
An Optimized HW/SW Implementation of the Vector Median Rational Hybrid Filter for

Real-Time Color Image Denoising

Ahmed Ben Atitallah

Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Corresponding Author Email: abenatitallah@ju.edu.sa

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410441 ABSTRACT

Received: 23 November 2023

Revised: 26 February 2024

Accepted: 15 April 2024

Available online: 31 August 2024

The presence of noise in an image can significantly diminish its visual quality and adversely

affect the accuracy of subsequent image processing tasks. Therefore, it is imperative to

enhance image quality in real-time by eliminating disturbances introduced during the image

acquisition or transmission process. This paper proposes an efficient and optimized

implementation of the vector median rational hybrid filter (VMRHF) specifically tailored

for real-time color image denoising. This filter is crafted to harness the capabilities of both

the vector median filter and the rational operator, enabling effective noise reduction while

maintaining the integrity of edges, image details, and chromaticity. However, the hybrid

architecture in the VMRHF filter brings about an increase in computational complexity. To

address this complexity, the filter is implemented in a Hardware/Software (HW/SW)

codesign context, capitalizing on the strengths of both hardware and software components.

The software component is created using the C/C++ programming language and operates

on the ARM Cortex-A53 processor with a clock frequency of 1.2 GHz, while the high-level

synthesis (HLS) flow is employed to develop the hardware portion, implemented as a

coprocessor in the Zynq UltraScale+ XCZU9EG FPGA. Nevertheless, in the pursuit of

crafting an optimized hardware architecture for VMRHF, specific directives like

ARRAY_PARTITION and PIPELINE are progressively incorporated into the VMRHF C

code using the Xilinx Vivado HLS tool. The interaction between the hardware and software

parts is streamlined through the AXI-stream interface, facilitated by three Direct Memory

Access (DMA) units for efficient data parallel transfer, thereby boosting data throughput.

The VMRHF HLS design is evaluated on the embedded ZCU102 kit. The experimental

outcomes illustrate that our design is capable of restoring a 256×256 color image within 19

ms, reflecting a substantial 94% decrease in execution time compared to the software design.

This notable improvement is achieved while upholding consistent image quality, as

indicated by both objective measures such as peak signal-to-noise ratio (PSNR) and

subjective assessments. These results hold true across various levels of “salt and pepper”

impulsive noise. Besides, our design exhibits a power consumption of merely 4.46 watts.

Keywords:

nonlinear filter, VMRHF filter, real-time

image denoising, HW/SW codesign, HLS

flow, FPGA, low-latency implementation

1. INTRODUCTION

Image denoising is a technique used in image processing to

remove noise from images [1, 2]. Noise, in the context of

images, refers to unwanted variations in color that might be

created by a variety of causes, including transmission

interference, sensor limitations, and environmental conditions.

By removing these undesirable artifacts and keeping crucial

features, image denoising aims to improve an image's visual

quality.

Nonlinear filters [3, 4] are a type of image filter that

operates on an image's pixel values in a way that is not a linear

combination of the input pixel values. Unlike linear filters,

which compute weighted averages, nonlinear filters use more

complex functions to determine the output pixel value.

Nonlinear filters are particularly useful for tasks such as image

enhancement, edge preservation, and noise reduction.

The VMRHF [5] is one of the most popular nonlinear filters.

This filter is used in various image processing applications,

including color image denoising, enhancement, and

restoration [6-8]. However, removing “salt and pepper”

impulsive noise from a color image using this filter is

challenging due to its high algorithmic complexity and time-

consuming nature.

In the existing literature, various approaches have been

suggested to minimize the computational complexity of the

VMRHF filter with the objective of enabling real-time image

restoration. In fact, Khriji et al. [9] propose a hardware

architecture for the VMRHF that is implemented on a Field

Programmable Gate Arrays (FPGA) circuit. In this

architecture, some approximations are introduced to

implement the rational function and the division operation. In

this work, the VMRHF architecture allows for the processing

of 40 million RGB vectors per second at 40 MHz. Boudabous

et al. [10] suggest a HW/SW implementation of the VMRHF

filter. Indeed, a fixed-point is used for the hardware

Traitement du Signal
Vol. 41, No. 4, August, 2024, pp. 2135-2142

Journal homepage: http://iieta.org/journals/ts

2135

https://orcid.org/0000-0002-2121-4417
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410441&domain=pdf

implementation. In contrast, the NIOS II softcore processor is

employed to execute the software part. So, the proposed design

allows for processing an image of size 176×144 pixels in 38

ms at 60 MHZ. Bernacchia et al. [11] present a programmable

hardware architecture for the MRHF’s. The floating-point

operations are implemented using some approximations. The

performance of this architecture depends on the image size and

the frame rate. Khriji and Gabbouj [12] introduces a method

for multichannel image processing through an adaptive

approach, which is suggested to be more suitable and

straightforward for implementing the VMRHF filter in

software.

