑊𝑖
𝑉, respectively. 

 

 
 

Figure 3. Multi-head attention architecture 

 

Table 1. Proposed model hyperparameter  

 

Layer Kernal 
Output 

Channel 

Other 

Information 

Input - - - 

1D CNN-1 8 128 - 

BN - 128 - 

Leaky-Relu - - alpha=0.2 

1D CNN-2 5 64 - 

BN - 64 - 

Leaky-Relu - - alpha=0.2 

1D CNN-3 3 32 - 

BN - 32 - 

Leaky-Relu - - alpha=0.2 

GAP - 32 - 

LSTM - 10 - 

Attention - 32  

Fully 

connected 
- 10 - 

 

A Global Average Pooling (GAP) layer is added after the 

concatenation manipulation. The purpose of this layer is to 

serve as a feature descriptor, which effectively reduces the 

dimensionality of the model's output by summarising spatial 

information. GAP is strategically integrated into our 

architecture to retain the most informative features and reduce 
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the overfitting hazards commonly associated with fully 

connected layers. This technique decreases the number of 

parameters by calculating the average of the feature maps to 

obtain a single value, hence improving the model's capacity to 

generalise. Unlike flattening processes, GAP preserves 

essential spatial information, making it especially well-suited 

for analysing time-series data, such as patterns in driver 

behaviour. 

The last step of the design consists of a completely linked 

layer equipped with Softmax activation. This layer relates the 

high-level information retrieved by the preceding layers to 

specific driver, enabling successful identification. Table 1 

showcase the proposed model parameter. 

 

 

4. PERFORMANCE EVALUATION 

 

In this section, we initially assess the performance of our 

proposed model on a public driving dataset [4], utilising the 

entire dataset. We compare its performance against four 

benchmark models: ANN, LSTM Attention, LSTM, and 

CNN, as illustrated in Table 2. Subsequently, experiments are 

conducted on 3-way and 5-way classification tasks using 5- 

shot and 1-shot approaches to address few-shot learning 

scenarios. This section compares our proposed model's results 

against those reported in previous studies. 

 

Table 2. User-defined parameter for proposed model  

 
Model Parameters 

ANN Five layers, 30 neurons 

LSTM Five Layers, 30 Cell 

CNN Five Layers 

LSTM-Attention Two head Attention 

 

4.1 Dataset description  

 

This study utilised a dataset that included driving data from 

ten drivers. Each driver completed two round trips from 

SANGAM World Cup Stadium to Korea University. This 

equated to around 23 hours of recorded driving information 

[4]. The driving route encompasses three distinct urban areas, 

namely regular streets, highways, and parking spaces, 

spanning 23 kilometres. The experiment commenced on July 

28, 2015, with meticulous attention to the time factor. The 

experiments were conducted within the same time zone to 

ensure consistency, specifically from 8 p.m. to 11 p.m. on 

weekdays. Ten skilled drivers participated in the study, 

completing two full-round trips to establish reliable 

classifications. The data collection process encompassed 

various road conditions to ensure a comprehensive 

representation of driving scenarios. Ninety-four thousand four 

hundred one data points were obtained from 32 driving 

excursions using 51 distinct sensor signals. 

During the training phase, the input consisted of driving 

information from one round trip, while data from the other 

round trip was used during the testing phase. The divide in the 

experimental design ensured that the performance of our deep 

learning model was assessed in authentic driving scenarios, 

using realistic driving data from a diverse group of drivers. 

 

4.2 Data pre-processing 
 

After data collection and before modelling, data preparation 

is an essential stage in the machine learning (ML) pipeline. 

The objective is to accelerate the DL model's convergence and 

simplify learning. Data preparation involves several functions, 

such as managing absent values, removing outliers, 

standardising the data, and feature engineering if required. The 

data was standardised using the standardisation equation, 

which involves subtracting the mean and dividing by the 

standard deviation. Standardising the data puts all the variables 

on a common scale to ensure that no single variable takes 

control of the analysis and modelling process. It sets the 

foundation for reliable and significative analysis and 

modelling. Eqs. (7)-(9) present the data standardisation 

process. 

