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Viscous incompressible fluid which flows through a cross-section of a circular or non-

circular form with uniformly heated walls can be observed in various engineering 

applications such as ventilation, air conditioning and thermal comfort. These applications 

particularly concern the buildings construction, and interior design of aircraft and other 

vehicles. However, the contemporary design evolution of various technological 

constructions requires the introduction of more and more conduits with noncircular form.  

Numerical solutions are strongly required to analyze and understand the behaviour of 

flows, especially, in the presence of complex cross-section geometries and the limitations 

of analytical solutions related to this flow. Problems describing these specific flows are 

modelled. Solutions based on the finite elements method are investigated to establish the 

fluid parameters and also the evolution of entropy generation. These remarkable data are 

important to ameliorate the performance of a thermal system. The significant parameter 

(entropy generation number Ns) can be determined once the governing equations are 

solved to obtain temperature and velocity distributions. The results clearly show how the 

considered parameters evaluate transversely and also in the longitudinal direction of the 

desired conduit. They indicate that Ns decreases transversely from heated walls towards 

the conduit centreline, where the minimum value is located. Additionally, Ns increases as 

the Prandtl number and the fluid viscosity are important. 
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1. INTRODUCTION

Internal flow is the flow that occurs within a conduit. The 

fluid body is of finite dimensions, and it is completely 

confined by the conduit walls (inner surfaces of a conduit). 

Diverse engineering applications used in energy conversion 

technologies, environmental control, and chemical processing, 

are influenced by these flows. This influence is related to 

pressure loss, heat flow, and mass transfer. 

Particular attention will be focused on specific exploitations 

related to airflow distribution within indoor environments, 

ventilation, indoor climate, air conditioning and thermal 

comfort. The development of previous applications is directly 

connected with the improvement of energy efficiency and 

environmental protection. These aims present a primary 

concern for various fields such as the building construction and 

interior design of aircraft and other vehicles (see Figure 1) [1-

3]. 

Conduits with isothermal walls can be observed in various 

thermal systems and components, such as ducts of hot or cold 

air, thermal exchangers, bends, diffusers, etc. [1, 3]. 

Due to the increase in applications related to flow 

distribution and energy consumption, the effective exploit of 

thermal systems has become an important topic in current 

engineering studies. Developing the performance of these 

systems is crucial for appropriate designs concerning modern 

engineering constructions, including thermal devices. 

Internal flow is concerned with fluids flowing in pipes, 

passages, conduits, culverts, tunnels and other systems and 

components. The cross-section of all the above cited elements 

can be simple or complex. 

The cross-section form, especially if it is complex, can have 

a significant impact on the performance of thermal systems 

and components, and can considerably affect pressure loss, 

heat transfer, and mass transfer. Moreover, it is very practical 

to determine parameters that help us to understand how the 

flow behavior is affected by variations in the cross-section 

form and thermal conditions. 

In recent years, computational research on internal flow has 

mainly focused on the fluid behavior within a conduit to 

determine the effects of numerous physical and geometrical 

parameters. Also, the pressure losses in a conduit and flow rate 

have been considered in various recent papers. In several 

studies, the impacts of a change in the conduit form and the 

input heat power were delved. Triveni and Panua [4] presented 

numerical analysis and investigated the problem of natural 

convection applied in a cavity of triangular form with various 

forms of hot wall. Menni et al. [5] investigated the airflow 

inside a channel of rectangular form with an isothermal wall 

by means of FLUENT software and simplification of the 

problem geometry to the configuration of shell-and-tube heat 

exchangers. Bennoud [6] numerically studied the pressure and 
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temperature distributions of the fluid which flows inside an 

isothermal wall conduit of circular form. 

Previous papers solved problems of internal flow, giving 

special interest to the problem of the coupling of the pressure 

and velocity fields. But it is always interesting to investigate 

the problem of performance in thermal systems and energy 

conversion technologies. Ambethkar and Kushawaha [7] and 

Wang et al. [8] studied the performance improvement in 

thermal systems and gave an analysis concerning fundamental 

heat transfer problems. Indeed, various methods were 

developed and used to predict the performance of engineering 

applications concerning thermal systems and energy 

conversion technologies [9, 10]. 

