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As global demands for enhanced energy efficiency and environmental protection continue 

to grow, optimizing the combustion processes of industrial boilers has become a critical 

challenge. These processes involve complex thermodynamic and chemical reactions that 

directly impact energy utilization and pollutant emissions. However, existing methods for 

combustion prediction and optimization often fall short in terms of accuracy and efficiency, 

making it difficult to adapt to varying operational conditions. This study proposes a 

thermodynamics-based multi-objective optimization method for industrial boiler 

combustion. A high-precision combustion prediction model is established using deep 

learning, and an evolutionary algorithm is employed for multi-objective optimization, 

aiming to achieve an optimal balance between combustion efficiency and pollutant 

emissions. The findings of this research not only offer new insights into combustion 

optimization for industrial boilers but also contribute valuable theoretical and practical 

implications for enhancing energy utilization efficiency and reducing environmental 

pollution in industrial production. 
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1. INTRODUCTION

With the continuous growth of global energy demand and 

increasingly stringent environmental protection requirements, 

the optimization of combustion processes has become a crucial 

research direction in the industrial field [1-4]. The combustion 

process involves complex thermodynamic and chemical 

reactions, directly affecting energy utilization efficiency and 

pollutant emission levels [5, 6]. Particularly in industrial 

boilers, combustion optimization can not only improve energy 

utilization efficiency but also effectively reduce the emissions 

of harmful substances such as carbon dioxide and nitrogen 

oxides [7-10]. Therefore, how to accurately predict and 

optimize the combustion process through scientific methods 

has become a hot topic in current research. 

The study of multi-objective optimization for industrial 

boiler combustion processes has significant practical 

importance. First, by improving combustion efficiency, 

energy savings can be achieved, production costs can be 

reduced, and industrial competitiveness can be enhanced [11, 

12]. Secondly, optimizing the combustion process can 

effectively control the generation of pollutants, comply with 

environmental regulations, and reduce negative impacts on the 

environment [13-15]. In addition, the establishment of 

combustion prediction models and the application of multi-

objective optimization methods can also provide valuable 

references for other similar industrial processes, promoting the 

sustainable development of the entire industrial field. 

However, existing research methods still have many 

shortcomings in combustion prediction and optimization. 

Traditional combustion simulation methods mainly rely on 

numerical calculations and empirical formulas, which, 

although capable of describing combustion phenomena to a 

certain extent, have limited prediction accuracy and are 

difficult to cope with changes in complex working conditions 

[16-18]. Moreover, in the process of multi-objective 

optimization, conventional algorithms are difficult to 

simultaneously balance efficiency and accuracy, easily falling 

into local optima, thereby limiting the effectiveness of 

combustion process optimization [19-23]. Therefore, it is 

particularly necessary to develop a multi-objective 

optimization method combining deep learning and 

evolutionary algorithms. 

This paper aims to propose a novel multi-objective 

optimization method for industrial boiler combustion by 

combining thermodynamic principles with deep learning and 

evolutionary algorithms. Specifically, the main research 

content of this paper is divided into two parts: first, based on 

thermodynamic principles, a high-precision prediction model 

of the industrial boiler combustion process is established, and 

deep learning algorithms are used to explore the potential 

patterns in complex combustion reactions; secondly, for the 

multi-objective optimization problem of the combustion 

process, evolutionary algorithms are employed for 

optimization to achieve the optimal balance between 

combustion efficiency and pollutant emissions. This research 

not only enriches the theoretical content in the intersection of 

thermodynamics and artificial intelligence but also provides 

strong support for the optimization of industrial boiler 

combustion in practice, having significant research value. 
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2. ESTABLISHMENT OF THERMODYNAMICS-

BASED INDUSTRIAL BOILER COMBUSTION 

PREDICTION MODEL 

 

2.1 Feature analysis 

 

In the process of industrial boiler combustion, the 

generation of NOx is closely related to the thermal efficiency 

of the boiler. To accurately predict the concentration of NOx 

generation and optimize the thermal efficiency of the boiler, 

this paper selects the following information as the input 

features of the model. These features not only reflect the fuel 

characteristics and dynamic changes in the combustion 

process but also have a direct impact on NOx generation and 

boiler thermal efficiency. 

The total moisture, volatile matter, ash content, and lower 

heating value in coal quality information are key factors 

determining the combustion characteristics of the fuel. The 

total moisture content affects the evaporation and endothermic 

processes during combustion, reducing the furnace 

temperature and thereby inhibiting the generation of NOx. The 

volatile matter content determines the amount of combustible 

gases released in the initial stage of combustion; higher 

volatile matter contributes to combustion stability but may 

also increase NOx generation. Ash content affects the 

completeness of fuel combustion; excessive ash content can 

lead to incomplete combustion, reducing thermal efficiency 

and potentially causing the residue of nitrogen compounds, 

thereby influencing NOx generation. The lower heating value 

is directly related to the energy release during combustion; 

high calorific value fuels help to improve boiler thermal 

efficiency but may also promote NOx generation under high-

temperature conditions. 

The coal feeding rate and primary air volume are important 

operational parameters that control the combustion process. 

