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Lung cancer emerges as a notable cancer affecting individuals of all genders on a global 
scale. Timely detection in its early stages significantly increases the chances of survival. In 
recent years, the advent of automatic lung cancer detection systems has played a significant 
role in enhancing diagnostic rates. Despite the advantages presented by machine learning 
models over traditional methods and their breakthroughs in various image classification 
tasks, accurately classifying lung cancer remains a challenge. This challenge is attributed to 
the complexity involved in selecting an appropriate machine learning model and fine-tuning 
hyperparameters. This paper aims to enhance the performance of a lung cancer classification 
system by optimizing hyperparameters in the Extreme Learning Machine (ELM) using 
metaheuristic optimization algorithms. To achieve this, Ant Lion Optimization algorithms 
are employed to determine optimal weight values for ELM. The novelty of this work lies in 
the application of ALO to enhance the performance of ELM specifically for lung cancer 
diagnosis, addressing a crucial gap in existing methodologies. Initially, features are 
extracted from Convolutional Neural Network (CNN). Subsequently, the optimal weight 
values and features are utilized in the ELM for the classification of Lung CT images as 
benign or malignant. The impact of applying hyperparameter optimization is assessed on 
two benchmark datasets, LIDC-IDRI and KAGGLE. The accuracy of lung cancer prediction 
using our method reaches 99.5% on the LIDC-IDRI dataset and 99.3% on the KAGGLE 
dataset. The findings of this study suggest that the proposed method outperforms existing 
approaches in the diagnosis of lung cancer. 
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1. INTRODUCTION

Machine learning algorithms find broad application across
diverse domains and especially plays major role in medical 
image diagnosis. Tuning the hyperparameters of a machine 
learning model is essential for adapting it to different problems. 
The performance of a machine learning model is significantly 
influenced by the dataset, the chosen training algorithms and 
the choice of the optimal hyperparameter configuration. The 
selection of an appropriate training algorithm can substantially 
change the outcome of a model. While certain algorithms 
exhibit excellent performance with specific datasets, they may 
encounter challenges with others. Additionally, enhancing 
performance is achievable by fine-tuning the hyperparameters 
that control the training processes of an algorithm. Achieving 
this often demands a profound understanding of machine 
learning algorithms and the application of suitable 
hyperparameter optimization techniques. In the context of 
lung cancer detection using a machine learning model, initial 
hyperparameter values are typically selected randomly. 
Hyperparameters are crucial in machine learning algorithms as 
they govern the behavior of training algorithms and heavily 
influence the overall performance of machine learning models. 

The values of these hyperparameters might yield satisfactory 
results on specific datasets, but their effectiveness can vary 
considerably when applied to unseen data [1]. Consequently, 
the development of an effective hyperparameter optimization 
algorithm for any machine learning method would 
significantly enhance the effectiveness of machine learning 
processes. 

Many researchers commonly establish hyperparameter 
values before commencing the training of a machine learning 
model in order to construct an appropriate model, and the 
worth of these standards unswervingly influences the scheme's 
performance [2]. The methods typically working for selecting 
hyperparameters include the trial and error method, forcing 
expert understanding, and utilizing meta-heuristic 
optimization techniques [3]. 

The trial and error approach entail testing a limited amount 
of hyperparameter values, training the method by apiece value, 
and then choosing the value that yields the optimal training for 
the model. Conversely, the expert practice approach entails 
evaluating suitable principles based on individual research 
exposure or embracing principles derived from prior research 
outcomes. In contrast, meta-heuristic search algorithms use a 
search model to methodically discover hyperparameter values 
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over a predetermined range and determine the best solution 
following a specified number of repetitions. It is crucial to 
highlight that the efficacy of meta-heuristic search algorithms 
depends significantly on the formulation of a fitness metric [4]. 

This research study approaches the hyperparameter tuning 
issue as a task in optimization, utilizing the Ant Lion 
Optimization (ALO) algorithm to tackle it. This chapter delves 
into the utilization of the ALO optimization algorithm, 
elucidating how it contributes to optimizing the weights of 
ELM and consequently enhancing performance. The Extreme 
Learning Machine (ELM) technique initializes input weights 
arbitrarily, which does not ensure proximity to the finest 
values crucial for the system to excel in specific tasks. This 
randomness in weights can lead ELM to memorize training 
data rather than generalize it to unobserved data. In the realm 
of medical image classification, achieving a high accuracy 
level holds significant importance as it can impact both 
diagnostic and therapeutic decisions for patients. Selecting 
algorithms tailored to specific medical image diagnoses 
becomes crucial in this context. 

Further enhancing the system's performance necessitates an 
filtering procedure integrated into the ELM framework. 
Optimally adjusted weights play a pivotal role in enabling the 
system to excel in assigned tasks. 

