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The presence of noise in an image can significantly diminish its visual quality and adversely 

affect the accuracy of subsequent image processing tasks. Therefore, it is imperative to 

enhance image quality in real-time by eliminating disturbances introduced during the image 

acquisition or transmission process. This paper proposes an efficient and optimized 

implementation of the vector median rational hybrid filter (VMRHF) specifically tailored 

for real-time color image denoising. This filter is crafted to harness the capabilities of both 

the vector median filter and the rational operator, enabling effective noise reduction while 

maintaining the integrity of edges, image details, and chromaticity. However, the hybrid 

architecture in the VMRHF filter brings about an increase in computational complexity. To 

address this complexity, the filter is implemented in a Hardware/Software (HW/SW) 

codesign context, capitalizing on the strengths of both hardware and software components. 

The software component is created using the C/C++ programming language and operates 

on the ARM Cortex-A53 processor with a clock frequency of 1.2 GHz, while the high-level 

synthesis (HLS) flow is employed to develop the hardware portion, implemented as a 

coprocessor in the Zynq UltraScale+ XCZU9EG FPGA. Nevertheless, in the pursuit of 

crafting an optimized hardware architecture for VMRHF, specific directives like 

ARRAY_PARTITION and PIPELINE are progressively incorporated into the VMRHF C 

code using the Xilinx Vivado HLS tool. The interaction between the hardware and software 

parts is streamlined through the AXI-stream interface, facilitated by three Direct Memory 

Access (DMA) units for efficient data parallel transfer, thereby boosting data throughput. 

The VMRHF HLS design is evaluated on the embedded ZCU102 kit. The experimental 

outcomes illustrate that our design is capable of restoring a 256×256 color image within 19 

ms, reflecting a substantial 94% decrease in execution time compared to the software design. 

This notable improvement is achieved while upholding consistent image quality, as 

indicated by both objective measures such as peak signal-to-noise ratio (PSNR) and 

subjective assessments. These results hold true across various levels of “salt and pepper” 

impulsive noise. Besides, our design exhibits a power consumption of merely 4.46 watts. 
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1. INTRODUCTION

Image denoising is a technique used in image processing to 

remove noise from images [1, 2]. Noise, in the context of 

images, refers to unwanted variations in color that might be 

created by a variety of causes, including transmission 

interference, sensor limitations, and environmental conditions. 

By removing these undesirable artifacts and keeping crucial 

features, image denoising aims to improve an image's visual 

quality. 

Nonlinear filters [3, 4] are a type of image filter that 

operates on an image's pixel values in a way that is not a linear 

combination of the input pixel values. Unlike linear filters, 

which compute weighted averages, nonlinear filters use more 

complex functions to determine the output pixel value. 

Nonlinear filters are particularly useful for tasks such as image 

enhancement, edge preservation, and noise reduction. 

The VMRHF [5] is one of the most popular nonlinear filters. 

This filter is used in various image processing applications, 

including color image denoising, enhancement, and 

restoration [6-8]. However, removing “salt and pepper” 

impulsive noise from a color image using this filter is 

challenging due to its high algorithmic complexity and time-

consuming nature. 

In the existing literature, various approaches have been 

suggested to minimize the computational complexity of the 

VMRHF filter with the objective of enabling real-time image 

restoration. In fact, Khriji et al. [9] propose a hardware 

architecture for the VMRHF that is implemented on a Field 

Programmable Gate Arrays (FPGA) circuit. In this 

architecture, some approximations are introduced to 

implement the rational function and the division operation. In 

this work, the VMRHF architecture allows for the processing 

of 40 million RGB vectors per second at 40 MHz. Boudabous 

et al. [10] suggest a HW/SW implementation of the VMRHF 

filter. Indeed, a fixed-point is used for the hardware 
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implementation. In contrast, the NIOS II softcore processor is 

employed to execute the software part. So, the proposed design 

allows for processing an image of size 176×144 pixels in 38 

ms at 60 MHZ. Bernacchia et al. [11] present a programmable 

hardware architecture for the MRHF’s. The floating-point 

operations are implemented using some approximations. The 

performance of this architecture depends on the image size and 

the frame rate. Khriji and Gabbouj [12] introduces a method 

for multichannel image processing through an adaptive 

approach, which is suggested to be more suitable and 

straightforward for implementing the VMRHF filter in 

software. 