In this study, we introduce a novel and enhanced HW/SW

codesign implementation for the VMRHF filter. Nevertheless,

the advantage of HW/SW codesign lies in its ability to

optimize the overall system performance by seamlessly

integrating both hardware and software components. This

approach allows for efficient distribution of tasks between

dedicated hardware and flexible software, leading to enhanced

speed, power efficiency, and overall system functionality [13-

15]. However, the HLS flow is employed for the hardware

implementation. In fact, the HLS offers a promising approach

for accelerating hardware design and improving productivity

by using a high-level programming language, like C, C++ or

System instead of the traditional hardware description

languages (HDLs) [16, 17]. The purpose of the HLS is to

automate the process of converting high-level code into

synthesizable hardware. But the challenge with the HLS is that

the designers need to iterate through several experiments with

different pragmas and directives to achieve the desired

performance. Conversely, the software component is run on

the ARM Cortex-A53 hardcore processor. Thus, employing

the codesign approach in this study enables a harmonized

utilization of hardware acceleration via HLS for

computationally intensive tasks, and software flexibility

through the Cortex-A53 processor for dynamic and adaptable

functions. This leads to enhancements in performance,

resource utilization, and power efficiency.

Hence, the goal of this research is to develop an efficient

VMRHF filter design capable of real-time color image

denoising while optimizing power efficiency and resource

utilization. Therefore, the proposed design will be

implemented and assessed in terms of execution time, FPGA

cost, power consumption and image quality using the

embedded Zynq UltraScale+ MPSoC ZCU102 kit.

The subsequent sections of the paper are organized as

follows: Section 2 introduces the VMRHF filter. Section 3

describes the VMRHF hardware architecture, which is

designed through the HLS flow. Section 4 illustrates the

VMRHF HW/SW design and the evaluation of its

performance on the ZCU102 kit. Section 5 concludes the paper.

2. VMRHF FILTER

Figure 1 presents the block diagram of the VMRHF filter.

This filter contains two stages. In the first stage three vector

median filters (VMFs) [18, 19] are applied to the three 3×3

filter window. In the second stage, the outputs of the three

VMFs filter (Φ1, Φ2 and Φ3) are provided to the vector rational

function (VRF) to compute the filtered pixel 𝑦(𝑛) by the

following formula:

𝑦(𝑛) = 𝛷2(𝑛) (1)

+
∑ 𝛽𝑖𝛷𝑖(𝑛)3

𝑖=3

ℎ + 𝑘. ‖𝛷1(𝑛) − 𝛷3(𝑛)‖

where, the vector 𝛽 = [𝛽1, 𝛽2, 𝛽3]𝑇 characterizes the constant

vector coefficient of the input sub-functions which satisfy to

the following condition ∑ 𝛽𝑖 = 03
𝑖=1 . In our case, we selected

𝛽 = [1, −2,1]𝑇. The h and k parameters are positive constants.

The parameter k is utilized to control the quantity of the

nonlinear effect [20]. Φ2 is a center weighted median sub-filter

whereas sub-filters Φ1, and Φ3 are selected for an adequate

compromise between noise reduction and chromaticity and

edge preservation can be reached. In this case both these sub-

filters (Φ1, and Φ3) operate as bidirectional vector median

filters. The former applies its action on a plus-shaped mask,

while the latter employs a cross-shaped one. ‖. ‖2 is the L2

vector norm and so that:

‖𝛷1 − 𝛷3‖

= √(𝛷11 − 𝛷31)2 + (𝛷12 − 𝛷32)2 + (𝛷13 − 𝛷33)2
(2)

Figure 1. VMRHF block diagram

Nevertheless, the VMRHF filter utilizes both the VMF filter

and rational functions. The rational function structure is

particularly advantageous for filtering due to its universal

approximation capability and effective extrapolation abilities.