Furthermore, it is known that all engineering systems 

subjected to thermal gradients and friction impacts are 

subjected to energy loss. This loss results in the generation of 

entropy in this system. Thus, the optimization of the 

performance of thermal systems can be achieved by applying 

the principle of minimizing entropy production. 

Thermodynamics laws, especially the second law analysis, 

are applied to investigate and research the sources of 

irreversibility in terms of the entropy generation number. From 

this number, the active zones encouraging entropy generation 

can be focused. This way is important to understand and 

improve the system performance. Also, it is important to 

determine the importance of changes in viscosity, and heat 

convection in this improvement. 

The principle of minimizing the entropy production based 

on the second law of thermodynamics was first introduced in 

the studies of Bejan [11, 12]. 

Narusawa [13] gave an interesting analysis of this principle 

for fluid flow and heat transfer within a rectangular duct. 

Additionally, Mahmud and Fraser [14] carried out this 

principle to convective heat transfer problems related to a non-

Newtonian flow inside a conduit with two parallel plates. 

Makinde and Aziz [15] investigated entropy generation 

related to a viscous incompressible flow. Basant and Taiwo 

[16] and Bouabid et al. [17] presented an analytical study of 

the effect of the channel inclination on the entropy generation 

in viscous incompressible fluid. Their results show that the 

channel inclination increases the entropy generation. 

Several other investigations related to the above principle 

are reported in various papers. The application of this principle 

is established, for example, to industrial heat transfer problems, 

and diffusers and nozzles optimization [18-20]. 

The objective of this work is to present a numerical 

investigation of a flow within a conduit with isothermal walls. 

This flow is viscous and incompressible, and the conduit is of 

a complex cross-section. The production of entropy must be 

reduced to the maximum and the influence of various 

parameters will be studied and deduced. 

The principal idea of the developed approach is a 

generalization of the steady Poiseuille flow for a laminar 

incompressible viscous flow. This flow is developed between 

two horizontal parallel plates of a conduit with constant wall 

temperatures. The distributions of velocity, pressure and 

temperature of the studied physical domain are determined by 

solving numerically governing equations. These equations are 

the continuity, momentum and energy equations, which are 

known as Navier-Stokes equations. The Finite Elements 

Method (FEM) was applied to obtain a numerical result of 

these equations. Subsequently, the dimensionless quantities, 

such as the entropy generation number (Ns) and irreversibility 

ratio are derived. These quantities are used to interpret the 

consequence of the viscous dissipation parameter. The 

analytical results as well as simulations based on the FEM 

method are carried out using the ‘in-house-code’ developed 

during this study. The present results have been discussed by 

numerical analysis and graphical representation. 

 

 
 

Figure 1. Application examples concerning building construction and interior design of aircraft and other vehicles 
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2. PROBLEM MODELING AND MATHEMATICAL 

FORMULATION 
 

2.1 Problem modeling 

 

The studied problem consists of a conduit with a fluid that 

flows steadily in the x-direction. The spacing of the conduit is 

considered in the z-direction taken normally to the x-direction. 

The necessary physical properties of the fluid, including 

viscosity and density, are assumed to be constant. The 

transversal section of the conduit can have a complex form and 

the conduit walls are uniformly heated. 

The model of the chosen configuration in this work is 

illustrated in Figure 2. 

 

 
 

Figure 2. Description of the problem geometry 

 

The classical fluid equations, so-called Navier–Stokes 

equations, can be used to describe the internal flow of a 

viscous and incompressible fluid inside a conduit with 

isothermal walls. 

The differential form of these equations (conservation of 

mass, conservation of momentum, and conservation of energy) 

is given in the general case as: 
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By considering the fact that the density is constant for 

incompressible flows, the equation of energy can be given in 

different ways, such as the one given below. 
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where, ρ, V, P, μ, F, h, K, and Ф denote the density, velocity 

vector, total pressure of the fluid, dynamic viscosity of the 

fluid, volume force, specific enthalpy, thermal conductivity 

and dissipation function, respectively. 