The standard deviation is denoted by the parameter σ, 

whereas the mean is represented by μ. Furthermore, M 

indicates the dataset's size, and di shows a datum's value inside 

the dataset. We implemented the sliding window technique as 

a data augmentation method to enhance the driver recognition 

model's ability to capture a wider array of behaviours. This 

work uses overlapping sliding-window segments with a 6 s 

step size and a 1 min window size. Thus, every trip segment 

becomes a 60 × 15 array reformed into a 60 × 15 × 1 tensor. 

Ten drivers so generate 15004 windowed segments. 

 

𝜇 =  
1

𝑀
 ∑ 𝑑𝑖

𝑀

1

 (7) 

 

𝜎 = √
∑ (𝑑𝑖 − 𝜇)𝑀

1

𝑀
 (8) 

 

𝑑𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑑𝑎𝑐𝑡𝑢𝑎𝑙 −  𝜇

𝜎
 (9) 

 

4.3 Experimental setting  

 

The proposed approach is primarily divided into two 

sections. The first section addresses the entire dataset, while 

the second section focuses on experiments involving 3-driver 

and 5-driver identification problems under two common few-

shot scenarios: 1-shot and 5-shot. We adopt Adaptive Moment 

Estimation (Adam) as the optimiser, with an initial learning 

rate of 0.001, which is reduced by 0.9 every 100 steps. The 

experimental setup employed a TensorFlow 2.11 framework 

on a virtual machine in the Google Cloud Platform, which 

included four virtual CPUs and 15 GB of RAM. This setup 

was used for deep learning tasks. 

 

4.4 Driver identification performance evaluation based on 

a public dataset 

Furthermore, the 1D CNN-LSTM Attention method proved 

to be the driver identification classification method with the 

highest efficiency. The proposed approach exhibited much 

superior performance compared to other methods in terms of 

computational time and demonstrated improved metric 

performance, namely accuracy and F1-score. These results 

demonstrate the proposed algorithm's advantage over 

competing techniques. The performance of five machine 

learning algorithms (1D CNN-LSTM Attention, LSTM-

Attention, LSTM, CNN, and ANN) was compared using 

accuracy and F1-score measurements. The comparison was 

done for a window size of 60 seconds with a 54-second overlap 

and 6-second time step. All the models were consistently 
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outperformed by the 1D CNN-LSTM model with attention. 

One indicator of precision is the F1 score, which refers to the 

ability to precisely recognize positive examples and correctly 

recall or identify all positive situations. The 1D CNN-LSTM 

Attention model accomplished a better F1 score, showing its 

effectiveness in achieving a balanced performance in 

classification. This is due to its ability to extract features, 

enhance focus on important features, handle sequential 

dependencies, and learn robust representations. In the Security 

Driveset dataset context, the multi-head attention-based 

LSTM-CNN model performs better than other models, as 

Table 3 illustrates. It attains remarkable results, with scores of 

99.93% with 60 window size. Figure 4 shows the average 

training process in terms of accuracy and loss. 

 

 
 

Figure 4. The average training process in terms of accuracy and loss 

 

Table 3. The suggested models' accuracy and macro F1 

score-based public dataset 

 

Model 

Training  Testing  

Accuracy 
F1-

Score 
Accuracy 

F1-

Score 

CNN-LSTM 

Attention 
0.9997 0.9997 0.9993 0.9993 

LSTM-

Attention 
0.9993 0.9992 0.9945 0.994 

CNN 0.8859 0.8881 0.8858 0.8882 

LSTM 0.99 0.99 0.9899 0.9846 

ANN 0.8149 0.8144 0.7383 0.7416 

 

4.5 Few-shot learning experiments 

 