In practical use of ELM, there is an emphasis on considering 
optimal weight values to improve the model's performance and 
boost its capability to generalize to unseen data. To address 
these challenges, an introduction has been made of the Ant 
Lion Optimization algorithm for selecting optimal input 
weights, presenting a potential solution to enhance ELM's 
efficiency and performance. 

The primary objectives of hyperparameter tuning of weights 
of ELM are: 

• Optimal weights are tuned to improve the
generalization performance of the ELM. Generalization refers 
to the ability of the model to perform well on unseen data. 
Weights generated in a random manner can result in 
overfitting, characterized by the model fitting the training data 
too precisely but encountering challenges in generalizing to 
novel data instances.. Optimal weights are chosen to strike a 
balance between fitting the training data and generalizing to 
unseen data. 

• Optimal weights are chosen to enhance the learning
speed of the ELM. Randomly generated weights may not be 
well-suited for the specific task at hand, leading to slower 
convergence during the training process. Optimal weights, on 
the other hand, are selected to facilitate faster convergence, 
reducing the time required for the model to learn the 
underlying patterns in the data. 

• Optimal weights contribute to improved accuracy and 
overall model performance. Randomly generated weights may 
result in suboptimal configurations that hinder the model's 
ability to make accurate predictions. Optimal weights are 
selected to maximize the model's predictive power on the 
given task. 

The remaining sections of this paper are structured as 
follows: Related work in the literature is outlined in Section 2. 
The proposed approach is presented in Section 3. Section 4 
contains the results and discussions, and the work concluded 
in Section 5. 

2. LITERATURE REVIEW

This section discusses the application of hyperparameter

tuning in machine learning algorithms, examining previous 
research and its relevance to hyperparameter tuning. 

The authors [5] introduced the Bayesian Optimization-
Support Vector Machine (BO-SVM) model for classification. 
This technique was employed to fine-tune hyperparameters for 
several machine learning models such as RF, SVM, LR, and 
DT, using a dataset with 23 features and 195 instances. The 
target feature had binary class labels (1 for PD, 0 for non-PD). 
Performance evaluations was done using the metrics such as 
accuracy, AuC, recall and error rates. The results revealed that 
SVM, optimized through BO, outperformed the other state-of-
the-art models. 

The authors [6] introduces a method for adjusting 
hyperparameters utilizing parameter-setting-free harmony 
search (PSF-HS) approach. The PSF-HS algorithm treats the 
hyperparameter as the harmony, generating harmony memory 
rationalized grounded on CNN loss. Simulations using CNN 
architectures demonstrate performance improvement by 
tuning hyperparameters, offering advancements over previous 
CNN architectures. 

The work [7] utilized a bio-inspired optimization approach 
to recognize optimal hyperparameters for a CNN based 
approach to predict the Parkinson disease. The method 
iteratively minimized classification errors through 
backpropagation to the ACO optimizer. 

The authors [8] introduces an reinforcement based efficient 
learning algorithm designed to autonomously adjust 
parameters for an optimal network conformation in a given 
problem. The paper demonstrates the algorithm's capability to 
unite on an optimal solution for the MNIST dataset using 
asynchronous reinforcement learning. 

The authors [9] proposed a heart disease prediction system 
employing Hyperparameter Optimization (HPO) techniques 
such as Grid Search, Randomized Search, and TPOT 
Classifier. Their approach enhanced Random Forest and XG 
Boost classifier models, achieving the highest accuracy of 
97.52% for the Cleveland Heart Disease Dataset. In the Z-
Alizadeh Sani dataset, Random Forest with TPOT Classifier 
and Randomized Search yielded peak accuracies of 80.2%, 
73.6%, and 76.9% for diagnosing vessel stenosis, surpassing 
existing studies significantly. 

The authors [10] suggest employing Design of Experiments 
(DOE) methodology, specifically factorial designs, for 
hyperparameter screening, and Response Surface 
Methodology (RSM) for tuning machine learning algorithms. 
The methodology is demonstrated through a case study 
utilizing RF algorithm, the work has several merits such as 
reduced training time, and an improved parameter selection 

The work [11] employed machine learning techniques for 
detecting fraudulent transactions, utilizing a genetic algorithm 
(GA) to optimize hyperparameters and comparing it with grid 
search (GS) methods. The chosen classifiers—random forest 
(RF), AdaBoost (AB), logistic regression (LR), decision tree 
(DT), and support vector machine (SVM)—were evaluated. 
Results revealed the genetic algorithm's superior performance 
over GS in terms of accuracy, precision, recall, and F1_score, 
demonstrating efficiency within a shorter timeframe. 

The authors [12] compared four bio-inspired 
metaheuristics-Bat Algorithm, Firefly Algorithm, Particle 
Swarm Optimization Algorithm, and Social Emotional 
Optimization Algorithm-to evaluate efficiency while 
maintaining effectiveness. Results from various classification 
problems revealed differences in efficiency, with certain bio-
inspired algorithms requiring fewer SVM evaluations to find 
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optimal hyperparameters. The Bat Algorithm emerged as the 
recommended choice for SVM hyperparameter tuning based 
on its superior performance. 