It yields the best approximations for certain specific functions.

On the other hand, VMFs demonstrate strong performance

when dealing with noise that adheres to a long-tailed

distribution, such as impulsive noise. Additionally, VMFs

easily identify and eliminate outliers in image data.

Consequently, the VMRHF output is a result of a vector

rational operation applied to the output of three sub-filters (Φ1,

Φ2, and Φ3). This filter showcases desirable characteristics,

including the preservation of edges and details, as well as

accurate chromaticity estimation.

3. VMRHF HARDWARE ARCHITECTURE

HLS provides numerous benefits concerning productivity,

portability, abstraction, and design simplicity. In fact, HLS

enables designers to utilize higher-level programming

languages like C, C++, or SystemC, allowing them to

articulate their designs in a more abstract manner. This

2136

abstraction reduces the intricacy of the design process,

resulting in enhanced productivity. Additionally, code

composed in high-level languages tends to be more readable

and maintainable. The hardware generated by HLS can

leverage these characteristics, making it more comprehensible

and modifiable as needed. Moreover, describing the design

with a high-level language in HLS enhances potential

portability across various hardware platforms. The tool

handles the translation of the high-level description into

hardware specific implementations. HLS also expedites

development cycles by enabling designers to swiftly prototype

and experiment with diverse algorithms and architectures at a

high level before committing to a final design. This accelerates

the exploration of design spaces. Furthermore, HLS tools can

automatically perform optimizations during the synthesis

process. These optimizations encompass aspects such as clock

speed, resource utilization, and power consumption, which

may be challenging and time-consuming to achieve manually.

In summary, HLS emerges as a potent methodology,

especially in applications where rapid development, design

exploration, algorithmic optimizations, and high-level

abstractions are paramount.

Figure 2. VMRHF HLS design

2137

In this context, numerous HLS tools have been developed

in this context, including the Xilinx Vivado HLS tool. This

tool is part of the Xilinx Vivado Design Suite, which is a

comprehensive development environment for FPGA and SoC

(System on Chip) designs. Vivado HLS allows designers to

work at a higher level of abstraction, describing hardware

functionality in terms of algorithms and behaviors using C,

C++, or SystemC and automatically generating the Register

Transfer Level (RTL) code in Verilog or VHDL. Moreover, it

includes a range of optimizations to improve the performance,

area utilization, and power consumption of the generated

hardware. It performs optimizations such as pipelining, loop

unrolling, and resource sharing. Further, it can exploit

dataflow and task parallelism in the high-level code,

automatically generating parallel hardware structures that can

lead to improved performance [21, 22].

In our work, Xilinx Vivado HLS v2018.1 is used. Figure 2

presents the HLS architecture generated for the VMRHF filter.

In fact, a 3×3 filter window is provided in the input. Then, the

selector is used to select the adequate RGB pixels for each of

the three VMF filters. Afterwards, the three VMF filters are

processed in parallel to compute Φ1, Φ2, and Φ3, which are

provided in parallel in the input of the VRF to calculate the

filtered RGB pixel. The filtered color image is then

reconstructed by storing each RGB pixel in the internal

memory. The advantages of this architecture are that it

supports floating-point operations and uses parallel and

pipeline techniques to increase performance.

Figure 3. Evaluation of clock cycles number

Nevertheless, in order to enhance the performance of the

VMRHF HLS design, multiple directives are progressively

incorporated into the VMRHF C code, leading to the

generation of diverse hardware solutions. Thereby, solution #1

is generated without adding any directives. This solution needs

300019722 clock cycles to process a 256×256 color image, as

depicted in Figure 3, and occupies in the Zynq UltraScale+

XCZU9EG FPGA 5% of look-up tables (LUTs), 1% of flip-

flops (FFs), 14% of BRAM blocks, and 2% of DSP slices, as

presented in Table 1 and Figure 4. From these results, it is clear

that this solution needs a huge amount of time to process a

256×256 color image. For this, to reduce this time, the

ARRAY_PARTITION directive is applied to the VMRHF C

code. This directive is used to guide the tool on how to

partition arrays and can be beneficial for optimizing parallel

access to the arrays and improving the performance of the

hardware accelerator. Thus, solution #2 is created by

implementing the ARRAY_PARTITION directive on the

three filter windows within the VMRHF C code. This enables

parallel access to the RGB pixels by the VMF filter, resulting

in a reduction in the time required to compute the RGB filtered

pixel. The synthesis results show that this solution can

decrease the clock cycle numbers by 4% compared to solution

#1, as Figure 3 illustrates, with only a 1% increase in the

number of FFs, as shown in Figure 4. But the data throughput

still remains low in solution #2 for the VMRHF design.