On the other hand, ∇ is the gradient operator; (∇.) is the 

divergence operator, and Δ is the Laplace operator. 

However, the analytical solution of these equations is not 

always easy due to various difficulties which essentially arise 

from the nonlinearity of equations and complexity of 

geometries. 

Indeed, the complexity and analysis difficulties of studied 

problems induce that the exact solution is only available for 

restricted simple cases. Therefore, the use of approximate 

numerical solutions is suitable and indispensable. 

The subsequent hypotheses and assumptions will be used to 

simplify the previous equations: 

The fluid properties, such as the density and viscosity are 

taken as constants, and the flow is the same throughout the 

cross-sections. 

Furthermore, the body force and heat source are explicitly 

given, the velocity is constant along the adjacent layers of fluid, 

and the movement of the flow is uniform and stationary. 

Eq. (3) decouples from Eq. (1) and Eq. (2) based on the 

assumption that the flow is assumed to be isothermal. The 

temperature will only be introduced through the viscosity 

parameter.  

In the absence of thermal interaction, one must solve the 

continuity and momentum equations to obtain velocity and 

pressure distributions. 

The Navier-Stokes system can be simplified as follows, 

assuming the above simplicities. 
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where, υ is the kinematic viscosity parameter υ = μ/ρ. 

(Eq. (4) is known as the incompressibility constraint, ρ = 

Const). 

The terms “(V. ∇) V”, ΔV and ΔP in Eq. (5) denote the 

convective term, diffusion term, and pressure gradient. 

The convective impact may be dropped for diffusion 

dominated flows. ΔP is taken as a constant value. The body 

forces have been assumed to act perpendicularly to the flow 

direction. 

Eventually, Eq. (5) returns to a simplified form given by Eq. 

(6) as: 
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Eq. (6) is known as Poisson’s equation, which is a 

differential equation of second order with a constant second 

term. 

The equations of continuity and momentum for the steady 

incompressible viscous flow are given as follows: 
 

0v=
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.  
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The complete solution of Eq. (7) and Eq. (8) is required to 

obtain results and discussion. 

Adequate initial and boundary conditions for the problem 

geometry and fluid variables are imposed to close the system. 

The pressure varies in the x-direction only due to the effects 

of friction forces and viscosity on walls. It is possible to treat 

the flow as fully developed because it is essentially axial 

(Vx≠0, Vy = Vz = 0). The velocity at conduit walls equals zero 

because the boundary conditions are of non-slip type. 
 

2.2 Thermal effects 

 

In the case of incompressible flow, fluid properties do not 

change with temperature, and they are taken as constant. If 

fluid properties are functions of temperature, all equations 

become coupled, as in the case of compressible flows. 

It will be noted that for an incompressible flow, it is 
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impossible to talk about the specific thermodynamic equation, 

so-called equation of state, which is always used in the case of 

compressible flows. 

In the case of a viscous incompressible fluid within a 

conduit with isothermal walls, the equations system consists 

of the continuity and momentum equations. 

Equations governing thermal effects could be taken and 

thermodynamic relations (specific relation of enthalpy for 

example) must be used to construct the system of fluid-

mechanical equations. 

It was mentioned above for incompressible flows that the 

energy equation is decoupled from the two other equations to 

obtain the unknown velocity and pressure fields without 

knowing the temperature. 

Using the relation of enthalpy given as (h = Cp T), the 

equation of energy (Eq. (3)) can be rewritten as: 
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Eq. (9) can be simplified using the following assumptions: 

-The density ρ is taken as constant (incompressible flow). 

-The pressure term is usually neglected, ∂P/∂t≈0. 

-The dissipation function is irreversibly converted into 

internal energy. The radiative heat transfer and internal heat 

generation are neglected, Ф≈0. 

-The fluid movement is uniform and stationary, ∂/∂t≈0. 