The coal feeding rate affects the fuel supply speed, directly 

determining the amount of fuel and the intensity of combustion 

in the furnace. The primary air volume determines the initial 

mixing effect of fuel and air; insufficient air volume will lead 

to incomplete combustion, reducing thermal efficiency and 

potentially generating more CO, while excessive air volume 

will lower the furnace temperature, inhibiting NOx generation 

but possibly reducing thermal efficiency. 

In addition, the secondary air damper opening plays a key 

role in regulating the oxidation atmosphere of the combustion 

process. By adjusting the opening of the four secondary air 

dampers, the air supply and distribution in the combustion 

zone can be controlled, thereby affecting the temperature field 

and oxidation-reduction conditions in the furnace. 

Appropriately increasing oxygen supply in high-temperature 

areas helps to achieve complete combustion and improve 

thermal efficiency but may also promote NOx generation. 

Therefore, the reasonable configuration of the secondary air 

damper opening is crucial for NOx control and thermal 

efficiency optimization. 

The boiler operating load reflects the actual working state 

of the boiler. The higher the load, the higher the combustion 

intensity, and the furnace temperature rises, which may 

increase NOx generation. At the same time, the thermal 

efficiency of the boiler also tends to increase under high loads. 

However, excessive operating load may lead to incomplete 

combustion and excessive flue gas flow rate, which in turn 

reduces thermal efficiency. 

The oxygen content at the furnace outlet is the final 

feedback indicator of the combustion process. Appropriate 

oxygen content ensures complete combustion of the fuel, 

contributing to improved thermal efficiency and reducing 

incomplete combustion products such as CO. However, 

excessive oxygen content means excessive air entering, 

leading to a drop in furnace temperature, reduced NOx 

generation, but potentially lowering thermal efficiency as well. 

Therefore, oxygen content control needs to find a balance 

between NOx generation and thermal efficiency. 

 

2.2 Data collection and selection 

 

In the process of industrial boiler combustion, the 

generation mechanism of NOx and the thermal efficiency of 

the boiler are closely related to various heat losses during the 

combustion process. Understanding these thermodynamic 

phenomena is crucial for establishing an accurate combustion 

prediction model. Among them, coal quality information 

includes total moisture, volatile matter, ash content, and lower 

heating value, and these parameters directly affect the 

thermodynamic behavior during combustion. The total 

moisture content determines the pretreatment requirements 

before fuel combustion, such as the endothermic process of 

moisture evaporation. The volatile matter content determines 

the amount of combustible gases released in the initial stage of 

combustion, and these gases release a large amount of heat 

during combustion, affecting the combustion temperature and 

NOx generation. Ash content is the residual non-combustible 

matter after combustion; higher ash content leads to more solid 

residues, affecting the completeness of combustion, thereby 

impacting heat losses. The lower heating value is the effective 

heat released during fuel combustion, and this parameter 

directly determines the energy that can be provided during 

combustion, thus affecting the overall thermal efficiency of the 

boiler. 

For the original concentration of NOx generation at the 

furnace outlet, it is mainly influenced by the combustion 

temperature, nitrogen content in the fuel, and the amount of 

combustion air. In a high-temperature environment, nitrogen 

elements in the fuel are more likely to combine with oxygen 

to form NOx. Therefore, the higher the combustion 

temperature, the higher the concentration of NOx generation. 

Additionally, the introduction of excess air increases the 

supply of oxygen, further promoting NOx generation. 

Assuming that the flue gas heat loss is represented by w2, the 

chemical incomplete combustion heat loss by w3, the solid 

incomplete combustion heat loss by w4, the heat dissipation 

loss by w5, and other heat losses by w6, the calculation formula 

is as follows: 
 

( )2 3 4 5 6100 w w w w w = − + + + +  (1) 

 

The flue gas heat loss refers to the heat loss carried away by 

the high-temperature flue gas after combustion. The flue gas 

temperature of industrial boilers is usually high, and if this heat 

is not fully recovered, it will lead to a reduction in thermal 

efficiency. The flue gas heat loss mainly depends on the 

temperature, flow rate, and composition of the flue gas. To 

reduce flue gas heat loss, methods such as preheating the air 

or recovering the residual heat are commonly used to improve 

the overall thermal efficiency of the boiler. Assuming that the 

lower heating value of the coal is represented by Wf, the design 

value of the boiler as specified in the boiler manual, the flue 

gas temperature is represented by ϕob, the reference 
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temperature is represented by ϕmj, and the oxygen content at 

the air preheater outlet is represented by P2. The calculation 

formula for the flue gas heat loss w2 is: 

 

( ) ( )

( )( ) ( )
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2

3 4 2
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The chemical incomplete combustion heat loss w3 is 

considered 0 in this paper. The solid incomplete combustion 

heat loss refers to the unreleased heat contained in the solid 

residues that have not been fully combusted during the 

combustion process. This portion of heat is not utilized during 

combustion, leading to heat loss. This loss is usually related to 

the ash content of the fuel, combustion time, temperature, and 

oxygen supply. High ash content, incomplete combustion, or 

insufficient combustion time will increase the solid 

incomplete combustion heat loss. 

Assuming that the percentage of fly ash in the total ash 

content of the fuel is represented by βdg, the percentage of slag 

in the total ash content of the fuel is represented by βMC, the 

received basis ash content is represented by Xxe, the carbon 

content in the fly ash is represented by Zdg, and the carbon 

content in the slag is represented by ZMC, the calculation 

formula for solid incomplete combustion heat loss w4 is as 

follows: 

 

4

32700

100 100

dgxe MC
dg MC

f dg MC

ZX Z
w

W Z Z
 
 •

= • • + • 
 − − 

 (3) 

 

The heat dissipation loss refers to the heat lost from the 

surface of the boiler equipment to the external environment. 