In this study, we introduce a novel and enhanced HW/SW 

codesign implementation for the VMRHF filter. Nevertheless, 

the advantage of HW/SW codesign lies in its ability to 

optimize the overall system performance by seamlessly 

integrating both hardware and software components. This 

approach allows for efficient distribution of tasks between 

dedicated hardware and flexible software, leading to enhanced 

speed, power efficiency, and overall system functionality [13-

15]. However, the HLS flow is employed for the hardware 

implementation. In fact, the HLS offers a promising approach 

for accelerating hardware design and improving productivity 

by using a high-level programming language, like C, C++ or 

System instead of the traditional hardware description 

languages (HDLs) [16, 17]. The purpose of the HLS is to 

automate the process of converting high-level code into 

synthesizable hardware. But the challenge with the HLS is that 

the designers need to iterate through several experiments with 

different pragmas and directives to achieve the desired 

performance. Conversely, the software component is run on 

the ARM Cortex-A53 hardcore processor. Thus, employing 

the codesign approach in this study enables a harmonized 

utilization of hardware acceleration via HLS for 

computationally intensive tasks, and software flexibility 

through the Cortex-A53 processor for dynamic and adaptable 

functions. This leads to enhancements in performance, 

resource utilization, and power efficiency. 

Hence, the goal of this research is to develop an efficient 

VMRHF filter design capable of real-time color image 

denoising while optimizing power efficiency and resource 

utilization. Therefore, the proposed design will be 

implemented and assessed in terms of execution time, FPGA 

cost, power consumption and image quality using the 

embedded Zynq UltraScale+ MPSoC ZCU102 kit. 

The subsequent sections of the paper are organized as 

follows: Section 2 introduces the VMRHF filter. Section 3 

describes the VMRHF hardware architecture, which is 

designed through the HLS flow. Section 4 illustrates the 

VMRHF HW/SW design and the evaluation of its 

performance on the ZCU102 kit. Section 5 concludes the paper. 

 

 

2. VMRHF FILTER 
 

Figure 1 presents the block diagram of the VMRHF filter. 

This filter contains two stages. In the first stage three vector 

median filters (VMFs) [18, 19] are applied to the three 3×3 

filter window. In the second stage, the outputs of the three 

VMFs filter (Φ1, Φ2 and Φ3) are provided to the vector rational 

function (VRF) to compute the filtered pixel 𝑦(𝑛) by the 

following formula: 

 

𝑦(𝑛) = 𝛷2(𝑛) (1) 

+
∑ 𝛽𝑖𝛷𝑖(𝑛)3

𝑖=3

ℎ + 𝑘. ‖𝛷1(𝑛) − 𝛷3(𝑛)‖
 

 

where, the vector 𝛽 = [𝛽1, 𝛽2, 𝛽3]𝑇 characterizes the constant 

vector coefficient of the input sub-functions which satisfy to 

the following condition ∑ 𝛽𝑖 = 03
𝑖=1 . In our case, we selected 

𝛽 = [1, −2,1]𝑇. The h and k parameters are positive constants. 

The parameter k is utilized to control the quantity of the 

nonlinear effect [20]. Φ2 is a center weighted median sub-filter 

whereas sub-filters Φ1, and Φ3 are selected for an adequate 

compromise between noise reduction and chromaticity and 

edge preservation can be reached. In this case both these sub-

filters (Φ1, and Φ3) operate as bidirectional vector median 

filters. The former applies its action on a plus-shaped mask, 

while the latter employs a cross-shaped one. ‖. ‖2  is the L2 

vector norm and so that: 

 
‖𝛷1 − 𝛷3‖

= √(𝛷11 − 𝛷31)2 + (𝛷12 − 𝛷32)2 + (𝛷13 − 𝛷33)2 
(2) 

 

 
 

Figure 1. VMRHF block diagram  

 

Nevertheless, the VMRHF filter utilizes both the VMF filter 

and rational functions. The rational function structure is 

particularly advantageous for filtering due to its universal 

approximation capability and effective extrapolation abilities. 