Eq. (9) takes the following form: 
 

 . ΔT )TV( =  
(10) 

 

where, α denotes the thermal diffusivity (α = k/ (ρ Cp)). 

In the present problem, it is assumed that the temperature at 

the conduit walls is constant (Tw = Cte). 

Applying the boundary conditions T(0, z) = T0 (inlet 

condition), T(x, wall) = Tw (walls temperature) and ∂T/∂x(x, 

0)=0 (symmetric temperature condition). 

 

2.3 Entropy generation 

 

Indeed, it is essential to establish parameters responsible for 

generating entropy in the case of internal flows (more details 

can be found in studies [14, 17-20]). By applying some 

simplifying assumptions, the formula of the entropy 

generation rate is obtained and given as: 
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Also, the characteristic entropy generation rate is defined as: 

 

𝐸𝑐 =
𝐾(𝑇𝑤 − 𝑇0)2

ℎ2𝑇0
2  (12) 

 

The terms, on the left hand of Eq. (11), represent the sources 

of irreversibility. They represent the energy losses by heat 

transfer (due to conduction effect), and by fluid friction (due 

to viscosity effect), respectively. 

Eq. (11) must be divided by Eq. (12). The dimensionless Ns 

number is determined as: 
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2𝐸𝐺
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It is possible to expand Eq. (13) in non-dimensional form. 

It can be written using the dimensionless velocity and 

temperature with the application of appropriate assumptions 

and boundary conditions. 

The pressure gradient, fluid viscosity and density are taken 

as constant, (the velocity is a function of y only, Vx≠0 = f(y), 

Vy = Vz = 0, ∂V/∂x = 0, Vx = 0 at walls), (see Section 2.1). 

Dimensionless variables and parameters are introduced, and 

the entropy generation number becomes in terms of these 

dimensionless variables: 
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where, Pe, Br and Ω are the Peclet number, Brinkman number 

and temperature difference parameter respectively (Ω = (Tw − 

T0)/T0). 

Nx, Nz and Nf are dimensionless entropy numbers due to 

both axial and transverse heat conduction, and to viscosity 

(fluid friction) respectively. 

The entropy generation number Ns can simply be 

determined once the velocity and temperature distributions are 

obtained. 

From the number Ns, an important analysis can be 

performed in order to know which parameter dominates the 

studied model (the fluid changes or the heat transfer). 

The performance of the engineering processes regarding 

thermal systems can be predicted by the analysis based on the 

thermodynamics second law. 

 

 

3. SOLUTION OF THE PROBLEM 

 

The system of equations (Eq. (1)-(3)) governs the desired 

flow. These equations are generally complex and nonlinear 

(the term “(V. ∇) V” in Eq. (2) presents nonlinear convective 

term). With suitable assumptions, a simplified form of this 

system can be obtained. 

It is very usual to write these governing equations in 

dimensionless form. To do this, various dimensionless 

variables and parameters must be introduced to select the 

characteristic quantities that describe the flow problem. 

The dimensionless governing equations and their relative 

dimensionless quantities must be defined and obtained. These 

equations are related to a steady, viscous and incompressible 

flow, and associated with the appropriate boundary conditions. 

Note that the form of these dimensionless equations is not 

unique and can also be expressed in several ways [18-20]. 

Indeed, dimensionless equations are very similar to their 

dimensional counterparts. Several additional dimensionless 

numbers such as Reynolds number (shown in the momentum 

and energy equations), Eckert, Prandtl and Peclet numbers 

(shown in the energy equation) must be added and used to 

obtain a simplified system of governing equations. 

The general procedure for solving the problem described 

above involves the following steps: 

Obtain and define the governing equations of the 

considered problem: give the mathematical model of 

governing equations in the simplified form most possible. 

Recall that the present study is a CFD-problem which 

concerns a viscous and incompressible fluid. The fluid flows 

in a conduit of complex form with isothermal heated walls (see 

Section 2.1). 
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The system of governing equations can be delivered in the 

simplified dimensional form or also in the dimensionless form 

with their relative dimensionless quantities. 