Therefore, we suggest using the PIPELINE directive to

increase the data throughput of the design by breaking down

the computation into stages and allowing multiple stages to

operate concurrently. This is crucial for achieving high clock

frequencies and improving performance in FPGA designs. In

our scenario, we employ the PIPELINE directive to guide

Vivado HLS in the pipelining of a loop with an initiation

interval of 2. This enables the simultaneous processing of all

RGB pixels within a single line of an image. Consequently,

while the PIPELINE directive can decrease the time required

to process the entire image, it also leads to an escalation in

hardware resource usage due to the multiplication of

processing blocks. Accordingly, solution #3 is generated. This

solution permits a reduction of the clock cycle numbers by

99% compared to solution #2, but with an increase in the

FPGA resources as represented in Figure 4. Nevertheless, our

goal is to process a color image in real-time with the VMRHF

filter. For that reason, we selected solution #3 for HW/SW

codesign implementation of the VMRHF filter. This solution

allows for the processing of 13 Mpixels/s.

Table 1. Hardware resources used by each solution on the

XCZU9EG FPGA

 Solution1 Solution2 Solution3

LUT 13708 14036 65730

FF 8151 10542 51725

BRAM_18K 124 118 198

DSP48E 50 50 701

Figure 4. Percentage comparison of the hardware resources

hardware on the XCZU9EG FPGA

4. VMRHF IMPLEMENTATION

4.1 HW/SW codesign

HW/SW codesign involves the simultaneous development

and optimization of both hardware and software components

within a system, aiming to achieve specific performance,

power, and hardware cost objectives. The architecture of the

VMRHF HW/SW design is depicted in Figure 5. In this design,

the software component is built upon the ARM Cortex-A53

2138

processor, operating at a clock frequency of 1.2 GHz. On the

other hand, the hardware component incorporates the VMRHF

coprocessor. To facilitate communication between the

software and hardware components, the AXI-Stream interface

is employed, utilizing three Direct Memory Access (DMA)

controllers to enhance data throughput [23]. Indeed, these

DMAs are used to manage the transfer of the RGB pixels from

or to the DDR memory of the processing system. Specifically,

DMA1 operates in read/write mode, while DMA2 and DMA3

are exclusively operated in read mode. Configuration of these

DMAs is accomplished through the AXI-Lite interface.

Figure 5. VMRHF HW/SW design

Figure 6. Data transfer management

Figure 6 presents the principles of data transfer management.

In fact, in the beginning, the three DMAs are used to transfer

the three first lines of the image to the VMRHF coprocessor.

When the nine RGB pixels of the filter window are ready, the

VMRHF coprocessor starts to process these pixels in order to

determine the filtered pixel. Then, only three RGB pixels are

selected to reconstruct the next filter window by adding these

pixels to the six RGB pixels of the previous filter window.

This technique is used until the image's RGB pixels are

processed by the VMRHF coprocessor, which allows for

optimization of the data transfer time.

In our architecture, the internal memory is used to store each

processed RGB pixel once it has been concatenated into a 24-

bit representation. Afterwards, the DMA1 is employed to

move every pixel to the processing system's DDR memory so

that the filtered image may be restored.

The implementation results of the VMRHF HW/SW design

on the Zynq UltraScale+ XCZU9EG FPGA by the Xilinx

Vivado v2018.1 tool show that our design needs 25.02% of

LUTs, 11.65% of FFs, 6.91% of BRAM blocks, and 27.82%

of DSP slices, as depicted in Table 2. Thereby, our design

keeps enough space in the FPGA to add other hardware blocks.

Table 2. FPGA cost of the VMRHF HW/SW design

Resource Utilization Available Utilization in %

LUTs 68565 274080 25.02%

FFs 63872 548160 11.65%

BRAM 63 912 6.91%

DSP 701 2520 27.82%

4.2 Performance evaluation

The evaluation of the VMRHF HW/SW design's

performance is conducted on the Zynq UltraScale+ MPSoC

ZCU102 kit, which is represented in Figure 7. The Zynq

UltraScale+ XCZU9EG FPGA is the kit's central component.