It yields the best approximations for certain specific functions. 

On the other hand, VMFs demonstrate strong performance 

when dealing with noise that adheres to a long-tailed 

distribution, such as impulsive noise. Additionally, VMFs 

easily identify and eliminate outliers in image data. 

Consequently, the VMRHF output is a result of a vector 

rational operation applied to the output of three sub-filters (Φ1, 

Φ2, and Φ3). This filter showcases desirable characteristics, 

including the preservation of edges and details, as well as 

accurate chromaticity estimation. 

 

 

3. VMRHF HARDWARE ARCHITECTURE 

 

HLS provides numerous benefits concerning productivity, 

portability, abstraction, and design simplicity. In fact, HLS 

enables designers to utilize higher-level programming 

languages like C, C++, or SystemC, allowing them to 

articulate their designs in a more abstract manner. This 

2136



 

abstraction reduces the intricacy of the design process, 

resulting in enhanced productivity. Additionally, code 

composed in high-level languages tends to be more readable 

and maintainable. The hardware generated by HLS can 

leverage these characteristics, making it more comprehensible 

and modifiable as needed. Moreover, describing the design 

with a high-level language in HLS enhances potential 

portability across various hardware platforms. The tool 

handles the translation of the high-level description into 

hardware specific implementations. HLS also expedites 

development cycles by enabling designers to swiftly prototype 

and experiment with diverse algorithms and architectures at a 

high level before committing to a final design. This accelerates 

the exploration of design spaces. Furthermore, HLS tools can 

automatically perform optimizations during the synthesis 

process. These optimizations encompass aspects such as clock 

speed, resource utilization, and power consumption, which 

may be challenging and time-consuming to achieve manually. 

In summary, HLS emerges as a potent methodology, 

especially in applications where rapid development, design 

exploration, algorithmic optimizations, and high-level 

abstractions are paramount. 

 

 
 

Figure 2. VMRHF HLS design  
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In this context, numerous HLS tools have been developed 

in this context, including the Xilinx Vivado HLS tool. This 

tool is part of the Xilinx Vivado Design Suite, which is a 

comprehensive development environment for FPGA and SoC 

(System on Chip) designs. Vivado HLS allows designers to 

work at a higher level of abstraction, describing hardware 

functionality in terms of algorithms and behaviors using C, 

C++, or SystemC and automatically generating the Register 

Transfer Level (RTL) code in Verilog or VHDL. Moreover, it 

includes a range of optimizations to improve the performance, 

area utilization, and power consumption of the generated 

hardware. It performs optimizations such as pipelining, loop 

unrolling, and resource sharing. Further, it can exploit 

dataflow and task parallelism in the high-level code, 

automatically generating parallel hardware structures that can 

lead to improved performance [21, 22]. 

In our work, Xilinx Vivado HLS v2018.1 is used. Figure 2 

presents the HLS architecture generated for the VMRHF filter. 

In fact, a 3×3 filter window is provided in the input. Then, the 

selector is used to select the adequate RGB pixels for each of 

the three VMF filters. Afterwards, the three VMF filters are 

processed in parallel to compute Φ1, Φ2, and Φ3, which are 

provided in parallel in the input of the VRF to calculate the 

filtered RGB pixel. The filtered color image is then 

reconstructed by storing each RGB pixel in the internal 

memory. The advantages of this architecture are that it 

supports floating-point operations and uses parallel and 

pipeline techniques to increase performance. 