Obtain distributions and profiles of the velocity and 

pressure: solve the above system of equations. 

Proceed to the heat transfer analysis to obtain the 

temperature distributions: solve the energy equation subject to 

the appropriate boundary and interface conditions of the 

thermal domain. The solution of the Eq. (3), the equation of 

energy, can be generally solved analytically. 

Find the entropy generation distribution through the 

conduit. The entropy generation function is obtained using the 

temperature and velocity distributions. IT is used to limit the 

entropy production rate through the conduit. 

The analysis of entropy generation minimization EGM is an 

approved strategy to optimize the amelioration of thermal fluid 

devices by assessing both fluid parameters and properties. 

Finally, investigate effectively the problem: the physical and 

thermodynamic quantities must be illustrated in curves and 

graphs. 

 

3.1 Analytical solutions for a simple conduit  

 

A famous example of an internal laminar flow is the 

Poiseuille flow, which is illustrated in Figure 3. This flow can 

be adapted for conduits having a circular section. 

In the next section, an analytical algorithm with appropriate 

boundary conditions will be developed and presented to 

resolve of Eqs. (7) and (8). 
 

 
 

Figure 3. Physical model of the Poiseuille flow 

 

The flow remains identical to the bi-dimensional flow with 

revolution symmetry. It stays same to it even in all plans 

passing by the conduit axis. The normal and tangential 

components of the velocity at the conduit walls are null. 

The flow is viscous, the density is constant and walls 

surfaces are smooth. The heat transfer and frictions impact are 

negligible. 

The studied flow is considered as a fully developed flow. 

The flow parameters and properties must be obtained without 

including the conduit entrance region in the calculations. 

The equation of continuity with a constant value of ρ is 

given as follows: 
 

𝜕𝑉

𝜕𝑥
= 0 (15) 

 

The differential equation of motion for this type of a 

Newtonian fluid with constant μ (fluid viscosity) is given in 

Cartesian form as:  
 

𝜇
𝜕2𝑉

𝜕𝑧2
−

𝜕𝑝

𝜕𝑥
= 0 (16) 

 

A constant value, non-zero value, must be given to the 

pressure gradient ∂p/∂x (if ∂p/∂x = 0, then V = 0 and there is 

no flow.) and the conduit half-width is d in the Z-direction. 

Using the no slip boundary conditions V = 0 at Z1 = d and at 

Z2 = -d, the expression for the fluid velocity profile is given 

by: 

 

𝑉 =
1

(2 𝜇)
 
𝜕𝑝

𝜕𝑥
 (𝑑2 − 𝑧2) (17) 

 

The viscous and stationary flow within a cylindrical tube is 

an interesting extended case of the above flow. This flow is 

illustrated in Figure 4. 

 

 
 

Figure 4. The stationary viscous flow in a cylindrical tube 

 

To resolve this problem, physical properties of the flow 

(such as viscosity and density), and the pressure gradient ∂p/∂x 

are taken as constant. V = 0 at r = R, and ∂Vx/∂r = 0 at r = 0 

are applied as adequate boundary conditions. 

The expression of velocity distributions, in cylindrical 

coordinates, is given as: 

 

𝑉𝑥 =
1

(4 𝜇)
 
𝜕𝑝

𝜕𝑥
 (𝑅2 − 𝑟2) (18) 

 

3.2 Numerical solution 

 

Due to the complex form of the conduit section, numerical 

solutions are needed to solve the governing equations of the 

studied problem. Numerical solutions for velocity, pressure 

function and dimensionless temperature are obtained using a 

developed code based on the FEM method. This in house-code 

is written and performed in the Fortran language. 

The governing equations are discredited by applying 

appropriate schemes based on a discrete technique. 

Geometrical dimensions and selection of the mesh element 

type as well as the input of fluid parameters, and boundary 

conditions are necessary to obtain the mesh of the considered 

domain. The mesh generation is the first important step in the 

formulation by FEM method. 

For the problem analysis by the FEM method, various 

discrete formulations can be applied. In this work, the weak 

formulation of Galerkin is chosen to be used. 