During the operation of industrial boilers, due to the 

temperature difference between the outer wall of the boiler and 

other equipment surfaces and the outside air, some heat is lost 

to the surrounding environment through conduction, 

convection, and radiation. This loss is usually related to the 

thermal insulation performance of the boiler, the area of the 

outer wall, and the temperature difference of the operating 

environment. Good insulation measures can effectively reduce 

heat dissipation loss and improve the overall thermal 

efficiency of the boiler. Assuming that the heat dissipation loss 

under the rated load of the boiler is represented by w5r, the 

evaporation capacity under the rated load of the boiler is 

represented by Fr, and the actual evaporation capacity of the 

boiler is represented by F. The calculation formula for heat 

dissipation loss w5 is as follows: 

 

5
5

r rw F
w

F

•
=  (4) 

 

The calculation of other heat losses w6 is taken as 1.8% 

according to the design value specified in the boiler manual. 

This paper focuses on data collection covering various 

operating conditions of the boiler. In actual operation, the load 

of industrial boilers varies greatly, and it is possible to operate 

from low load to high load. Therefore, the collected data needs 

to be continuously and evenly distributed across the entire load 

operating range to ensure that all operating conditions are fully 

considered during model training. The key to data selection is 

to remove unstable or erroneous data. Industrial boilers are 

usually in an unstable state during startup or shutdown, and 

fluctuations may occur in the combustion process, which may 

not accurately reflect the normal operating condition of the 

boiler. Therefore, this paper chooses to remove the operating 

data under these unstable conditions. In addition, the 

monitoring devices and sensors of industrial boilers may fail 

after long-term operation, resulting in distorted or erroneous 

monitoring data. If these erroneous data are not removed, they 

will directly affect the training effect of the model and even 

lead to deviations in the prediction results. 

After completing the data selection, this paper finally 

selected 400 sets of continuous and evenly distributed 

operating data. To ensure the scientific and random nature of 

model training and validation, the dataset was randomly sorted 

using a random number seed and divided into training and test 

sets in a 3:1 ratio. The first 300 sets of data were used for 

model training to ensure that the model could fully learn the 

combustion characteristics of the boiler under different 

operating conditions; the remaining 100 sets of data were used 

as a test set to verify the model's generalization ability and 

evaluate its performance on unknown data. 

 

2.3 Industrial boiler combustion modeling process based 

on GA-LSTM 

 

This paper adopts an industrial boiler combustion prediction 

model based on Genetic Algorithm (GA)-Long Short-Term 

Memory network (LSTM), which effectively captures the 

complex nonlinear dynamic characteristics of the boiler 

combustion process. Figure 1 shows the architecture of the 

industrial boiler combustion prediction model. The GA-LSTM 

model combines GA and LSTM, where LSTM plays a central 

role in the prediction model, mainly used for handling and 

predicting the time series data in boiler operations. LSTM is a 

special type of Recurrent Neural Network (RNN), and its main 

advantage lies in its ability to effectively address the long-term 

dependency issues present in long-sequence data. For complex 

systems such as industrial boilers, the NOx generation during 

the combustion process is influenced by multiple factors, 

including combustion temperature, fuel composition, air flow, 

and others. These factors exhibit strong dependency and 

nonlinear change characteristics in the time series, making it 

difficult for traditional models to accurately capture these 

dynamic features. LSTM, through its unique memory cell 

design, can retain and utilize these key features over long time 

spans, thereby predicting NOx generation concentration more 

accurately. 

Specifically, the core components of LSTM are the cell 

state and three gating mechanisms: the input gate, forget gate, 

and output gate. In the combustion prediction of industrial 

boilers, the cell state can be viewed as a container that stores 

important feature information of the boiler's operating state, 

while the three gating mechanisms are responsible for 

selectively updating, retaining, or outputting this information. 

The forget gate is used to decide which historical data 

should be forgotten or ignored. For example, during load 

changes in the boiler, certain outdated operating state 

information may no longer be useful for the current prediction, 

and the forget gate will clear this irrelevant information. 

Assuming the logistic function with an output interval of (0, 1) 

is represented by δ, the current input is represented by as, and 

the external input from the previous time step is represented 

by gs-1, the calculation formula for the forget gate is as follows: 
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( )1s d s d s dd Q a I g y −= + +  (5) 

 

The input gate determines which information in the current 

input combustion data needs to be stored in the cell state to 

update the boiler's current thermodynamic state. The 

calculation formulas for the input gate are as follows: 

 

( )1s u s u s uu Q a I g y −= + +  (6) 

 

( )1tanh
s s ss z s z s zz Q a U g y−= + +  (7) 

 

The output gate controls which parts of the information in 

the cell state need to be output for the final NOx generation 

prediction. This gating mechanism ensures that the model can 

effectively utilize the most relevant information at the current 

time step for prediction. The calculation formula for the output 

gate is as follows: 

 

( )1s p s p s pP Q a I g y −= + +  (8) 

 

In the GA-LSTM model, the main function of the genetic 

algorithm is to optimize the key hyperparameters of the LSTM 

model. These hyperparameters include the learning rate, the 

number of hidden layers, the number of hidden units, etc., and 

their settings directly affect the performance of the LSTM 

network. If the parameters are not set properly, the model may 

suffer from underfitting or overfitting, thereby affecting the 

accuracy of NOx generation predictions. Specifically, the 

working principle of the genetic algorithm in the GA-LSTM 

model is as follows: 

(1) Encoding and Initial Population: First, the 

hyperparameters of the LSTM model are encoded, usually 

using binary or real number encoding methods. Then, a set of 

initial populations is randomly generated, with each individual 

representing a possible hyperparameter combination. These 

individuals represent different configurations of the LSTM 

network. 