The work [13] aimed to optimize support vector machine 
(SVM) hyperparameters for tunnel boring machine advance 
rate (TBM AR) prediction using gray wolf optimization 
(GWO), whale optimization algorithm (WOA), and moth 
flame optimization (MFO). The study utilized 1,286 data 
samples from a Malaysian water transfer tunnel with seven 
input variables and one output variable. Hybrid SVM models 
were constructed with GWO, WOA, and MFO optimization 
techniques, assessing accuracy through statistical indices. 
Results indicated that the MFO-SVM model achieved the 
highest accuracy with R2 (0.9623 and 0.9724), RMSE (0.1269 
and 0.1155), and VAF (96.24 and 97.34%) for training and test 
stages, showcasing its effectiveness in predicting TBM AR. 

The authors [14] presented a method utilizing convolutional 
neural networks (CNNs) and a genetic algorithm (GA) for 
noninvasive classification of Glioma grades through magnetic 
resonance imaging (MRI). The CNN architecture is evolved 
using GA, departing from traditional trial and error or 
predefined structures. Bagging, an ensemble algorithm, is 
applied to the best GA-evolved model to reduce prediction 
error variance. The method achieves 91.9% accuracy in 
classifying three Glioma grades and 96.2% accuracy in 
classifying Glioma, Meningioma, and Pituitary tumor types, 
highlighting its effectiveness for early-stage brain tumor 
diagnosis via MRI. 

The authors [15] introduces an algorithm that divides the 
solution space into subspaces, allocating search agents based 
on each subspace's "potential." This potential is estimated 
using objective values, probe solution results, and 
computation time. The work is associated with several ML 
algorithms utilizing grid search,  ACO, PCA, and PSO. 
Simulation results, using Taipei city government data, show 
the proposed method's superior performance in terms of mean 
absolute percentage error compared to other forecasting 
methods in the study. 

The authors [16] introduced a novel variant of particle 
swarm optimization (PSO) called cPSO-CNN, specifically 
designed for optimizing Convolutional Neural Networks 
(CNNs) hyperparameters determined by architecture. This 
method incorporates a confidence function derived from a 
compound normal distribution, extracting expert knowledge to 
enhance traditional PSO's exploratory power. To better handle 
the diverse range of CNN hyperparameters, cPSO-CNN 
converts scalar acceleration coefficients into vectors. 
Additionally, a linear prediction model expedites the ranking 
of PSO particles, reducing the computational load for fitness 
function calculation. Test results underscore cPSO-CNN's 
competitive performance, showcasing its efficiency in CNN 
hyperparameter optimization compared to existing algorithms. 

The authors [17] explore the relationship between machine 
learning model performance and hyperparameters using 
Gaussian processes. They formulate hyperparameter tuning as 
an optimization problem and employ Bayesian optimization, 
leveraging the Bayesian theorem. The method establishes a 
prior over the optimization function, updating it with 
information from previous samples. Experimental results 
demonstrate the efficacy of the approach in finding optimal 
hyperparameters for popular models, including random forest 
and neural networks, while considering time costs. 

The authors [18] introduced an automatic method for 
optimizing hyperparameters and designing structures using 

enhanced metaheuristic algorithms. The paper presents 
improved versions of tree growth and firefly algorithms, 
enhancing their original implementations. These modified 
metaheuristics are evaluated on standard benchmark functions, 
and the enhanced algorithms are then applied to 
hyperparameter optimization. Experiments on the MNIST 
image classification dataset demonstrate superior performance 
in classification accuracy and computational resource usage 
compared to other existing techniques. 

The authors [19] proposed a novel hyper-parameter 
optimization methodology that combines the benefits of a 
genetic algorithm and Tabu Search. Two sets of contrast 
experiments are carried out to confirm the suggested 
algorithm's effectiveness. Good hyper-parameter values for 
deep convolutional neural networks are simultaneously sought 
after using the Tabu_Genetic Algorithm and four other 
techniques. Based on experimental results, the suggested 
Tabu_Genetic Algorithm finds a better model faster than 
Random Search and Bayesian optimization techniques. 

The work [20] developed an ensemble model using pre-
trained CNNs (VGG16 and VGG19) for plant disease 
diagnosis based on leaf images. The challenge of manually 
optimizing CNN hyperparameters is addressed using 
orthogonal learning particle swarm optimization (OLPSO). 
An exponentially decaying learning rate (EDLR) schema 
enhances training efficiency, while random oversampling and 
undersampling tackle dataset imbalances. Comparative 
experiments demonstrate the proposed model's superior 
accuracy over other pre-trained CNN models, showcasing its 
effectiveness in plant disease diagnosis.  