Using the Galerkin’s formulation, the domain of the studied 

configuration is meshed into a number of sub-domains. The 

nodal shape functions defined on the mesh element are the 

basis functions which are used to numerically discretizate Eq. 

(8). 

The unknown functions of each mesh element are 

approximated by these shape functions as: 

 

𝑉 = ∑ 𝑁𝑖𝑉𝑖

𝐾𝑒

𝑖=1

 (19) 

 

where, Ke denotes the number of nodes attached to the mesh 
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element. Ni and Vi are the nodal interpolation function and 

potential function of the ith node of the element, respectively. 

The Galerkin formulation permits the calculation of 

elemental values on each element of the mesh and the 

generation of a global system of equations. 

So, the FEM formulation transfers the algebraic system of 

equations into an equivalent matrix form that allows the 

resolution of the problem and calculation of the unknown 

values. 

The global system is written as:  

 

[k]{V}={F} (20) 

 

where, [K] is the (N × N) positive, banded and symmetric, 

final matrix. {V} is the (N × 1) vector of velocity distributions 

and {F} is the (N × 1) vector of sources (N is the total number 

of nodes of the meshed domain). 

The Gauss elimination method is used to solve the algebraic 

system (20). This algorithm is integrated using a 

computational developed code. 

Indeed, the mathematical approach and its appropriate 

algorithms are integrated in a computational code. 

For numerical integration, the governing equations are 

numerically solved using a developed Fortran code. This 

iterative solution enables to obtain values for velocity, 

pressure, and temperature at mesh nodes. 

Once the velocity, temperature, and pressure values are 

obtained, other parameters of this flow can be calculated and 

deduced, such as total surface Atotal, hydraulic diameter DH, 

perimeter of meshed section Pm, maximum velocity Vmax, 

mean velocity Vmoy, pressure losses, friction K and 

dimensionless numbers. 

 

 

4. RESULTS AND DISCUSSIONS 

 

Initially, the computational code was tested to validate the 

reliability of the used method. The results are compared with 

some cases of conduits that have a simple cross-section and 

exact analytical solutions. The validation verifies code results 

by recovering the analytical solution of Hagen-Poiseuille [1, 

10]. A comparison between analytical and numerical results 

permits the validation of calculus concerning velocity and 

temperature profiles for configurations of a simple geometry 

(circular section). 

The velocity components are computed at the grid nodes of 

the considered mesh, while the other variables and parameters 

are derived from the obtained velocity values. 

An application related to a cross-section of a cylindrical 

conduit having a circular form was performed. The mesh was 

realized for this cross-section with 289 nodes and 512 

triangular elements, and the circle radius is r=0.1m. 

The fluid density, dynamic viscosity and Pe are taken as 

ρ=1.205 kg m-3, μ=1.82 kg m-1s-1, Pe=7.1, respectively. 

The velocity profile is plotted in Figure 5(a), which presents 

a comparison between analytical and computational results. 

On the other hand, Figure 5(b) shows the distribution of 

dimensionless velocity. 

The illustrated values are displayed for a specific range (z [-

0.1, 0.1] m) and for different positions of x in the Z-axis 

direction. The fluid velocity profile in Figure 5(a) is parabolic, 

and it increases transversely to the position of the circle 

centreline. Lower values are observed near the walls until a 

null value at (r=R). The maximum value is obtained along the 

circle centreline. Present results show a good agreement with 

the analytical results and an average error of 0.03 is obtained 

between both solutions 

Figure 6 shows that the temperature reduces transversely. 

The maximum value is obtained at the heated walls, the 

minimum value is presented along the centreline of the conduit, 

and an average error of 0.04 is obtained for this time. 

 

 
(a) 

 

 
(b) 

 

Figure 5. (a) Velocity profiles; (b) Dimensionless velocity 

profile 

 

The analytical and computational results of the temperature 

are plotted in Figure 6. 
 

 

Figure 6. Dimensionless temperature profiles 
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Figures 5 and 6 illustrate a comparison between analytical 

and numerical results for a conduit of a circular section. This 

comparison is used to validate the developed numerical code. 