(2) Fitness Function: In industrial boiler combustion 

prediction, the fitness function is usually defined as the 

model's prediction error or loss function. For example, Mean 

Squared Error (MSE) can be used to measure the accuracy of 

each individual's corresponding LSTM model in predicting 

NOx generation concentration. The smaller the value of the 

fitness function, the better the hyperparameter combination 

suits the boiler combustion prediction task. 

(3) Selection: The fitness of each individual is evaluated 

through the fitness function, and individuals with higher 

fitness are selected for reproduction. Common selection 

strategies include roulette wheel selection, tournament 

selection, etc., ensuring that individuals with higher fitness 

have a greater probability of being selected. 

(4) Crossover and Mutation: To simulate the biological 

genetic process, the selected individuals generate new 

individuals through crossover operations, i.e., the next 

generation. The crossover operation can exchange part of the 

genes of two parent individuals, thereby producing new 

hyperparameter combinations. The mutation operation 

randomly changes individual gene values to introduce new 

search space, preventing the model from falling into local 

optima. 

(5) Iteration and Convergence: The above process is iterated 

continuously, and each generation produces a new population, 

which is evaluated through the fitness function. After multiple 

iterations, the individuals in the population gradually converge 

to the optimal solution, i.e., finding the optimal LSTM 

hyperparameter combination. 

 

 
 

Figure 1. Industrial boiler combustion prediction model 

architecture 

 

 

3. THERMODYNAMICS-BASED MULTI-OBJECTIVE 

OPTIMIZATION OF INDUSTRIAL BOILER 

COMBUSTION 

 

3.1 Multi-objective optimization problem 

 

The combustion process of industrial boilers involves 

complex thermodynamic and chemical reactions, with the 

main objectives being the maximization of combustion 

efficiency and the minimization of pollutant emissions. 

However, these two objectives are often in conflict: high 

combustion efficiency typically means a high-temperature 

combustion environment, which can lead to significant NOx 

generation; on the other hand, reducing NOx generation by 

lowering combustion temperature or adjusting the fuel and air 

mixture may result in decreased combustion efficiency. 

Therefore, the optimization of industrial boiler combustion is 

a typical multi-objective optimization problem, where a 

balance must be found between efficiency and emissions. 

(1) Maximization of Combustion Efficiency: Combustion 

efficiency is one of the core indicators of industrial boiler 

operation. Higher combustion efficiency means less fuel 

consumption and higher thermal energy utilization, thereby 

reducing operating costs. The optimization of combustion 

efficiency requires precise control of the boiler's combustion 

conditions, ensuring that fuel is fully combusted under 

different load conditions, and that flue gas losses, chemical 

incomplete combustion losses, and mechanical incomplete 

combustion losses are kept to a minimum. 

(2) Minimization of NOx Emissions: NOx is one of the main 

pollutants generated during industrial boiler combustion, and 

its generation mechanism is mainly related to combustion 

temperature and excess air coefficient. NOx generation 

primarily includes thermal NOx, fuel NOx, and prompt NOx, 

with thermal NOx being highly correlated with combustion 
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temperature. When the combustion temperature exceeds 

1300°C, the NOx generation rate increases sharply. Therefore, 

the key to optimizing NOx emissions lies in reducing NOx 

generation by reasonably controlling combustion temperature 

and oxygen supply. 

In actual operation, there is a significant conflict between 

these two objectives. To maximize combustion efficiency, 

boilers typically operate under high temperatures and with an 

appropriate amount of excess air, which can lead to increased 

NOx generation. Therefore, the optimization process requires 

trade-offs between different combustion conditions to 

determine an optimal operating point that maintains high 

combustion efficiency while effectively controlling NOx 

emissions. The problem can be described as the mapping of l 

decision vectors a onto v objective functions d under the 

condition of satisfying E equality constraints and M inequality 

constraints. Assuming that the decision vector is represented 

by a, the decision space is represented by A, the objective 

vector is represented by b, and the objective space is 

represented by B. The equality and inequality constraints are 

represented by he and gm, respectively, and the multi-objective 

optimization problem is characterized by the following: 

 

( ) ( ) ( ) ( )( )1 2/ , ,..., nMIN MAX y f x f x f x f x= =  (9) 

 

Which is subjected to: 

he(a)=0 e=1,...,E; gm(a)≤0 m=1,...,M; a=(a1,a2,...,al)∈A; 

b=(b1,b2,...,bl)∈B. 

 

3.2 Pareto optimality related definitions 

 

To describe the multi-objective optimization process of 

industrial boiler combustion, several key concepts are 

introduced in this paper. 