3. PROPOSED APPROACH

Figure 1. Proposed methodology for lung cancer prediction 

This section introduces the proposed method. Figure 1 
depicts the process flow for predicting lung cancer, 
encompassing three steps: feature representation, 
hyperparameter tuning, and classification. To begin, a 
convolutional neural network is utilized for feature 
representation. After feature extraction, the Ant Lion 
Optimization algorithm is employed to identify optimal 
weights. The extracted features and optimal weight values are 
subsequently input into an extreme learning machine for 
classification of CT lung images as benign and Malignant. The 
principal aim of the proposed Ant Lion optimization-based 
hyperparameter tuning in lung cancer prediction is to enhance 
diagnostic efficiency, mitigate overfitting, and improve 
generalization performance. 
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3.1 Ant lion optimization (ALO) algorithm 
 

The Ant Lion Optimization (ALO) algorithm is a 
metaheuristic optimization technique inspired by the hunting 
behavior of antlions in nature. ALO mimics the process of 
antlions creating traps to capture ants, with ants exploring the 
search space and updating their positions based on fitness 
evaluations. The following pseudocode outlines the main steps 
of the ALO algorithm for optimizing the weights in the 
Extreme Learning Machine (ELM) model: 
 
Algorithm: Ant Lion Optimization (ALO) for Optimal 
Weight Values 

Begin 
(1). Initialize population of ants and antlions with random 

weights within bounds. 
(2). Calculate fitness for each ant and antlion based on 

objective function using 
  

𝑓𝑓(𝑣𝑣) =  �𝑉𝑉𝑖𝑖 +  �𝑉𝑉𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 
(3). Identify elite antlion with the highest fitness. 
(4). Set iteration parameters: t=1, max_iterations=100. 
(5). While t<max_iterations: 
      a. For each ant: 
            i. Select a random antlion using a roulette wheel 

mechanism. 
            ii. Compute random walks around for selected 

antlions  
            iii. Update ant positions based on random walks and 

fitness. 
      b. Recalculate fitness for all ants and replace antlions 

based on fitness comparison. 
      c. Update elite antlion if a better solution is found. 
      d. Increment t for the next iteration. 
(6). Return weights from the best elite antlion as optimal 

weights for ELM. 
End 
 
For the CNN used in feature extraction from lung CT 

images, we employ a standard architecture consisting of 
convolutional layers, pooling layers, and fully connected 
layers. The specific parameters such as kernel size, number of 
filters, and activation functions are chosen based on empirical 
studies and prior literature in medical image analysis. 

Similarly, the ELM model's parameters, including the 
number of hidden neurons, activation function, and 
regularization techniques, are set based on experimental 
validation and best practices. The choice of these parameters 
aims to balance model complexity and performance while 
avoiding overfitting on the training data. 

 
3.2 Identifying optimal weight values for elm using ant lion 
optimization algorithm 

 
ALO stands as a meta-heuristic technique inspired by the 

predatory behavior of antlions found in natural settings. At its 
heart, this algorithm comprises of ants and ant lions, 
embodying five sequential steps reflective of the hunting 
process: the erratic movement of ants, creation of traps, 
ensnaring ants within traps, seizing the trapped ants, and 
rebuilding the traps. 

The ALO algorithm begins by establishing the initial 
positions and assessing the fitness of both ants and antlions. 
Factors such as the boundaries of the environment and the 
presence of antlion traps play a crucial role in influencing the 
movement of ants. When an ant discovers a more favorable 
position, it becomes prey for an antlion, which then takes over 
the ant's previous location. An elite antlion is chosen based on 
having the highest fitness among all antlions, signifying the 
most optimal parameter set discovered thus far. 

As the algorithm progresses, ants start exploring the 
parameter space around the elite antlion, updating their 
parameter values accordingly. A roulette wheel mechanism is 
used to randomly select an antlion, guiding the algorithm's 
decision-making process. The selected antlion acts as a focal 
point for the random walk behavior of surrounding ants, 
mimicking how ants navigate and explore the nearby 
parameter space. Similarly, a random walk pattern is 
calculated for ants around each encountered antlion. 

The ALO algorithm advances through iterations, during 
which ants traverse the search space and adjust their 
pheromone levels based on the quality of solutions 
encountered. This iterative approach permits ants to gradually 
converge towards better solutions by exploring promising 
parameter configurations. Following the update of each ant's 
position, their fitness is recalculated. If an ant's fitness exceeds 
that of its corresponding antlion, the antlion is substituted by 
the ant, thereby updating the elite antlion built on improved 
fitness. This tracking mechanism ensures the retention of the 
best parameter set throughout the optimization procedure. 

