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The design of a hybrid brain-computer interface (BCI) system is an upgradation of the 

existing BCI systems. Contemporary studies that combine two modalities for a good BCI 

show that electroencephalogram (EEG) and functional near infra-red spectroscopy (fNIRS) 

were more convenient. Using this hybrid system various multi-class classification problems 

have been solved with better ease. The motor imagery and motor execution tasks performed 

for the Right/Left Arm and Hand were taken from CORE dataset which consists of 15 male 

subjects. In most cases, feature extraction was done after good pre-processing and channel 

selections to obtain good results. Deep learning methods like Convolutional Neural 

Networks and Thin ICA were used for feature extraction and classification of EEG signals. 

CNN was used for feature extraction and classification in fNIRS with minimal pre-

processing and data augmentation. Comparison of performance was done with CNN and a 

combination of LSTM-CNN classifiers. The proposed CNN model showed 98.3% accuracy 

with minimal pre-processing and with no channel selection algorithms. Evaluation metrics 

like Accuracy, Precision, Recall, F1 score and confusion matrix are used to evaluate the 

classification accuracy. This concludes that the proposed CNN model can classify 

contralateral and ipsilateral data with lower computational load and with good accuracy. 
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1. INTRODUCTION

Brain Computer interface (BCI) is quite common in 

integrating the brain with different actuators using a computer. 

This captures the mind of various researchers to make it 

practically feasible. Many non-invasive brain reading 

techniques like EEG, fMRI, fNIRS are commonly used for this 

application [1, 2]. However, each of these modalities have 

their own merits and demerits. This lead to use of Hybrid BCI 

which emerged by combination of two modalities that can 

complement each other’s limitations [3]. This can be applied 

for many applications like Alzheimer, mental arithmetic, 

motor imagery, motor executions, which are further converted 

into command signals to be used for clinical and non-clinical 

applications [4-7]. The various limitation in this hybrid BCI 

set up is now very much overcome by upgradation of 

acquisition devices [8]. 

Recent works show methods of decoding Motor imagery 

and motor execution tasks acquired from EEG and fNIRS 

modalities [9-11]. EEG has a good temporal resolution while 

fNIRS has a good spatial resolution despite its slow response 

due to hemodynamic activity. Also, fNIRS is better than fMRI 

in terms of cost and acquisition complexity [12, 13].  

The application of Hybrid BCI with EEG and fNIRS 

combination for classifying motor imagery and motor tasks 

has been done often. Different types of feature extraction 

techniques and classifiers had been applied to achieve a good 

classification accuracy. Machine learning classifiers like 

Linear Discriminant Analysis (LDA), Tree classifiers, K-

Nearest Neighbor (KNN) and Support Vector Machine (SVM) 

are most commonly employed for classification of motor 

imagery or motor tasks especially for EEG or fNIRS 

modalities alone [14-26]. The same has been applied for 

Hybrid datasets either as a single model or a combination of 2 

models or applying feature selections [27, 28]. However, a 

good accuracy could not be achieved. A deep neural network 

was also used by fully connected layers, but achieved a lesser 

accuracy [29-31]. With an aim to increase accuracy of 

machine learning algorithms in hybrid datasets, some works 

had applied channel selection before extracting features [32-

35]. This has indeed been found to increase the machine 

learning model accuracy from approximately 92% to 98%. 

The performance of the models can also vary with the choice 

of feature extraction algorithms like Common Spatial Pattern 

(CSP), Regularized Common Spatial Pattern (RCSP), 

Principal Component Analysis (PCA) [36, 37]. Linear and 

non-linear features are also considered [38-40]. 