(1) Pareto Dominance: In the multi-objective optimization 

of industrial boiler combustion, one solution is said to Pareto 

dominate another if it performs better on at least one objective 

and is no worse on the others. Specifically, in the case of an 

industrial boiler, suppose we have two solutions A and B; if 

solution A achieves higher combustion efficiency while 

maintaining the same or lower NOx emissions, or achieves 

lower NOx emissions while maintaining the same combustion 

efficiency, then solution A Pareto dominates solution B. 

Figure 2 shows a diagram of the dominance and non-

dominance relationships. Assuming the problem studied in 

this paper is a minimization problem with two decision vectors 

x and y ∈ Ψ, x strongly Pareto dominates y if and only if the 

following condition is satisfied: 

 

  ( ) ( )

  ( ) ( )

1,2,..., :

1,2,..., :

u u

u u

u v d x s y

k v d x d y

  

  
 (10) 

 

 
 

Figure 2. Dominance and non-dominance relationships 

(2) Pareto Optimal Solution: A Pareto optimal solution is 

one that cannot be Pareto dominated by any other solution in 

multi-objective optimization. In the combustion optimization 

problem of industrial boilers, a Pareto optimal solution 

represents the best balance point between combustion 

efficiency and NOx emissions, meaning no other solution can 

improve one objective without worsening the other. That is, 

any further attempt to improve the balance between 

combustion efficiency and NOx emissions will lead to the 

deterioration of at least one objective. An x∈Ψ that satisfies 

the condition shown below is called a Pareto optimal solution: 

 

 ;   xdoes not exist y y  (11) 

 

(3) Pareto Optimal Set: The Pareto optimal set is the set of 

all Pareto optimal solutions. In the multi-objective 

optimization of industrial boiler combustion, the Pareto 

optimal set includes all solutions that achieve the best trade-

off between combustion efficiency and NOx emissions. This 

set reflects the possible optimal performance of boiler 

combustion under different operating conditions and 

parameter combinations, providing operators with a set of 

optimization choices that can be made based on actual needs 

and priorities. The Pareto optimal set is defined as follows: 

 

  ;   does not xeOT x yxist y=   (12) 

 

(4) Pareto Frontier: The Pareto frontier is the mapping of 

Pareto optimal solutions in the objective space, forming a 

curve or surface on the plane of the two objectives, combustion 

efficiency and NOx emissions. In the optimization problem of 

industrial boilers, the Pareto frontier shows the trade-off 

relationship between combustion efficiency and NOx 

emissions under the current optimization model, reflecting the 

optimal states that can be achieved under different conditions. 

The Pareto frontier is defined as follows: 

 

( ) ( ) ( ) ( )( ) 1 2, , , mOF F f a f a f a PS= =   (13) 

 

3.3 Evolutionary algorithm based on indicators and 

crowding distance 

 

The NOx generation mechanism in industrial boilers is 

mainly influenced by various factors, such as combustion 

temperature, excess air coefficient, fuel composition, and 

mixing uniformity. These factors are intertwined, forming a 

complex nonlinear relationship. When optimizing the 

combustion process of a boiler, both combustion efficiency 

and NOx emissions, which are conflicting objectives, must be 

considered simultaneously. The hypervolume indicator is a 

commonly used multi-objective optimization evaluation 

standard, which evaluates the quality of a solution set by 

measuring the volume of the objective space occupied by the 

solution set. Specifically, the hypervolume indicator can help 

measure the extent to which the entire solution set covers the 

objective space, reflecting the comprehensiveness and 

diversity of the solution set in balancing different optimization 

objectives. 

Based on the combination of the hypervolume indicator and 

the fitness evaluation function, the formula for calculating 

fitness is often used in the combustion optimization of 

industrial boilers, where both combustion efficiency and NOx 
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emissions need to be optimized simultaneously. Suppose that 

in a two-dimensional space, combustion efficiency and NOx 

emissions are considered as two objectives, and the 

hypervolume indicator can measure the quality of the solution 

set by calculating the area formed between the solution set and 

the reference point. If the area covered by the solution set in 

the objective space is larger, it indicates that these solutions 

perform better in balancing the objectives, thus representing a 

higher quality of the solution set. Specifically, the 

hypervolume indicator evaluates the quality of the solution set 

by measuring the volume it covers in the multi-objective space. 

For given multiple objectives, each solution corresponds to a 

point in the objective space. The hypervolume indicator 

calculates the volume enclosed by these points and the 

reference point. Assuming that j* is a scaling factor greater 

than 0 and U is a binary quality indicator, the fitness 

calculation formula based on the hypervolume indicator is 

given as follows: 

 

( )    ( )

 

2 1 *

2 1

,1

\

U a a j

a O a

D a e
−



= −  (14) 

 

The calculation formula for the hypervolume indicator is as 

follows: 

 

( )

( ) ( )

( ) ( )

2 1 1 2

,

:

GF

G G

G G

U X Y

U Y U X if a Y a X a a

U X Y U X else

=

 −    


+ −

 (15) 

 

The choice of the reference point has a significant impact 

on the calculation results of the hypervolume indicator. In 

industrial boiler optimization, the reference point is usually set 

as an assumed worst solution, such as the lowest combustion 

efficiency and the highest NOx emissions. However, selecting 

an appropriate reference point needs to be determined based 

on specific working conditions and optimization objectives to 

avoid biases in the calculation results. It should also be noted 

that the hypervolume indicator is more suitable for evaluating 

the overall quality of a solution set rather than the quality of 

individual solutions. Therefore, when using the hypervolume 

indicator, it is necessary to ensure that the solution set has 

sufficient quantity and good distribution to accurately reflect 

the global characteristics of the optimization problem. 