The mathematical expression representing an ant's random 
walk behavior is as follows 

 
𝑆𝑆(𝑡𝑡) = [0, 𝑡𝑡𝑡𝑡(2𝛾𝛾(𝑖𝑖1) − 1), 𝑡𝑡𝑡𝑡(2𝛾𝛾(𝑖𝑖2)

− 1) … . . 𝑡𝑡𝑡𝑡(2𝛾𝛾𝑖𝑖𝑟𝑟) − 1)] (1) 

 
where, ts denote the total sum, i denotes current iteration 
number, r is the maximum number of iterations, and 𝛾𝛾 is a 
random function defined by. 

 

𝛾𝛾(𝑖𝑖) = �1  𝑖𝑖𝑓𝑓 𝑖𝑖 > 0.5
0 𝑖𝑖𝑓𝑓 𝑖𝑖 ≤ 0.5 (2) 

 
Within Eq. (2), the variable r denotes a random number that 

follows a uniform distribution within the range of (0, 1). The 
algorithm's mechanism for ant movement relies on these 
random numbers, which helps in exploring a broader range of 
solutions and prevents the algorithm from getting trapped in 
local optimal solutions. Additionally, to ensure that all ants' 
random movements stay within the defined boundaries of the 
search space, a normalization process is conducted using the 
formula provided below. 

 

𝑀𝑀𝑗𝑗
𝑖𝑖 =

(𝑆𝑆𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝑥𝑥 (𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗𝑖𝑖 − 𝑙𝑙𝑢𝑢𝑢𝑢𝑗𝑗𝑖𝑖)
(𝑢𝑢𝑗𝑗𝑖𝑖 −  𝑎𝑎𝑗𝑗𝑖𝑖  )

+ 𝑙𝑙𝑢𝑢𝑢𝑢𝑗𝑗𝑖𝑖  (3) 

 
where, 𝑢𝑢𝑢𝑢𝑗𝑗𝑖𝑖and 𝑙𝑙𝑢𝑢𝑗𝑗𝑖𝑖 represents upper and lower bounds in the 
plane, bi and bj represents the ith  dimension. 

When ants slide towards the antlion during the process, 
entering the antlion's trap triggers an action to shift the ant 
closer to the antlion. This action entails the antlion ejecting 
sand till the trapped ant slowly moves nearer. Mathematically, 
this operation is represented with vigorously dropping the 
hypersphere radius for the ant's random walk, which can be 
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expressed as follows: 

𝑙𝑙𝑢𝑢𝑢𝑢𝑖𝑖 =
𝑙𝑙𝑢𝑢𝑢𝑢𝑖𝑖

1 + 10 𝑉𝑉
𝑖𝑖
𝑗𝑗

(4) 

𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 =
𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖

1 + 10  𝑉𝑉
𝑖𝑖
𝑗𝑗

(5) 

where, w is a constant value for the current iteration. The 
accuracy level of the iteration i is given by 

𝑖𝑖 >

⎩
⎪
⎨

⎪
⎧ 0.1 𝑖𝑖 𝑤𝑤 = 2

0.5 𝑖𝑖 𝑤𝑤 = 3
0.75 𝑖𝑖 𝑤𝑤 = 4
0.9 𝑖𝑖 𝑤𝑤 = 5

0.95 𝑖𝑖 𝑤𝑤 = 6

 (6) 

When constructing a trap, the roulette wheel is utilized to 
mimic the hunting prowess of the antlion, and the ALO 
algorithm employs the roulette wheel to select the most 
suitable antlion, thereby enhancing the chances of capturing 
ants. 

During the entrapment progression of ants in traps, the 
random walk of the ants is influenced by the location of the 
antlion trap. This influence can be mathematically described 
using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 =  
𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴

𝑗𝑗

2
 (7) 

where, 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  represent the ant’s random walk, 
The last phase involves capturing the ants and rebuilding the 

trap, during which the antlion trapped the ants that descend 
into the trap. Afterward, the antlion must adjust its fitness to 
correspond by most recent weights of the captured ants, as 
indicated in the equation below. This adaptation improve the 
ability to capture other ants. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐴𝐴𝐴𝐴𝑡𝑡 + 𝐴𝐴𝐴𝐴𝑡𝑡 > 𝐴𝐴𝐴𝐴𝐴𝐴 (8) 

The fitness function is defined below 

𝑓𝑓(𝑣𝑣) =  �𝑉𝑉𝑖𝑖 +  �𝑉𝑉𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (9) 

where, v is the weights, n is the total number of weights. 
Algorithm for optimal weight value is given below: 

Algorithm: Ant Lion Optimization (ALO) for Optimal 
Weight Values 

Inputs: 
- max_iterations: Maximum number of iterations
- num_ants: Number of ants
- num_antlions: Number of antlions
- bounds: Search space boundaries for weights
- w_constant: Constant value for the iteration
Outputs:
- Optimal_weights: Set of optimal weight values for the

ELM model 
Procedure-ALO_Optimize_Weights(max_iterations, 

num_ants, num_antlions, bounds, w_constant): 
    Initialize ants' positions randomly within bounds 
    Initialize antlions' positions randomly within bounds 