 

 
 

Figure 3. Evaluation of clock cycles number 

 

Nevertheless, in order to enhance the performance of the 

VMRHF HLS design, multiple directives are progressively 

incorporated into the VMRHF C code, leading to the 

generation of diverse hardware solutions. Thereby, solution #1 

is generated without adding any directives. This solution needs 

300019722 clock cycles to process a 256×256 color image, as 

depicted in Figure 3, and occupies in the Zynq UltraScale+ 

XCZU9EG FPGA 5% of look-up tables (LUTs), 1% of flip-

flops (FFs), 14% of BRAM blocks, and 2% of DSP slices, as 

presented in Table 1 and Figure 4. From these results, it is clear 

that this solution needs a huge amount of time to process a 

256×256 color image. For this, to reduce this time, the 

ARRAY_PARTITION directive is applied to the VMRHF C 

code. This directive is used to guide the tool on how to 

partition arrays and can be beneficial for optimizing parallel 

access to the arrays and improving the performance of the 

hardware accelerator. Thus, solution #2 is created by 

implementing the ARRAY_PARTITION directive on the 

three filter windows within the VMRHF C code. This enables 

parallel access to the RGB pixels by the VMF filter, resulting 

in a reduction in the time required to compute the RGB filtered 

pixel. The synthesis results show that this solution can 

decrease the clock cycle numbers by 4% compared to solution 

#1, as Figure 3 illustrates, with only a 1% increase in the 

number of FFs, as shown in Figure 4. But the data throughput 

still remains low in solution #2 for the VMRHF design. 

Therefore, we suggest using the PIPELINE directive to 

increase the data throughput of the design by breaking down 

the computation into stages and allowing multiple stages to 

operate concurrently. This is crucial for achieving high clock 

frequencies and improving performance in FPGA designs. In 

our scenario, we employ the PIPELINE directive to guide 

Vivado HLS in the pipelining of a loop with an initiation 

interval of 2. This enables the simultaneous processing of all 

RGB pixels within a single line of an image. Consequently, 

while the PIPELINE directive can decrease the time required 

to process the entire image, it also leads to an escalation in 

hardware resource usage due to the multiplication of 

processing blocks. Accordingly, solution #3 is generated. This 

solution permits a reduction of the clock cycle numbers by 

99% compared to solution #2, but with an increase in the 

FPGA resources as represented in Figure 4. Nevertheless, our 

goal is to process a color image in real-time with the VMRHF 

filter. For that reason, we selected solution #3 for HW/SW 

codesign implementation of the VMRHF filter. This solution 

allows for the processing of 13 Mpixels/s. 

 

Table 1. Hardware resources used by each solution on the 

XCZU9EG FPGA 

 
 Solution1 Solution2 Solution3 

LUT 13708 14036 65730 

FF 8151 10542 51725 

BRAM_18K 124 118 198 

DSP48E 50 50 701 

 

 
 

Figure 4. Percentage comparison of the hardware resources 

hardware on the XCZU9EG FPGA 

 

 

4. VMRHF IMPLEMENTATION 

 

4.1 HW/SW codesign  

 

HW/SW codesign involves the simultaneous development 

and optimization of both hardware and software components 

within a system, aiming to achieve specific performance, 

power, and hardware cost objectives. The architecture of the 

VMRHF HW/SW design is depicted in Figure 5. In this design, 

the software component is built upon the ARM Cortex-A53 
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processor, operating at a clock frequency of 1.2 GHz. On the 

other hand, the hardware component incorporates the VMRHF 

coprocessor. To facilitate communication between the 

software and hardware components, the AXI-Stream interface 

is employed, utilizing three Direct Memory Access (DMA) 

controllers to enhance data throughput [23]. Indeed, these 

DMAs are used to manage the transfer of the RGB pixels from 

or to the DDR memory of the processing system. Specifically, 

DMA1 operates in read/write mode, while DMA2 and DMA3 

are exclusively operated in read mode. Configuration of these 

DMAs is accomplished through the AXI-Lite interface. 

 

 
 

Figure 5. VMRHF HW/SW design 

 

 
 

Figure 6. Data transfer management 

Figure 6 presents the principles of data transfer management. 