Particularly in the complex thermodynamic state of industrial 

boilers, the distribution of the solution set may be influenced 

by changes in working conditions, so special attention needs 

to be paid to collecting a sufficiently diverse solution set. 

In the combustion process of industrial boilers, reducing 

NOx emissions may lead to a decrease in combustion 

efficiency, and vice versa. Therefore, in multi-objective 

optimization, a balance must be found between these 

conflicting objectives, and it must be ensured that the selected 

optimization solutions have broad applicability. The 

introduction of the crowding distance sorting strategy can help 

address this challenge. By prioritizing individuals with larger 

crowding distances, the optimization algorithm can maintain 

the population's distribution breadth in the objective space. 

This means that in optimizing industrial boilers, we do not 

focus only on certain specific local optima, but through the 

crowding distance sorting strategy, we ensure that the selected 

solution set covers a diversity of combinations of combustion 

efficiency and NOx emissions. 

The steps for calculating the crowding distance are as 

follows: 

(1) Normalization of Objective Function Values: First, for 

each individual in the population, their performance on each 

objective is calculated. Since the actual operation of industrial 

boilers involves multiple objectives, and the magnitudes of 

these objectives may differ, it is necessary to normalize the 

value of each objective to ensure comparability across 

objectives during the calculation process. 

(2) Sorting for Each Objective: Next, all individuals are 

sorted for each objective dimension. Suppose we are 

optimizing the combustion efficiency and NOx emissions of 

an industrial boiler; individuals in the population are first 

sorted in ascending or descending order based on combustion 

efficiency, and then similarly sorted based on NOx emissions. 

This step is to clarify the relative position of each individual 

in different objective dimensions. 

 

 
 

Figure 3. Industrial boiler combustion multi-objective optimization problem solving steps 
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(3) Calculation of Crowding Distance for Boundary 

Individuals: For individuals that perform as the best or worst 

in any objective (i.e., boundary individuals), their crowding 

distance is usually set to infinity. This is because boundary 

individuals are located at the edges of the solution set in the 

objective space and are key to maintaining diversity. This step 

is crucial to ensure that the optimization algorithm can retain 

solutions with extreme objective values, such as solutions that 

exhibit extremely high combustion efficiency or extremely 

low NOx emissions in industrial boilers. 

(4) Calculation of Crowding Distance for Non-Boundary 

Individuals: For non-boundary individuals in the population, 

the calculation of crowding distance is completed by 

calculating the difference in objective values between adjacent 

individuals in the objective space. Specifically, for each 

individual, the difference in objective values between its 

preceding and succeeding neighboring individuals is 

calculated in each objective dimension, and then these 

differences are summed. In the case of industrial boiler 

optimization, this means calculating each individual's 

proximity in terms of combustion efficiency and NOx 

emissions objectives. In this way, the crowding distance 

reflects the sparsity of an individual in the objective space. 

(5) Normalization and Summation of Crowding Distance: 

After summing the differences calculated across all objective 

dimensions, the total crowding distance may need to be 

normalized to ensure that the influence of different objective 

dimensions is fairly reflected. The larger the final crowding 

distance value, the sparser the individual is in the objective 

space, and the more likely it is to be retained. 

Figure 3 shows the steps for solving the multi-objective 

optimization problem for industrial boiler combustion. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the test set results in Table 1, it can be seen that the 

four prediction models show significant differences in the 

three indicators: RMSE, MAPE, and R-square. The GA-

LSTM model exhibits the best performance across all three 

indicators, with an RMSE of 32.25, MAPE of 0.012, and an 

R-square of 0.9954, demonstrating the model's high accuracy 

and reliability in predicting industrial boiler NOx generation. 

In contrast, the performance of the LSTM, GRU, and RNN 

models declines in sequence, with the RNN model showing an 

RMSE of 61.23, MAPE of 0.048, and R-square of 0.9852, far 

below that of the GA-LSTM model. Based on the 

experimental results, the following conclusions can be drawn: 

the GA-LSTM model, by combining the advantages of genetic 

algorithms and long short-term memory networks, not only 

improves prediction accuracy but also significantly reduces 

errors and excels in capturing the complex nonlinear 

relationships of NOx generation in industrial boilers. This also 

validates the effectiveness of the proposed method in multi-

objective optimization of industrial boiler combustion. In 

comparison, although the LSTM, GRU, and RNN models 

possess certain predictive capabilities, they have limitations in 

handling the high complexity of multi-objective optimization 

in the industrial boiler combustion process. 