    Calculate fitness for each ant and antlion using the fitness 
function  

    Set elite_antlion = antlion with highest fitness 

    for iter from 1 to max_iterations do: 
        for each ant do: 

   Generate random walk using Eqs. (1) to (5) 
   Apply normalization using Eq. (3) to ensure within 

bounds 
   Calculate fitness for the new position 
   if ant's fitness > corresponding antlion's fitness then: 
       Replace antlion with this ant 

        for each antlion do: 
 Construct traps using roulette wheel selection (Eq. (5)) 
   Capture ants based on antlion positions and update 

fitness 
    Adjust antlion fitness based on captured ants' 

weights (Eq. (8)) 
       if elite_antlion's fitness < highest fitness among 

antlions then: 
   Update elite_antlion with the best antlion 

    Optimal_weights = Weights of elite_antlion 
    return Optimal_weights 
# Example Usage: 
max_iterations = 100 
num_ants = 20 
num_antlions = 5 
bounds = [lower_bound, upper_bound]  # Define lower and 

upper bounds for weights 
w_constant = 2 # Constant value for the iteration 
Optimal_weights 

=ALO_Optimize_Weights(max_iterations, num_ants, 
num_antlions, bounds, w_constant) 

3.3 ELM classification 

ELM is a category of neural network that stands out for its 
simplicity and fast learning speed. In ELM, the input-to-
hidden layer weights are typically initialized randomly and 
then optimized during training using the Moore-Penrose 
pseudoinverse. The main idea of this study is to improve the 
accuracy of lung cancer classification by optimizing the 
hyperparameters of the ELM model. A Convolutional Neural 
Network (CNN) is initially employed for feature 
representation. CNN in this context are used to extract relevant 
features from lung CT images. The ALO algorithm, a 
metaheuristic optimization algorithm inspired by the foraging 
behavior of ant lions, is employed to find optimal weight 
values for the ELM.ALO optimizes the weights by simulating 
the hunting behavior of ant lions. The extracted features from 
the CNN and the optimal weight values obtained through ALO 
are then fed into the ELM for classification. The final output 
represents the prediction of the ELM model for a given input. 
In the context of lung cancer classification, this output can 
indicate whether the input lung CT image is classified as 
benign or malignant. Figure 2 shows the ELM classifier. 

The input feature vector extracted after the CT lung image 
undergoes multiplication through the weight vector (v), 
followed by addition of an optimal bias (b), formerly 
processed by the activation function (g). In Extreme Learning 
Machines (ELMs), the weights connecting the input layer to 
the hidden layer are initially random values. This implies that 
the input vector itself does not influence the initial 
configuration of the network. Consequently, the response of 
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each hidden neuron to the input data is dictated by a random 
blend of features derived from the input data. 

 

 
 

Figure 2. ELM architecture 
 
The outcome for the features can be computed as follows 
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𝑚𝑚

1 ⎦
⎥
⎥
⎤
 (10) 

 
The above Eq. (10) can be rewritten as 
 

M = T 𝛽𝛽 (11) 
 

where, M is the goal matrix and T is the output matrix. The 
weights connecting the hidden layer to the output layers are 
represented by the beta matrix. This matrix is computed using 
the Moore-Penrose pseudoinverse technique, which plays a 
crucial role in decreasing the least squares error among the 
original output and the expected output. The Moore-Penrose 
pseudoinverse technique calculates a generalized inverse of a 
matrix, even if the matrix is not square. The introduced system 
categorizes the CT lung images into either benign or malignant. 
Hence, the output layer consists of only two neurons. 

Activation functions are utilized exclusively in the hidden 
layer of ELMs. The rectified linear unit activation function is 
commonly used which always returns the same value for 
positive integers, and always returns zero for negative integers. 
As a result, this function is less susceptible to the vanishing 
gradient issue which prevents the exponential growth in the 
computation required to operate a neural network. 

Once the ELM has been trained using the population, 
predictions can be obtained by: 

 
T= M 𝛽𝛽 (12) 

 
Contrary to gradient-based techniques that necessitate 

iterative calculations for gradient determination and 
subsequent weight updates through training, ELM computes 
network parameters using the Moore-Penrose pseudoinverse 
method without extra iterations. This approach helps mitigate 
the risk of overfitting. 

Optimizing the weight values in Extreme Learning Machine 
(ELM) contributes significantly to improving generalization, 
accuracy, and mitigating overfitting. Optimal weights, 
obtained through techniques such as Ant Lion Optimization, 
enable the model to generalize better to unseen data by 

capturing relevant patterns without excessively tailoring the 
learning process to the training set. The refined weights 
enhance the accuracy of the model by aligning the neural 
network's mapping of input features to hidden layers with the 
underlying complexities of the data. Moreover, the process of 
obtaining optimal weights acts as a regularization mechanism, 
helping to prevent overfitting by restraining the model from 
fitting the training data too closely. By fine-tuning the weights 
based on global optimization, the ELM becomes more adept 
at discerning genuine patterns, striking a balance that not only 
maximizes accuracy on the training set but also ensures 
performance on diverse datasets, ultimately resulting 
improved generalization and minimizing the risk of overfitting. 
 