In current literature, there are limited data for ipsilateral 

limb movements since they are more spatially localized 

signals which can lead to generalizations and 

misclassifications [41, 42]. Besides, since both hand 

movements are performed, the number of trials and the time of 

task performance is also limited. Also, increase in accuracy 

has always been met with complex methods. Channel selection 

Traitement du Signal 
Vol. 41, No. 4, August, 2024, pp. 2143-2152 

Journal homepage: http://iieta.org/journals/ts 

2143

https://orcid.org/0000-0001-9610-6739
https://orcid.org/0000-0002-4592-9417
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410442&domain=pdf


 

methods could contribute to increase the accuracy but 

compensates on spatial information. Machine learning models 

without channel selection yield less than 98% accuracy. The 

objectives of current study are to provide a clear classification 

of ipsilateral (spatially localized)/contralateral (spatially 

distinct) hand movements and to apply deep learning methods 

to improve the classification accuracy with reduced pre-

processing steps thereby reducing the computational load. The 

dataset used for this study consists of Motor Imagery (MI) and 

Motor Execution for the Right arm, Left arm, Right hand, and 

Left hand. This makes classification complex since the cortical 

locations for these movements lie adjacent to each other which 

makes the chances of misclassification more prominent. Our 

proposed model harnesses the advantages of CNN with a 

higher number of filters to address the classification problem 

in a more simplified manner. MATLAB R2019b was used for 

data preparations, pre-processing and feature extraction (of 

EEG alone with Thin-ICA) while CNN was applied using 

Python Version 3.11. The paper is further divided into 

Methodology which consists of dataset description, data 

augmentation, pre-processing, feature extraction and 

classification. This is followed by Results and Discussions 

showing performance comparisons with another proposed 

model and also with previous works and then the Conclusion. 

 

 

2. METHODOLOGY 

 

The EEG-fNIRS dataset underwent augmentation, pre-

processing and other feature extraction techniques and was 

given to the classifier. The motor execution data taken from 

EEG and fNIRS were processed and classified as shown in 

Figure 1. Figure 1(a) shows the methodology flow for training 

signals and Figure 1(b) shows the process done for testing 

signals. In the proposed methodology, besides improving 

accuracy with simpler modules, other considerations such as 

model architectural complexity and generalization of the 

model were also made. 

 

 
(a) Training module 

 
(b) Testing module 

 

Figure 1. Block diagrams of methodology 

 

2.1 Dataset 

 

The dataset provided by Buccino et al. [10] has a 

simultaneous recording of both EEG and fNIRS taken during 

motor execution. 15 healthy male subjects aged between 22 to 

54 participated in the experiment and were given 4 different 

upper limb tasks. The motor tasks assigned were flexion of 

Left/Right Arm/Hand. The acquisition system had 21 channels 

for EEG and 34 channels for fNIRS with a sampling frequency 

of 250 Hz and 10.42 Hz respectively. Each trial of tasks lasts 

for 12 seconds with 6 seconds rest and 6 seconds of movement 

with 25 such trials for one class. The 6 seconds of movement 

performance is augmented for further processing. 

 

2.2 Data augmentation 

 

Current literature suggests, the choice of intervals would 

prove a better classification. Various data augmentation 

methods are available which can be used based on data [43-

51]. Many researchers have suggested different methods of 

augmentation. Two types of augmentation – time slicing and 

overlap were applied for both EEG and fNIRS in the current 

dataset. The stepwise algorithm for time slicing was adapted 

from the study of Naseer and Hong [52]. Since the dataset 

contains 6 seconds of task performance time slicing was done. 

An overlap of 2 seconds was done to increase the data size. 

 

 
 

Figure 2. Data augmentation process 

 

According to the data, for each trial, the task was performed 

for only 6 seconds. In time slicing, the 6 seconds task time was 

sliced into 3 different time intervals – [2 5], [3 6] and [4 7]. 

The interval begins one second after the cue for task, since 

fNIRS has hemodynamic delay. Also, the number of samples 

that would be present for these three seconds was calculated 

as 750 for EEG and 30 for fNIRS (for a single trial) using their 

sampling frequencies. The dataset contains events and 

timepoints for rest and task cues. The time point of one second 

after the task cue was fetched and 750 samples for EEG and 

30 samples for fNIRS are retrieved from the samples data. This 

is repeated for [3 6] and [4 7] intervals by considering 2 

seconds and 3 seconds after cue for tasks respectively. The 

chosen intervals have an overlap of 2 seconds. This was 
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continued for 25 trials for each class, for 15 subjects. The 

block diagram can be seen in Figure 2. Hence, the total number 

of samples obtained for a single subject was 2,21,400 for EEG 

and 9000 for fNIRS. 