Table 2 shows the prediction performance of each model in 

the test set for industrial furnace thermal efficiency. From the 

data, it can be seen that the GA-LSTM model performs the 

best across all indicators, with an RMSE of 0.269, MAPE of 

0.009, and R-square of 0.9932, indicating extremely high 

prediction accuracy, minimal error, and strong explanatory 

power for changes in thermal efficiency. In comparison, the 

LSTM model has an RMSE of 0.427, MAPE of 0.015, and R-

square of 0.9728, still maintaining a high predictive ability but 

slightly inferior to the GA-LSTM. The performance of the 

GRU and RNN models decreases in sequence, with the RNN 

model showing an RMSE of 0.608, MAPE of 0.055, and R-

square of 0.9106, indicating deficiencies in capturing changes 

in thermal efficiency. Based on the experimental results, the 

following conclusions can be drawn: the GA-LSTM model 

excels in predicting industrial furnace thermal efficiency, 

more effectively capturing and modeling complex 

thermodynamic processes. Its outstanding performance in 

reducing errors and improving prediction accuracy validates 

the potential of the proposed method for application in multi-

objective optimization of industrial boiler combustion. 

According to the prediction results of different models on 

the original NOx generation concentration at the furnace outlet 

in the test set shown in Figure 4, significant differences in 

performance can be observed among the models. The model 

proposed in this paper performs stably on most data sequences; 

for example, in test set sequences 0, 12, 38, 60, etc., the 

predicted values are close to the actual values, indicating that 

the model has strong predictive ability in handling complex 

combustion reactions. In contrast, the LSTM model shows 

larger deviations in some sequences, such as in sequences 20, 

42, 48, etc., indicating that the model still has some 

shortcomings in capturing long-term dependencies. The GRU 

model performs better than the LSTM model in several 

sequences, particularly in sequences 2, 26, 68, where the 

predicted values are closer to the actual values, demonstrating 

strong generalization ability. However, the RNN model shows 

larger deviations in the overall prediction results, especially in 

sequences 6, 14, 78, where the predicted values significantly 

differ from the actual values, indicating that its performance in 

complex tasks is inferior to other deep learning models. 

According to the data in Figure 5, the prediction 

performance of different models on the original NOx 

generation concentration at the furnace outlet varies. The 

model proposed in this paper shows high accuracy in most test 

sequences, with predicted values close to the actual values, as 

seen in test sequences 0, 2, 12, 22, 76, etc., where the predicted 

values are very close to the actual values, with errors within ± 

0.2. In contrast, the LSTM model exhibits larger deviations in 

some sequences, such as in test sequences 50, 62, 90, 

indicating certain limitations in capturing the complex 

combustion reaction patterns in some scenarios. The GRU 

model performs relatively steadily, but in some data points, 

such as sequences 10, 24, 36, the predicted values deviate from 

the actual values, suggesting room for improvement in 

handling complex combustion processes. The RNN model, on 

the other hand, performs poorly overall, especially in 

sequences 16, 28, 42, where the predicted values are quite 

scattered, showing significant differences from the actual 

values. From the analysis, it can be concluded that the model 

proposed in this paper has a clear advantage in predicting NOx 

generation concentration, effectively capturing potential 

patterns in complex combustion reactions and achieving high-

precision predictions. Although the LSTM and GRU models 

show some predictive ability in certain scenarios, they are not 

as effective as the proposed model in handling the complexity 

of the industrial boiler combustion process. The RNN model, 

due to its relatively simple structure, fails to adequately adapt 

to the complexity of multi-objective optimization tasks, 
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resulting in lower prediction accuracy. 

From the optimization results in Table 3, it can be seen that 

different optimization algorithms have significant differences 

in reducing NOx emissions and improving thermal efficiency. 

In the unoptimized case, NOx emissions increase with load, 

reaching 325.26 mg/m², 504.28 mg/m², and 578.23 mg/m² at 

155MW, 225MW, and 289MW loads, respectively, while 

thermal efficiency is 91.25%, 91.23%, and 90.23%, 

respectively. Through the NOx minimization optimization 

method, NOx emissions decrease, especially at the 289MW 

load, dropping to 524.12 mg/m², while maintaining a slightly 

increased thermal efficiency. However, the multi-objective 

optimization method proposed in this paper performs more 

optimally, achieving a significant reduction in NOx emissions 

under all loads, such as reducing NOx emissions to 495.26 

mg/m² at the 289MW load, and also significantly improving 

thermal efficiency, particularly at the 155MW load, where 

thermal efficiency reaches 92.36%. In summary, the multi-

objective optimization method proposed in this paper achieves 

a better balance between NOx emissions and thermal 

efficiency. Compared to the single NOx minimization 

optimization method, the proposed method not only 

effectively reduces NOx emissions but also significantly 

improves thermal efficiency. This demonstrates that by 

combining thermodynamic principles with deep learning and 

evolutionary algorithms, it is possible to more effectively 

optimize the combustion process of industrial boilers, 

achieving the dual objectives of pollution control and energy 

efficiency improvement. 

From the optimization results in Table 4, it can be seen that 

the optimization algorithm used in this paper significantly 

reduces the original generation concentration of NOx at the 

furnace outlet under different working conditions while 

improving thermal efficiency. In all working conditions, NOx 

emissions decreased significantly after optimization. For 

example, in working condition 1, NOx emissions decreased 

from 389.32 mg/m² before optimization to 320.12 mg/m², and 

thermal efficiency increased from 90.21% to 91.32%; in 

working condition 9, NOx emissions decreased from 525.32 

mg/m² before optimization to 498.32 mg/m², while thermal 

efficiency increased from 90.32% to 91.35%. Through in-

depth analysis, it can be concluded that the multi-objective 

optimization method proposed in this paper not only has a 

strong effect on controlling NOx emissions but also improves 

the thermal efficiency of the boiler to a certain extent. This 

shows that the method can effectively balance the relationship 

between combustion efficiency and environmental protection 

when dealing with multi-objective optimization problems in 

complex combustion processes, ensuring that pollution 

emissions are reduced while maintaining or improving energy 

utilization efficiency. 