 
4. PERFORMANCE METRICS 
 

The evaluation of the proposed system's ability to classify 
CT lung cancer images into benign or malignant relies on 
classification accuracy, sensitivity, and specificity. 
Performance metrics, including True Positive (TP), False 
Positive (FP), False Negative (FN), and True Negative (TN), 
are computed to track falsely predicted and exactly predicted 
data. Table 1 displays the presentation metrics utilized in the 
work. 

 
Table 1. Performance metrics used for lung cancer prediction 

 
Performance 

Metrics Sensitivity Accuracy Specificity  

Formulae 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝐴𝐴 + 𝐹𝐹𝑇𝑇

 
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇
 

 
 
5. DISCUSSION OF RESULTS 
 

The evaluation of the proposed ant Lion optimization based 
hyperparameter tuning for lung cancer prediction is assessed 
utilizing the evaluation parameters. 

 

 
 

Figure 3. Classification accuracy over number of epochs 
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Figure 4. Performance comparison 
 
Using the LIDC-IDRI and KAGGLE benchmark datasets, 

the accuracy of the proposed Ant lion optimization based 
hyperparameter tuning approach is measured. Both the 
optimal and non-optimal weight values for the classification 
accuracy are projected in the results. The graph shows that, for 
both datasets, Ant Lion optimization-based hyperparameter 
tuning has outperformed random weights. The graph plotting 
the number of epochs against classification accuracy is 
displayed in Figure 3. The graph shows that, for both datasets, 
accuracy increases gradually over time at regular intervals of 
epoch, peaking at epoch 100. Nevertheless, when both datasets 
have optimal weight values, the accuracy is constant between 
epochs 100 and 120 before slightly declining at epoch 140. 
After 100 epochs, the ant-lion optimization algorithm 
converges. However, the accuracy levels off after epoch 100. 
In summary, accuracy at 100 epochs yielded the finest results, 
overall., the construal indicates that models that have 
undergone hyperparameter tuning (i.e., optimal weight values) 
typically exhibit less accuracy fluctuation and are more stable 
than models that use random weights. Figure 4 shows the 
performance comparison of the proposed method with other 
current methods. 
 
5.1 Results comparison 
 

The remarkable accuracy of the proposed methodology was 
highlighted. For instance, an accuracy rate of 88% was 
achieved by Lima et al. [21] using Tree-of-Parzen-estimators, 
which assumed conditional independence among optimized 
variables. A 96% accuracy rate was demonstrated in the study 
of Lv et al. [22] utilizing the Minibatch Stochastic Gradient 
Descent (MB-SGD) method, although it was prone to 
overfitting. Meanwhile, an accuracy rate of 99.33% was 
attained by Alamgeer et al. [23] using the Moth Swarm 
Optimization (MSO) system to enhance hyperparameters such 
as learning rate, epoch count, and batch size in the LSTM 
model. However, this method incurred computational 
expenses as the number of hyperparameters increased. 

 
Table 2. Comparative analysis of proposed method 

 
Author Architecture Accuracy 

Lima et al. [21] Tree-of-Parzen-
estimators 87.65 

Lv et al. [22] MB-SGD 95.45 
Alamgeer et al. [23] MSO 98.93 

Proposed system Ant Lion Optimization 99.67 

In contrast, optimal values for the weights of the ELM were 
identified by the proposed system, leading to an exceptional 
accuracy rate of 99.50% as shown in Table 2. 

In addition to quantitative metrics, it is crucial to discuss the 
qualitative aspects and pros and cons of each method: 

• Tree-of-Parzen-estimators: While effective, this 
method relies on the assumption of conditional 
independence among optimized variables, which 
may limit its performance in capturing complex 
relationships in medical imaging data. 

• MB-SGD: This technique shows good accuracy 
results but is susceptible to overfitting, especially 
with complex datasets like medical images, where 
generalization is crucial. 

• MSO applied to LSTM: MSO optimization yields 
high accuracy, but it comes with increased 
computational expenses as the number of 
hyperparameters in LSTM models grows. 

• Proposed ELM with ALO optimization: The ALO 
optimization method provides highly accurate weight 
optimization for ELM, enhancing generalization and 
mitigating overfitting. It strikes a balance between 
accuracy and computational efficiency, making it 
suitable for practical applications in medical image 
analysis. 