The results present a good agreement between analytical 

and present results. The obtained average error is of 0.04 for 

temperature profiles and 0.03 for velocity profiles. 

To exploit the performance of numerical analysis, other 

parameters having a more significant indication can be 

determined and calculated. 

Figure 7 presents the evolution of the dimensionless 

temperature profile for different positions in the longitudinal 

direction (x=0.4, 0.6, 0.8).  

It can be observed that there is a variation and change of 

temperature profile in the longitudinal direction (x-direction) 

of the conduit, the fluid temperature decreases from the inlet 

to the outlet. 
 

 
 

Figure 7. Temperature evolution in a longitudinal direction 

 

The entropy generation number (dimensionless number) 

decreases transversely. The maximum value is obtained on the 

heated walls and the minimum value is focalized along the 

centreline of the cross-section (see Figure 8). 

 

 
 

Figure 8. Evolution of the entropy generation number for 

different positions 
 

In Figure 8 also, the evolution of entropy in the longitudinal 

direction is presented for different positions (x=0.4, x=0.6, 

x=0.8) and it can be shown that this number decreases in the 

longitudinal direction. 

After validation, simulations can be carried out for various 

geometries. The developed computational code can be used to 

solve similar cases to the above CFD problem. This means any 

flow problem of incompressible viscous fluid in a conduit with 

uniformly heated walls and complex geometry of the cross-

section. 

Initially, several geometries were selected so that the forms 

of their cross-section are different, but their relative surfaces 

are roughly equal. 

This choice is justified by the reason to keep the same value 

of the pressure gradient and the same properties of the desired 

fluid which are mentioned in the above paragraphs. 

Figure 9 shows the profiles of dimensionless velocity for 

different geometries with perfect symmetry. 
 

 
(a) 2D view 

 

 
(b) 3D view 

 

Figure 9. Dimensionless velocity profile for different 

geometries 2D and 3D view 

 

Figure 9 shows that the velocity profile is always parabolic 

in nature for the different axisymetric configurations. It 

increases transversely to the position of the centreline of the 

selected conduit with a null value on the walls. The maximum 

value is always observed along the conduit centreline for 

geometries having a perfect symmetry. 

Table 1 shows the various geometrical characteristics of the 

selected geometries. 

The selected geometries present perfect symmetry when 

compared to the plans or the axes. 

The illustrated values are displayed for a specific range (z 

[0.0, href] m) and a fixed position in the longitudinal direction 

(x=0.4). It is worth noting that the z-axis is parallel to the yz-

plan and regular to the x-axis. 

The bottom wall is taken as the z-axis central value (z=0) 

and the conduit half-width is href/2 in the z-direction which is 

also the conduit centreline (y=0, z= href/2). 
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Table 1. Characteristics of the selected geometries 

 

Selected geometry 

     

Dimensions (m) R=0.14 
a=0.32 

b=0.2 

R1=0.1 

R2=0.2 
a=0.25 

a=0.30 

b=0.075 

Area (m2) A=0.0615 A=0.064 A=0.0623 A=0.0625 A=0.0675 

 

Figure 10 shows the change in the temperature profile for 

different geometries with perfect symmetry. 

The temperature distribution is determined to growth 

towards the wall. The fluid temperature decreases from the 

conduit centreline to the heated partitions for all selected 

geometries. 

In Figure 11, the evolution of the entropy generation 

number in the transversal cross-section (yz plane) is presented 

for different geometries, for a fixed position in the longitudinal 

direction (x=0.4). This dimensionless number decreases 

transversely from the heated walls where the maximum values 

can be observed on the conduit centreline. 

 

 
 

Figure 10. Dimensionless temperature profiles 

 

 
 

Figure 11. Evolution of the entropy generation number for 

different geometries (x=0.4) 

 

The value of entropy generation number near the walls is 

higher than those at the conduit centreline. This is due to the 

effect of surface friction on the fluid which increases entropy 

production. 