Furthermore, the 1D CNN-LSTM Attention algorithm was 

found to be the most effective method for driver identity 

classification. Table 4 shows the performance of different 

models on the 1-shot and 5-shot for the 3-driver identification 

problem. Each model is evaluated based on accuracy, F1-

score, and the time taken for inference. Among these models, 

the 1D CNN LSTM Attention stands out as the top performer 

in accuracy and F1 score metrics, exhibiting accuracy and F1 

score of 0.6654 for 1-shot and 0.7827 for 5-shot. Notably, even 

with only one example per driver label, the proposed model 

surpasses the performance of other suggested models despite 

a relatively wide confidence interval. Additionally, it shows a 

comparable or even lower inference time, making it the most 

effective and efficient model among the options considered in 

the table. Table 5 showcases the testing performance of the 

methods above in the context of the 5-way Few-Shot Driver 

Identification problem. The results of these methods are 

compared to evaluate their effectiveness. However, the 1D 

CNN LSTM Attention is the most effective in handling the 

complexities of the 5-way FSDI problem. It surpasses the 

performance of the other models, showcasing higher accuracy 

and F1 scores. While the inference time is slightly longer than 

some models, it remains within acceptable limits, making it a 

favorable choice for the 5-way Few-shot Deep learning 

(FSDL) problem. 

 

Table 4. Driver few-shot result comparison results of five deep learning models in terms of accuracy, F1-score, and training time 

for three driver configurations  

 

Model 
1-Shot 5-Shot 

Accuracy F1-Score Time (s) Accuracy F1-Score Time (s) 

ANN 0.368 0.368 27 0.5434 0.5434 28 

CNN 0.376 0.376 39 0.364 0.364 38 

LSTM 0.4187 0.4187 136 0.68 0.68 145 

LSTM Attention 0.5327 0.5327 116 0.7034 0.7034 110 

1D CNN LSTM Attention 0.6654 0.6654 108 0.7827 0.7827 109 
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Table 5. Driver few-shot result comparison results of five deep learning models in terms of accuracy, F1-score, and training time 

for five driver configurations 

 

Model 
1-Shot 5-Shot 

Accuracy F1-Score Time (s) Accuracy F1-Score Time (s) 

ANN 0.4276 0.4356 27 0.478 0.478 27 

CNN 0.4288 0.4193 53 0.4624 0.4428 41 

LSTM 0.4348 0.4322 165 0.5704 0.5897 176 

LSTM Attention 0.5908 0.6021 108 0.766 0.778 116 

1D CNN LSTM Attention 0.7132 0.7040 119 0.9192 0.9003 123 

 

Table 6. Comparative table in terms of accuracy of driver identification, 3-driver FSDL, and 5-driver FSDL based security 

driving dataset [4] 

 

Ref. Year Model 
Driver Identification 

Accuracy 

Few shot 3-Driver 

Accuracy 

Few shot 5-Driver 

Accuracy 

Proposed Present 1D CNN-LSTM Attention 99.93% 
66.65% for 1-shot 

78.27% for 5-shot 

71.32% for 1-shot 

91.92% for 5-shot 

Hu et al. [28] 2023 
Ensemble M 1-D CNN 

with BLSTM 
92.72% 

64.67% for 3% of all dataset 

79.83% for 10% of all dataset 

87.32% for 30% of all dataset 

90.35% for 30% of all dataset 

Lu and Xiong [27] 2022 MetaARNet - 
53.09% for 1-shot 

68.05% for 5-shot 

39.21% for 1-shot 

51.57% for 5-shot 

Azadani and 

Boukerche [30] 
2021 Hybrid DeepConvLSTM 95.03% - - 

Abdennour et al. 

[26] 
2021 Deep RCN 99.30% - - 

Azadani and 

Boukerche [25] 
2020 1D-CNN-BLSTM 95.06% - - 

Ullah and Kim 

[24] 
2020 

Depth-wise CONV-

LSTM /GRU 
98.72% - - 

Zhang et al. [21] 2019 
FCN-LSTM with self-

attention 
97.01% - - 

El Mekki et al. [20] 2019 Hybrid FCN-LSTM 95.01% - - 

 

Upon comparing the 5-shot and 1-shot scenarios, it becomes 

evident that all proposed methods exhibit improved 

classification performance. This outcome aligns with 

expectations, as having more training examples per label 

facilitates better learning. Notably, the 1D CNN-LSTM 

Attention and LSTM-Attention approaches, known for their 

success in image classification tasks, are also practical in 

driver identification. However, the performance of the other 

method fails to demonstrate its superiority in this particular 

problem. 