 
5.2 Statistical analysis 
 

In this section, we conduct a statistical analysis to determine 
the significance of the accuracy results obtained using the 
proposed Ant Lion Optimization (ALO) based hyperparameter 
tuning for lung cancer prediction. 

 
Confidence Intervals 
Confidence Intervals (CI) provide valuable insights into the 

precision of our accuracy estimates. We calculate confidence 
intervals around the reported accuracies to quantify the range 
within which the true accuracy of the model is likely to fall. 

For example, with a confidence level of 95%, the 
confidence interval can be calculated as: 

 

CI = Accuracy ± Z ∗ �
Accuracy ∗ (1 − Accuracy)

𝑇𝑇𝑢𝑢𝑡𝑡𝑎𝑎𝑙𝑙 𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑡𝑡
 

 
where, Z is the critical value from the standard normal 
distribution corresponding to the chosen confidence level. 

 
P-values for Statistical Significance 
To determine if the improvements in accuracy are 

statistically significant, we calculate p-values using 
appropriate statistical tests such as the t-test or ANOVA. The 
null hypothesis H0 assumes no significant difference between 
the accuracies of the proposed method and existing methods, 
while the alternative hypothesis H1 suggests a significant 
difference. 

A low p-value (typically <0.05) indicates that the observed 
improvements in accuracy are unlikely to occur by random 
chance and are thus statistically significant. 
 
5.3 Generalization and clinical implications 

 
Generalization refers to the ability of a machine learning 

model to perform well not only on the training dataset but also 
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on unseen data from similar distributions. In the context of 
lung cancer classification using the proposed Ant Lion 
Optimization (ALO) based hyperparameter tuning for 
Extreme Learning Machine (ELM), generalization is crucial 
for practical clinical deployment. 

Model Robustness and Generalization 
We evaluate the robustness and generalization capability of 

our model through cross-validation on independent datasets. 
By training our model on one dataset and testing it on separate, 
unseen datasets, we assess its ability to generalize across 
different data distributions. This process helps validate the 
model's performance in real-world scenarios beyond the 
training data. 

Furthermore, we employ techniques such as data 
augmentation and transfer learning to enhance the model's 
generalization. Data augmentation involves generating 
additional training data by applying transformations such as 
rotation, flipping, and scaling to the original images. Transfer 
learning leverages knowledge learned from pre-trained models 
on large datasets to improve performance on smaller, domain-
specific datasets. 

Clinical Implications 
The successful deployment of machine learning models in 

clinical settings requires careful consideration of various 
factors beyond accuracy metrics. These factors include model 
interpretability, explainability of predictions, regulatory 
compliance, integration with existing clinical workflows, and 
ethical considerations regarding patient data privacy and 
security. 

Our study acknowledges these challenges and emphasizes 
the importance of model explainability in medical decision-
making. By visualizing important features learned by the 
model, such as key image regions indicative of malignancy, 
we aim to enhance trust and understanding among healthcare 
professionals using the system. 

6. CONCLUSION

This study explores the use of Ant Lion Optimization (ALO)
algorithm for optimizing weights in diagnosing lung cancer 
through the Extreme Learning Machines (ELM) architecture. 
The aim of employing the ALO algorithm is to fine-tune the 
weights within the ELM framework to achieve optimal model 
performance. In the ELM model, the initial input weights are 
randomly assigned, without any assurance that they are close 
to the optimal values necessary for effective task handling. 
Optimized weights are crucial as they enable the model to 
effectively process the complexities inherent in medical 
images. Thus, the importance of determining optimal weight 
values cannot be overstated, as it significantly contributes to 
enhancing the network's performance and its ability to 
generalize well to unseen data. This consideration is pivotal 
when practically applying ELM in real-world scenarios. To 
overcome these challenges, the study introduces the Ant Lion 
Optimization algorithm, which selects the most suitable input 
weights. This approach offers a promising solution to boost the 
efficiency and overall performance of the ELM model.. The 
evaluation of the application of hyperparameter optimization 
is conducted on two benchmark datasets, namely LIDC-IDRI 
and KAGGLE. Our method achieves an accuracy of 99.5% for 
lung cancer prediction on the LIDC-IDRI dataset and 99.3% 

on the KAGGLE dataset. The outcome of this work shows that 
the proposed approach surpasses current methods in the 
diagnosis of lung cancer. 

Future Directions 
Future research directions include collaborative efforts with 

healthcare providers to conduct prospective clinical studies 
validating the model's performance in real-time clinical 
environments. Integration with Picture Archiving and 
Communication Systems (PACS) and Electronic Health 
Records (EHRs) streamlines the deployment process and 
ensures seamless interaction with clinical workflows. 

Moreover, ongoing model monitoring, validation, and 
updating protocols are essential to adapt to evolving data 
distributions, patient demographics, and medical practices. 
Continuous feedback loops between data scientists, clinicians, 
and patients contribute to iterative model improvement and 
increased confidence in AI-driven decision support systems. 
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