In fact, in the beginning, the three DMAs are used to transfer 

the three first lines of the image to the VMRHF coprocessor. 

When the nine RGB pixels of the filter window are ready, the 

VMRHF coprocessor starts to process these pixels in order to 

determine the filtered pixel. Then, only three RGB pixels are 

selected to reconstruct the next filter window by adding these 

pixels to the six RGB pixels of the previous filter window. 

This technique is used until the image's RGB pixels are 

processed by the VMRHF coprocessor, which allows for 

optimization of the data transfer time. 

In our architecture, the internal memory is used to store each 

processed RGB pixel once it has been concatenated into a 24-

bit representation. Afterwards, the DMA1 is employed to 

move every pixel to the processing system's DDR memory so 

that the filtered image may be restored. 

The implementation results of the VMRHF HW/SW design 

on the Zynq UltraScale+ XCZU9EG FPGA by the Xilinx 

Vivado v2018.1 tool show that our design needs 25.02% of 

LUTs, 11.65% of FFs, 6.91% of BRAM blocks, and 27.82% 

of DSP slices, as depicted in Table 2. Thereby, our design 

keeps enough space in the FPGA to add other hardware blocks. 

 

Table 2. FPGA cost of the VMRHF HW/SW design 

 
Resource Utilization Available Utilization in % 

LUTs 68565 274080 25.02% 

FFs 63872 548160 11.65% 

BRAM 63 912 6.91% 

DSP 701 2520 27.82% 

 

4.2 Performance evaluation 

 

The evaluation of the VMRHF HW/SW design's 

performance is conducted on the Zynq UltraScale+ MPSoC 

ZCU102 kit, which is represented in Figure 7. The Zynq 

UltraScale+ XCZU9EG FPGA is the kit's central component. 

The ARM Cortex-A53 processor is located within this FPGA. 

However, the function XTime_GetTime() uses this processor's 

timer to determine the execution time. Moreover, different 

standard color images are employed to measure the 

performance of the VMRHF design. The resolution of these 

color images is 256×256 pixels. Additionally, the PSNR [24], 

which is obtained by Eq. (3), is used to determine the objective 

measurement of the image. 

 

𝑃𝑆𝑁𝑅 = 10log (
2552

𝑀𝑆𝐸
) (3) 

 

where, the Mean Square Error (MSE) is given by Eq. (4). 

 

 
 

Figure 7. Zynq UltraScale+ MPSoC ZCU102 kit 
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𝑀𝑆𝐸𝑘 =
1

𝑁𝑀
∑ ∑(𝑜𝑘(𝑖, 𝑗) − 𝑥𝑘(𝑖, 𝑗))2

𝑀

𝑗=1

𝑁

𝑖=1

 (4) 

 

where, 𝑜𝑘(𝑖, 𝑗)  is a pixel in the original image, 𝑥𝑘(𝑖, 𝑗)  is a 

pixel in the restored image, k characterizes the color channel 

and N and M characterize the image size. 

 

 
 

Figure 8. Comparison of the execution time 

 

Figure 8 presents the comparison of the execution times of 

the VMRHF filter under the Cortex-A53 processor (SW 

design), the Intel CoreTM i7-1165G7@2.80GHz processor, 

and the HW/SW design. It is clear from this figure that the 

VMRHF HW/SW design allows a decrease of 94% and 82% 

in the execution time relative to the SW design and i7-

1165G7@2.80GHz processor, respectively. The results are 

provided for comparable objective and subjective image 

quality in both the software (SW) and HW/SW codesign 

implementations, as shown in Figure 9. Additionally, as 

depicted in Figure 10, our VMRHF HW/SW design exhibits a 

power consumption of merely 4.46 watts. 