The ARM Cortex-A53 processor is located within this FPGA.

However, the function XTime_GetTime() uses this processor's

timer to determine the execution time. Moreover, different

standard color images are employed to measure the

performance of the VMRHF design. The resolution of these

color images is 256×256 pixels. Additionally, the PSNR [24],

which is obtained by Eq. (3), is used to determine the objective

measurement of the image.

𝑃𝑆𝑁𝑅 = 10log (
2552

𝑀𝑆𝐸
) (3)

where, the Mean Square Error (MSE) is given by Eq. (4).

Figure 7. Zynq UltraScale+ MPSoC ZCU102 kit

2139

𝑀𝑆𝐸𝑘 =
1

𝑁𝑀
∑ ∑(𝑜𝑘(𝑖, 𝑗) − 𝑥𝑘(𝑖, 𝑗))2

𝑀

𝑗=1

𝑁

𝑖=1

 (4)

where, 𝑜𝑘(𝑖, 𝑗) is a pixel in the original image, 𝑥𝑘(𝑖, 𝑗) is a

pixel in the restored image, k characterizes the color channel

and N and M characterize the image size.

Figure 8. Comparison of the execution time

Figure 8 presents the comparison of the execution times of

the VMRHF filter under the Cortex-A53 processor (SW

design), the Intel CoreTM i7-1165G7@2.80GHz processor,

and the HW/SW design. It is clear from this figure that the

VMRHF HW/SW design allows a decrease of 94% and 82%

in the execution time relative to the SW design and i7-

1165G7@2.80GHz processor, respectively. The results are

provided for comparable objective and subjective image

quality in both the software (SW) and HW/SW codesign

implementations, as shown in Figure 9. Additionally, as

depicted in Figure 10, our VMRHF HW/SW design exhibits a

power consumption of merely 4.46 watts.

Table 3 shows the performance comparison of our VMRHF

designs with the works presented in researches [9, 10]. Indeed,

our VMRHF HW/SW architecture accomplishes a 53%

reduction in execution time while exhibiting a 67% increase in

power consumption in comparison to the approach presented

in study [10]. It is noteworthy that study [10] relies on a NIOS

II processor operating at a clock frequency of 60 MHz,

interfacing with the VMRHF coprocessor using fixed-point

precision. Conversely, our design incorporates a Cortex-A53

processor operating at 1.2 GHz, interfacing with the VMRHF

coprocessor utilizing floating-point precision. As a result, in

comparison to study [10], our solution achieves a notable

decrease in execution time, maintains image quality and

details, albeit with a heightened power consumption. This

power increase is justified by a substantial 95% rise in clock

frequency relative to the configuration in study [10]. We will

compare now our VMRHF HLS design with study [9]. The

Low-Level Synthesis (LLS) is employed in study [9] to

implement the VMRHF filter on hardware. In this architecture,

approximations are introduced to implement the rational

function and the division operation. Consequently, this

architecture is implemented through fixed-point operations,

resulting in a reduction in the quality of the filtered image

when compared to our HLS design, which employs floating-

point operations. So, despite the fact that our HLS design

needs more time to filter a color image than study [9], it can

process the image in real-time with conserving the quality and

details of the image.

Figure 9. Comparing image quality between the SW and HW/SW implementations of the VMRHF filter (a) original image, (b)

corrupted image by 5% of impulsive noise, filtered image by (c) SW design and (d) HW/SW design

2140

Table 3. Performance comparison

Reference
Image

Size
Precision Technology

Execution

Time
Throughput

Power

Consumption

[9] -- Fixed-point LLS -- 40 Mpixels/s --

[10] 176×144 Fixed-point NIOS II+VMRHF coprocessor 38 ms 0.6 Mpixels/s 1.47 watts

Proposed

256×256
Floating-

point
HLS 5 ms 13 Mpixels/s --

256×256
Floating-

point

Cortex-A53+VMRHF

coprocessor
18 ms 3 Mpixels/s 4.46 watts

Figure 10. On-chip power

5. CONCLUSIONS

In this research, we introduce an effective HW/SW design

for the implementation and evaluation of the VMRHF filter.