Such results further validate the significant practical 

application value of the innovative method combining 

thermodynamic principles with deep learning and 

evolutionary algorithms in industrial boiler combustion 

optimization, providing an efficient and feasible solution for 

industrial process control. 

 

Table 1. Results of various model indicators in the test set 

for industrial boiler NOx prediction models 

 
Prediction Model RMSE MAPE R-square 

GA-LSTM 32.25 0.012 0.9954 

LSTM 43.65 0.015 0.9936 

GRU 49.58 0.032 0.9874 

RNN 61.23 0.048 0.9852 

 

Table 2. Results of various model indicators in the test set 

for industrial furnace thermal efficiency 

 
Prediction Model RMSE MAPE R-square 

GA-LSTM 0.269 0.009 0.9932 

LSTM 0.427 0.015 0.9728 

GRU 0.578 0.029 0.9243 

RNN 0.608 0.055 0.9106 

Table 3. Optimization results with NOx furnace outlet original generation concentration as the main optimization objective 

 
Optimization Algorithm Optimization Content Unit Load 

   155MW 225MW 289MW 

Unoptimized 
NOx mg/m2 325.26 504.28 578.23 

Thermal Efficiency % 91.25 91.23 90.23 

NOx Minimization 
NOx mg/m2 302.23 465.23 524.12 

Thermal Efficiency % 91.25 91.26 90.32 

Proposed Objective 
NOx mg/m2 284.23 440.23 495.26 

Thermal Efficiency % 92.36 91.56 91.32 

 

Table 4. Results of using the proposed optimization algorithm to reduce NOx furnace outlet original generation concentration as 

the main objective 

 

Working 

Condition 

Coal Feeding 

Rate 

Primary 

Air 

Secondary Air Damper 

Opening Oxygen 

Content 

NOx Before 

Optimization 

NOx After 

Optimizati

on 

Thermal 

Efficiency 

Before 

Optimization 

Thermal 

Efficiency 

After 

Optimization 
A B C D 

1 28.56 401.23 0.37 0.32 0.41 0.057 3.69 389.32 320.12 90.21 91.32 

2 38.62 425.36 0.38 0.32 0.41 0.056 3.55 330.21 235.12 91.36 91.32 

3 74.25 418.23 31.25 15.36 32.32 15.23 1.89 318.26 300.14 91.36 92.65 

4 79.35 422.36 36.32 22.31 37.26 22.36 1.82 365.32 278.65 91.25 91.25 

5 89.32 436.23 35.32 20.12 35.26 23.31 2.23 397.25 315.23 91.33 92.36 

6 96.36 440.21 51.24 28.36 50.24 28.69 2.56 489.21 389.24 91.54 92.35 

7 99.54 425.36 69.35 36.21 68.26 35.68 1.89 489.23 391.25 91.22 92.58 

8 100.23 451.32 90.32 59.26 91.25 58.69 1.00 415.32 350.21 91.26 92.58 

9 121.36 451.55 99.23 99.36 99.36 99.36 1.43 525.32 498.32 90.32 91.35 
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Figure 4. Prediction results of different models on the original NOx generation concentration at the furnace outlet in the test set 

 

 
 

Figure 5. Prediction results of different models on thermal efficiency in the test set 

 

 

5. CONCLUSION 

 

This paper proposes a novel multi-objective optimization 

method for industrial boiler combustion by combining 

thermodynamic principles, deep learning, and evolutionary 

algorithms. The first part of the study is based on 

thermodynamic principles, where a high-precision prediction 

model of the industrial boiler combustion process is 

constructed. Through deep learning algorithms, this model can 

accurately capture potential patterns in complex combustion 

reactions, thereby improving the prediction accuracy of NOx 

emissions and thermal efficiency. The second part of the study 

focuses on solving the multi-objective optimization problem 

using evolutionary algorithms, aiming to achieve the optimal 

balance between combustion efficiency and pollutant 

emissions. The experimental results show that the proposed 

method can significantly reduce NOx emissions under 

different working conditions, while also improving thermal 

efficiency in most cases, demonstrating the superiority and 

feasibility of the method in practical applications. 

Despite the significant progress made in this study, there are 

still some limitations. First, the model's generalization ability 

in dealing with extreme conditions or fuel type variations 

needs further validation. Second, the optimization efficiency 

and convergence speed of the evolutionary algorithm may 

encounter bottlenecks in large-scale industrial applications. 

Additionally, future research can further expand the 

applicability of this method, for example, by introducing more 

industrial process parameters for comprehensive optimization, 

or by combining other advanced algorithms such as 

reinforcement learning to improve optimization accuracy and 

efficiency. Conducting larger-scale experimental validation 

with actual industrial boiler operation data is also an important 

direction for future research. In summary, this study not only 

provides a new methodology for the optimization of industrial 

boiler combustion but also offers a solid theoretical foundation 

and reference for subsequent related research. 
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