Table 3 shows the performance comparison of our VMRHF 

designs with the works presented in researches [9, 10]. Indeed, 

our VMRHF HW/SW architecture accomplishes a 53% 

reduction in execution time while exhibiting a 67% increase in 

power consumption in comparison to the approach presented 

in study [10]. It is noteworthy that study [10] relies on a NIOS 

II processor operating at a clock frequency of 60 MHz, 

interfacing with the VMRHF coprocessor using fixed-point 

precision. Conversely, our design incorporates a Cortex-A53 

processor operating at 1.2 GHz, interfacing with the VMRHF 

coprocessor utilizing floating-point precision. As a result, in 

comparison to study [10], our solution achieves a notable 

decrease in execution time, maintains image quality and 

details, albeit with a heightened power consumption. This 

power increase is justified by a substantial 95% rise in clock 

frequency relative to the configuration in study [10]. We will 

compare now our VMRHF HLS design with study [9]. The 

Low-Level Synthesis (LLS) is employed in study [9] to 

implement the VMRHF filter on hardware. In this architecture, 

approximations are introduced to implement the rational 

function and the division operation. Consequently, this 

architecture is implemented through fixed-point operations, 

resulting in a reduction in the quality of the filtered image 

when compared to our HLS design, which employs floating-

point operations. So, despite the fact that our HLS design 

needs more time to filter a color image than study [9], it can 

process the image in real-time with conserving the quality and 

details of the image. 

 

 
 

Figure 9. Comparing image quality between the SW and HW/SW implementations of the VMRHF filter (a) original image, (b) 

corrupted image by 5% of impulsive noise, filtered image by (c) SW design and (d) HW/SW design 

2140



 

Table 3. Performance comparison 

 

Reference 
Image 

Size 
Precision Technology 

Execution 

Time 
Throughput 

Power 

Consumption 

[9] -- Fixed-point LLS -- 40 Mpixels/s -- 

[10] 176×144 Fixed-point NIOS II+VMRHF coprocessor 38 ms 0.6 Mpixels/s 1.47 watts 

Proposed 

256×256 
Floating-

point 
HLS 5 ms 13 Mpixels/s -- 

256×256 
Floating-

point 

Cortex-A53+VMRHF 

coprocessor 
18 ms 3 Mpixels/s 4.46 watts 

 

 
 

Figure 10. On-chip power 

 

 

5. CONCLUSIONS 

 

In this research, we introduce an effective HW/SW design 

for the implementation and evaluation of the VMRHF filter. 

The HLS is utilized to generate an optimized hardware 

architecture with floating-point precision, employing the 

VMRHF C code. This process incorporates diverse directives 

such as ARRAY_PARTITION and PIPELINE. In fact, the 

ARRAY_PARTITION feature facilitates parallel access to 

RGB pixels in the filter window, leading to a reduced 

computation time for RGB filtered pixels. Additionally, the 

PIPELINE functionality enables simultaneous processing of 

all RGB pixels in a single line of an image, thereby decreasing 

the time needed to process the entire image. This architecture 

enables the processing of a 256×256 color image in 5 ms. 

Subsequently, the architecture of the VMRHF is incorporated 

as a coprocessor alongside the ARM Cortex-A53 processor 

within the Zynq UltraScale+ XCZU9EG FPGA. To improve 

data throughput, three DMAs facilitate the connection 

between the hardware and software components. 

Experimental results obtained on the embedded ZCU102 kit 

demonstrate that the VMRHF HW/SW design achieves a 

remarkable 94% reduction in execution time relative to the SW 

design while maintaining equivalent objective and subjective 

image quality. These outcomes affirm the effectiveness of the 

developed VMRHF filter design. 

The suggested VMRHF filter system finds application in 

video processing, particularly in scenarios where denoising is 

employed to improve the visual quality of videos. Additionally, 

the VMRHF filter proves valuable in security and surveillance 

applications, where denoising is crucial for refining the clarity 

of surveillance images, facilitating easier identification of 

objects or individuals. 

As future work, we propose incorporating the VMRHF 

filter into video standards such as High Efficiency Video 

Coding (HEVC) and Versatile Video Coding (VVC). This 

integration aims to elevate video quality, leading to enhanced 

the compression and streaming quality. 
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