 

2.3 Pre-processing 

 

2.3.1 Preprocessing for fNIRS 

EEG and fNIRS signals were pre-processed simultaneously. 

The given fNIRS signals were obtained as wavelength 

information at W1 = 760 nm (red) and W2 = 850 nm (Infra-

red) which needs to be converted to Optical Density 

Information [53-56]. This task is done using Modified Beer-

Lamberts law which converts wavelengths to changes in 

optical densities which is a response of changes in oxy and de-

oxy hemoglobin concentration across a certain cortical region 

in response to an activity [57, 58]. It should be noted that 

fNIRS are generated only during activity (beta band of EEG) 

and motor imagery frequencies (the mu band). The 

Differential Path length Factor (DPF) is given as 5.5 as 

suggested by Duncan et al. [59]. These concentration changes 

were band-filtered with an (Infinite Impulse Response) IIR 

filter having a band frequency of [0.01 0.1] Hz and order of 4 

[60]. 

 

2.3.2 Pre-processing for EEG 

The pre-processing for EEG was done with an IIR band pass 

filter of order 5 since the signal to noise ratio was better [57]. 

The µ(mu) and β(beta) band EEG frequencies were band 

filtered using the cut off frequencies as 8 Hz to 30 Hz. This 

gives both the motor imagery and the motor execution 

information. 

A gaussian transformation was used for normalization of the 

signals in both EEG and fNIRS. This was done by subtracting 

the mean(μ) and dividing by its standard deviation (σ) as given 

in Eq. (1). 

 

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡) − 𝜇

𝜎
 (1) 

 

2.4 Multi-class CSP 

 

The four classes were considered as a two-class problem – 

Right Hand/Left Hand and Right Arm/Left Arm. The CSP 

filters were computed for these two class problems by solving 

the Rayleigh’s eigen value problem using Eq. (2). 

 

𝐽(𝑏) =
𝑏𝑇𝛴1𝑏

𝑏𝑇𝛴2𝑏
 (2) 

 

where, 𝛴1 and 𝛴2 denote the covariance matrix of class 1 and 

2 while b is the spatial filter obtained by solving the 

generalised Eigan value decomposition. In this work we have 

considered 2 filters for 4 class hence, N=8. 

 

2.5 Thin-ICA CSP 

 

The thin ICA method first computes the second and fourth-

order statistics and then its independent components as done 

by Thiyam et al. [39]. The choice of independent components 

can be changed as required. The EEG data were first 

considered as a binary problem wherein one set was Right 

hand/Left hand and another set was Right Arm and Left arm. 

The given EEG signal is represented by x(t) which is given in 

the below linear Eq. (3). 

 

𝑥(𝑡) = 𝐴𝑠(𝑡) + 𝑤(𝑡) (3) 

 

where, 𝐴𝜖𝑅𝑚×𝑛  is the mixing matrix, 𝑤(𝑡)𝜖𝑅𝑚  is the zero 

mean gaussian noise and 𝑠(𝑡)𝜖𝑅𝑛  is the independent source 

vector. The output is estimated as in Eq. (4). 

 

𝑦(𝑡) = 𝑈𝑇𝑧(𝑡) (4) 

 

where, U(U=WA) is the orthogonal matrix that was obtained 

after pre-whitening and z(t) represents the pre-whitened 

observations, which is given as 𝑧(𝑡) = 𝑈𝑠(𝑡) + 𝑊𝑛(𝑡)𝜖𝑅𝑁. 

The contrast function which estimates the second and 

higher-order statistics is given in Eq. (5). 