The HLS is utilized to generate an optimized hardware

architecture with floating-point precision, employing the

VMRHF C code. This process incorporates diverse directives

such as ARRAY_PARTITION and PIPELINE. In fact, the

ARRAY_PARTITION feature facilitates parallel access to

RGB pixels in the filter window, leading to a reduced

computation time for RGB filtered pixels. Additionally, the

PIPELINE functionality enables simultaneous processing of

all RGB pixels in a single line of an image, thereby decreasing

the time needed to process the entire image. This architecture

enables the processing of a 256×256 color image in 5 ms.

Subsequently, the architecture of the VMRHF is incorporated

as a coprocessor alongside the ARM Cortex-A53 processor

within the Zynq UltraScale+ XCZU9EG FPGA. To improve

data throughput, three DMAs facilitate the connection

between the hardware and software components.

Experimental results obtained on the embedded ZCU102 kit

demonstrate that the VMRHF HW/SW design achieves a

remarkable 94% reduction in execution time relative to the SW

design while maintaining equivalent objective and subjective

image quality. These outcomes affirm the effectiveness of the

developed VMRHF filter design.

The suggested VMRHF filter system finds application in

video processing, particularly in scenarios where denoising is

employed to improve the visual quality of videos. Additionally,

the VMRHF filter proves valuable in security and surveillance

applications, where denoising is crucial for refining the clarity

of surveillance images, facilitating easier identification of

objects or individuals.

As future work, we propose incorporating the VMRHF

filter into video standards such as High Efficiency Video

Coding (HEVC) and Versatile Video Coding (VVC). This

integration aims to elevate video quality, leading to enhanced

the compression and streaming quality.

REFERENCES

[1] Fan, L., Zhang, F., Fan, H., Zhang, C. (2019). Brief

review of image denoising techniques. Visual

Computing for Industry, Biomedicine, and Art, 2(1): 7.

https://doi.org/10.1186/s42492-019-0016-7

[2] Girdher, A., Goyal, B., Dogra, A., Dhindsa, A., Agrawal,

S. (2019). Image denoising: Issues and challenges. In

Proceedings of International Conference on

Advancements in Computing & Management (ICACM-

2019), pp. 404-410.

https://doi.org/10.2139/ssrn.3446627

[3] Peltonen, S., Kuosmanen, P. (2001). Robustness of

nonlinear filters for image processing. Journal of

Electronic Imaging, 10(3): 744-756.

https://doi.org/10.1117/1.1380388

[4] Lorenzo-Ginori, J.V., Plataniotis, K.N.,

Venetsanopoulos, A.N. (2002). Nonlinear filtering for

phase image denoising. IEE Proceedings-Vision, Image

and Signal Processing, 149(5): 290-296.

https://doi.org/10.1049/ip-vis:20020626

[5] Khriji, L., Gabbouj, M. (1999). Vector median-rational

hybrid filters for multichannel image processing. IEEE

Signal Processing Letters, 6(7): 186-190.

https://doi.org/10.1109/97.769365

[6] Dang, D., Luo, W. (2008). Color image noise removal

algorithm utilizing hybrid vector filtering. AEU-

International Journal of Electronics and Communications,

62(1): 63-67. https://doi.org/10.1016/j.aeue.2007.02.001

[7] Khriji, L., Gabbouj, M. (2002). Generalised class of

nonlinear-type hybrid filters. Electronics Letters, 38(25):

1650-1651. https://doi.org/10.1049/el:20021120

[8] Abid, I., Boudabous, A., Atitallah, A.B. (2015). A new

adaptive vector median rational hybrid filter for

impulsive noise suppression. In 2015 16th International

Conference on Sciences and Techniques of Automatic

Control and Computer Engineering (STA), Monastir,

Tunisia, pp. 417-421.

https://doi.org/10.1109/sta.2015.7505212

[9] Khriji, L., Gabbouj, M., Bernacchia, G., Sicuranza, G.L.

(1999). Hardware implementation of the median-rational

hybrid filters for colour images. In Proceedings of the

IEEE-EURASIP Workshop on Nonlinear Signal and

Image Processing NSIP'99, Antalya, Turkey, pp. 124-

128.

[10] Boudabous, A., Atitallah, A.B., Khriji, L., Kadionik, P.,

Masmoudi, N. (2010). HW/SW design-based

2141

implementation of vector median rational hybrid filter.

The International Arab Journal of Information

Technology, 7(1): 70-74.