4.1 Effect of the non dimensional parameters 

 

To develop this numerical investigation, the effect of the 

non dimensional parameters must be studied in order to 

determine which ones are most dominant. 

Several values of the Prandtl number Pr are chosen in 

accordance with the appropriate fluids (air, water, …). The 

variations of the Entropy generation number for various fluids 

are represented in Figure 12. 

Figure 12 illustrates that entropy production augments with 

an increase in Pr. This is due to the accumulation of heat within 

the conduit resulting in a rise in fluid temperature. 

It is worth noting that thermal diffusivity is inversely 

proportional to Pr, and its increase leads to a rise in the fluid 

temperature. 

 

 
 

Figure 12. Evolution of the entropy generation number for 

different fluids 

 

 

5. CONCLUSION 

 

In this paper, an incompressible viscous fluid within a 

conduit with isothermal walls is analyzed using the FEM 

method and thermodynamics laws. The velocity and 

temperature distributions are used to deduce and calculate the 

entropy generation number for various cases. 

The numerical calculation of various dimensionless 

parameters and physical quantities such as velocity, 

temperature, and entropy generation has been carried out using 

a Fortran code developed during this study. The influences of 

some parameters on the flow behavior are shown graphically 

and finally, the active zones where the entropy generation is 

maximal can be identified. 

It is important to obtain an optimal level between the 

dynamic point of view (minimal velocity) and thermal 

improvement (better transfer of heat). Thus, it is significant to 

design a model that allows users to deduce the influence of 
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diverse parameters on the generation of entropy which must 

be minimized. 

The effect of the cross-section and fluid characteristics on 

the velocity, pressure, temperature distribution as well as the 

impact of Prandtl number on the entropy production were 

considered. 

Interesting results can be reported, such as: 

The velocity decreases transversely from the conduit 

centreline where the maximum value is focused to the heated 

walls where null values are observed. 

The fluid temperature increases from the conduit centreline 

to the heated walls for all selected geometries with perfect 

symmetry. 

The dimensionless number Ns (entropy generation) 

decreases transversely from the heated walls to the conduit 

centreline where the minimum value is identified. 

It can also be seen that the Ns number increases with the 

increase of Prandtl number Pr. Furthermore, it is confirmed 

that the entropy generation increases when the viscosity of the 

fluid is important. 

Simulations prove that the thermal conduction 

irreversibility dominates along the conduit centreline. The 

augmentations in dimensionless parameters can also motivate 

the domination of the fluid friction irreversibility near the 

conduit heated walls. 

The proposed approach allows for an efficient and accurate 

calculation of the velocity and temperature profiles. It can be 

applied to determine the entropy generation rate for any form 

of the cross-section related to a conduit with isothermal walls. 

This conduit confines an incompressible, viscous and 

stationary flow. Furthermore, the model can be without 

difficulty adapted to investigate the entropy generation rate of 

any similar flow in a plan or inclined conduit. 
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NOMENCLATURE 

 

A  cross section, m2 

Cp specific heat, J. kg-1. K-1 

d  tube diameter, m 

Ec characteristic entropy generation rate 

EG entropy generation rate 
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F body force, N 

h specific enthalpy 

k thermal conductivity, W.m-1. K-1 

Ns entropy generation number 

P  pressure, Pa 

Pr  Prandtl number 

R, r  radius, m 

Re Reynolds number 

T Temperature, K 

T0 inlet temperature, K 

Tw walls temperature, K 

V velocity, m s-1 

Vmax maximum velocity, m s-1 

Vmoy average velocity, m s-1 

Vx, Vy, Vz velocity components 

x x Cartesian axis direction, m 

y y Cartesian axis direction, m 

z z Cartesian axis direction, m 
 

Greek symbols 

 

 is the gradient operator 

Δ is the Laplace operator 

 is the divergence operator 

 thermal diffusivity, m2. s-1 

μ dynamic viscosity, kg. m-1.s-1 

ν kinematic viscosity parameter 

ρ fluid density, kg m-3 

φ dissipation function 
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