 

𝜑Θ(𝑈) = 𝛾4 ∑ ∑ |𝐶𝑢𝑚(𝑦𝑖(𝑡𝑛), … , 𝑦𝑖(𝑡𝑛)|2

𝑃

𝑖=1

𝑁

𝑛=1

 

+𝛾2 ∑ ∑ ∑ |𝐶𝑢𝑚(𝑦𝑖(𝑡𝑛 + 𝜏), 𝑦𝑖(𝑡𝑛)|2

𝜏 𝜖 𝛵

𝑃

𝑖=1

𝑁

𝑛=1

 

(5) 

 

where, N denote the number of splits and P denote the number 

of independent components to extract. Here we set N = 3 (three 

splits in data), P = 20 and T = {1, 2, …, 6} (delays).  

It is important that the independent components extracted 

should belong to MI and motor execution tasks. To ensure this, 

the CSP matrix is used to initialize the unmixing matrix in 

Thin ICA algorithm where the EEG signals were filtered using 

the obtained spatial filters. The parameters in Thin-ICA could 

be tuned, so 2 and 5 features were taken for each class (8 and 

20 independent components) with 3 splits. The features were 

obtained from the log variances of these filtered signals to train 

the classifier given as in Eq. (6). 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 = 𝑙𝑜𝑔 (𝑣𝑎𝑟(𝑢𝑖
𝑇𝑧)) (6) 

 

The extracted features of EEG were fed as input to CNN for 

further classification. On the other hand, the pre-processed 

fNIRS were directed to CNN for feature extraction and 

classification. 
 

2.6 Convolutional neural network (CNN) 
 

 
 

Figure 3. Percentage of positive and negative values in the 

dataset 

 

Pre-processed fNIRS data (34 channels) was merged with 

the EEG features (21 channels) by zero-padding the EEG data 

to match the dimensions of fNIRS data. The dataset was 
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checked for the total negative and positive values in order to 

choose an appropriate activation function. It is found that, 

negative values were populated more than the positive values 

as in Figure 3. 

The architecture of this model is shown in Figure 4. In one-

dimensional CNN (1D-CNN), 5 convolutional layers are used 

with a kernel of size of 3, which was followed by 5 dense 

layers. The first three layers have 128 filters and the last two 

layers comprise 64 filters.  

ELU activation function was considered to perform better 

in literature whenever there was a higher population of 

negative data, especially in the case of speech signals [31, 61-

63]. The same was tested for this dataset and also compared 

with the performance of ReLU. The generalization of training 

and testing data with faster convergence was better with ELU. 

Hence the ELU activation function was chosen throughout 

owing to a high negative population along with Adam 

optimizer [64]. 

Pooling layers down sample the input with a window size 

of 1. Dropout layers are added after every dense layer from 

first to third, so that overfitting problems can be avoided. The 

SoftMax activation function was used in the last dense layer to 

provide a distinctive classification of 4 different classes of 

motor execution. 

 

2.7 Long – Short Term Memory (LSTM) 

 

This is a type of RNN which uses memory cells to filter 

previous state and their information which will be un-used in 

future. Five layers of LSTM is used with 256 filters in first 

layer, 128 filters in second layer, 64 filters in third and fourth 

layer and 32 filters in the fifth layer. Elu and SoftMax 

activation functions are used with Adam optimizer. Two dense 

layers are used to finally classify the outputs. 

 

2.8 CNN + LSTM 

 

The architecture of this model is seen in Figure 5. This 

model was built with two layers of CNN and two layers of 

LSTM. CNN has 128 and 64 filters while LSTM has 64 filters 

in its two layers. Four dense layers follow the LSTM with Elu 

and SoftMax activations. 

 

 
 

Figure 4. Architecture of CNN model 

 

 
 

Figure 5. Architecture of CNN + LSTM model 
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Batch normalizations and dropouts were added to stabilize 

learning and to avoid overfitting. Compilation was done by 

Adam optimizer. 

 

 

3. RESULTS AND DISCUSSION 

 

The dataset for Hybrid – BCI was taken from 

https://core.ac.uk/display/150054285. The dataset consists of 

a simultaneous recording of EEG and fNIRS during an upper 

limb motor execution task. MATLAB R2019b, Python version 

3.11 (Jupyter notebook and Tensor flow) was used for data 

processing and classification.  