 

4.5 Comparative analysis 

 

This work aimed to assess and contrast different models, 

methods, or strategies for driver identification. It aimed to 

evaluate their effectiveness and performance in tackling the 

difficulties related to driver identification. Table 6 thoroughly 

summarises the most current developments in driver 

identification methods as described in the literature. It 

highlights each model's overall driver identification accuracy 

and few-shot learning accuracy within 3-driver and 5-driver 

scenarios. 

The Proposed model, utilising a 1D CNN-LSTM Attention, 

stands out with the highest driver identification accuracy of 

99.93%. This model also excels in few-shot learning, 

achieving 66.65% accuracy for 1-shot and 78.27% for 5-shot 

in the 3-driver scenario, and an impressive 71.32% for 1-shot 

and 91.92% for 5-shot in the 5-driver scenario. These results 

indicate the model's robustness and adaptability across 

different few-shot learning configurations. Hu et al. [28] 

employ an Ensemble M 1-D CNN with BLSTM and 

demonstrate a notable gradient in accuracy as the dataset size 

increases. Starting with 64.67% accuracy for 3% of the 

dataset, the model's performance improves significantly to 

79.83% for 10%, 87.32% for 30%, and peaks at 90.35% for 

50%. Lu and Xiong [27] present the MetaARNet model, which 

shows relatively lower accuracy in few-shot learning tasks. 

The 3-driver scenario achieves 53.09% for 1-shot and 68.05% 

for 5-shot; for the 5-driver scenario, it records 39.21% for 1-

shot and 51.57% for 5-shot. Other models, such as El Mekki 

et al. [20], Zhang et al. [21], Ullah and Kim [24] Azadani et al. 

[25, 30], Abdennour et al. [26], primarily focus on overall 

driver identification accuracy. These models achieve 

accuracies ranging from 95.01% to 99.30%, indicating their 

effectiveness in identifying drivers. However, they do not 

provide specific data on few-shot learning performance, 

highlighting a gap in the comparative analysis for scenarios 

involving limited training samples. In conclusion, the 

Proposed model demonstrates superior performance in both 

overall accuracy and few-shot learning scenarios, making it a 

robust choice for driver identification tasks. Table 5 showcases 

the comparative our model with previous study in term of 

accuracy. 

 

 

5. CONCLUSIONS 

 

This paper presents a novel approach for driver 

identification using few-shot learning techniques. Our method 

leverages the power of a 1D CNN LSTM Attention model to 
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address the N-driver identification problem, effectively 

adapting to scenarios with limited driving examples. Through 

comprehensive experiments on a public driving dataset, we 

demonstrated the robustness and accuracy of our model in both 

traditional and few-shot learning contexts. We validated our 

proposed method's superior performance and adaptability by 

comparing our approach with several baseline models, 

including LSTM Attention, LSTM, and CNN adaptability. 

Additionally, our experiments on 3-way and 5-way 

classification problems using 1-shot and 5-shot approaches 

further highlight the efficacy of our model in dynamic and 

Evolve ng environments. When the entire raw dataset was 

used to train the models, remarkable results were achieved, 

with the highest accuracy and Macro F1 score reaching an 

impressive 99.93%. However, when tackling the few-shot 

learning driver identification problem, the experiments 

focused on the 3-driver and 5-driver scenarios using one-shot 

and five-shot approaches. Regarding one-shot learning, the 

highest accuracy obtained for the 3-driver and 5-driver 

problems was 66.54% and 71.32%, respectively. Even more 

promising outcomes were achieved with the five-shot learning 

approach. The highest accuracy for the 3-driver problem 

reached 78.27%, while an exceptional accuracy of 91.92% was 

attained for the 5-driver problem. This study has important 

practical and societal ramifications. In order to enhance the 

management of fleets, driver profiling, vehicle security, 

customized insurance, driving experiences, risk estimation, 

and traffic safety, the developed model can be put into use in 

the General Traffic Directorate. The model offers fast and 

tailored driving experiences in addition to improving overall 

traffic security and safety by precisely recognizing drivers 

using few amounts of data. The model can also be used by 

insurance firms to evaluate driver behavior and set fair 

insurance rates, encouraging safe driving practices. In general, 

this study has social and practical ramifications for 

transportation planning and road safety as well as the 

automobile sector. 
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