[11] Bernacchia, G., Khriji, L., Gabbouj, M., Sicuranza, G.L.

(1999). Programmable hardware implementation for the

median-rational hybrid filters. In Proceedings 1999

International Conference on Image Processing (Cat.

99CH36348), Kobe, Japan, pp. 182-186.

https://doi.org/10.1109/icip.1999.819574

[12] Khriji, L., Gabbouj, M. (2002). Adaptive fuzzy order

statistics-rational hybrid filters for color image

processing. Fuzzy Sets and Systems, 128(1): 35-46.

https://doi.org/10.1016/s0165-0114(01)00181-6

[13] Atitallah, A.B., Kammoun, M., Atitallah, R.B. (2020).

An optimized FPGA design of inverse quantization and

transform for HEVCdecoding blocks and validation in an

SW/HW environment. Turkish Journal of Electrical

Engineering and Computer Sciences, 28(3): 1656-1672.

https://doi.org/10.3906/elk-1910-122

[14] Boudabous, A., Atitallah, A.B., Khriji, L., Kadionik, P.,

Masmoudi, N. (2011). FPGA implementation of vector

directional distance filter based on HW/SW environment

validation. AEU-International Journal of Electronics and

Communications, 65(3): 250-257.

https://doi.org/10.1016/j.aeue.2010.02.012

[15] Ben Atitallah, A., Abid, I., Boudabous, A., Loukil, H.

(2021). A new hardware architecture of the adaptive

vector median filter and validation in a

hardware/software environment. International Journal of

Circuit Theory and Applications, 49(8): 2329-2347.

https://doi.org/10.1002/cta.3000

[16] Ben Atitallah, A., Kammoun, M., Ali, K.M., Ben

Atitallah, R. (2020). An FPGA comparative study of

high-level and low-level combined designs for HEVC

intra, inverse quantization, and IDCT/IDST 2D modules.

International Journal of Circuit Theory and Applications,

48(8): 1274-1290. https://doi.org/10.1002/cta.2790

[17] Atitallah, A.B., Abid, I. (2020). An efficient FPGA

implementation of AVMF filter using high-level

synthesis. In 2020 20th International Conference on

Sciences and Techniques of Automatic Control and

Computer Engineering (STA), Monastir, Tunisia, pp. 82-

85. https://doi.org/10.1109/sta50679.2020.9329336

[18] Astola, J., Haavisto, P., Neuvo, Y. (1990). Vector median

filters. Proceedings of the IEEE, 78(4): 678-689.

https://doi.org/10.1109/5.54807

[19] Boudabous, A., Atitallah, A.B., Kadionik, P., Masmoudi,

N. (2007). HW/SW FPGA implementation of vector

median filter. In 2007 Ph.D Research in Microelectronics

and Electronics Conference, Bordeaux, France, pp. 101-

104. https://doi.org/10.1109/rme.2007.4401821

[20] Khriji, L., Gabbouj, M. (1999). Class of multichannel

image processing filters. Electronics Letters, 35(4): 285-

287. https://doi.org/10.1049/el:19990250

[21] Atitallah, M.A.B., Kachouri, R., Atitallah, A.B., Mnif, H.

(2022). An efficient HW/SW design for text extraction

from complex color image. CMC-Computers, Materials

& Continua, 71(3): 5963-5977.

https://doi.org/10.32604/cmc.2022.024345

[22] Kammoun, M., Atitallah, A.B., Ali, K.M., Atitallah, R.B.

(2019). Case study of an HEVC decoder application

using high-level synthesis: Intraprediction,

dequantization, and inverse transform blocks. Journal of

Electronic Imaging, 28(3): 033010.

https://doi.org/10.1117/1.JEI.28.3.033010

[23] Kammoun, M., Ben Atitallah, A., Ben Atitallah, R.,

Masmoudi, N. (2017). Design exploration of efficient

implementation on SoC heterogeneous platform: HEVC

intra prediction application. International Journal of

Circuit Theory and Applications, 45(12): 2243-2259.

https://doi.org/10.1002/cta.2308

[24] Yalman, Y., Ertürk, I. (2013). A new color image quality

measure based on YUV transformation and PSNR for

human vision system. Turkish Journal of Electrical

Engineering and Computer Sciences, 21(2): 603-612.

https://doi.org/10.3906/elk-1111-11

2142