In pre-processing stage, the signal noise was found to be 

higher with higher frequencies which distorted the signals as 

shown in Figure 6 for HbO (Oxy-hemoglobin) data which 

would be similar for HbR (de-oxy hemoglobin) data.  

 

 
 

Figure 6. Comparison of signal distortions between 2 Band 

pass filters for fNIRS 

 

However, the frequency response of different filter bands as 

in Figure 7, show that a band of [0.01 Hz – 0.1 Hz] falls in-

phase. So, the band pass filter for fNIRS is set within this 

frequency band. 

While pre-processing EEG signals, it was observed that 5th 

order IIR butter-worth have a constant group delay as seen in 

Figure 8. 

The data for training and testing are taken as per Table 1. 15 

subjects were recruited for collecting the data for motor 

execution of Right/Left Hand and Right/Left Arm. Initially 

works were done to see which time interval had good 

information by time slicing method and [2 4] interval was 

chosen and data was presented to CNN. 

However, accuracy suffered here since the quantity of input 

data was not sufficient. Hence the data was augmented in three 

intervals and overlapped as in the methodology. The dataset 

after augmentation was split into training and testing data in a 

60:40 ratio. The total EEG data after augmentation in three 

intervals and was 1,12,6500 and for fNIRS was 46,500. The 

data was mixed and fed to the CNN model.  

 

Table 1. Dataset split-up 

 

Total No of 

Subjects 

Training Data 

Size 
Testing Data Size 

15 1,22,700 (60%) 81,800 (40%) 

 

 
(a) [0.01 Hz– 0.5 Hz] 

 
(b) [0.01 Hz– 0.2 Hz] 

 
(c) [0.01 Hz– 0.1 Hz] 

 
(d) [0.01 Hz– 0.09 Hz] 

 

Figure 7. Comparison of frequency response of different 

band pass filters for fNIRS 
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Figure 8. Group delay for IIR butter-worth fifth order filter 

band pass filter 

 

 
(a) fNIRS - CNN model 

 
(b) EEG - CNN model 

 

Figure 9. Confusion matrix 
 

EEG signals have good temporal resolution while fNIRS 

has good spatial resolution [63]. The time series CNN models 

are better applicable for spatial resolution than temporal 

resolutions. However, since hybrid BCI has both these 

modules, the CNN model could be applied better on FNIRS 

than on EEG [63]. Owing to this, after pre-processing, fNIRS 

data was directly fed into the CNN model and was found to 

produce 99.9% accuracy. However, when EEG was fed to the 

CNN model after pre-processing, the performance was very 

poor, since CNN was not capable of extracting features in 

temporal resolution as seen in Figure 9. 

In order to rectify this, EEG was given to Thin ICA to 

extract features and these features were fed to CNN for further 

classification with 5-fold cross validation. This gave better 

results with 98.3% accuracy. The depth of CNN was tested 

with 2, 3 and 5 layers and was seen that, lower depth 

compromised on the generalization of training and testing data 

as seen in Figure 10. A 6-layer CNN had an accuracy of 72% 

which is way lower than 5-layer model. Hence a 5-layer depth 

was retained for the proposed model. This was also compared 

with LSTM and LSTM + CNN models, where LSTM gave a 

poor accuracy of 26% while the combination of LSTM and 

CNN gave 98%. 

 

 
(a) 2-layer CNN 

 
(b) 3-layer CNN 

 
(c) 5-layer CNN 

 

Figure 10. Training and testing accuracy 
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Figure 11. Confusion matrix for 5-layer CNN model 

 

 
 

Figure 12. Confusion matrix for hybrid CNN model 

 

 
 

Figure 13. Comparison of current work with existing 

literature (for Hybrid BCI - EEG+fNIRS) 

 

Figure 11 shows the confusion matrix for 5 - layer CNN and 

Figure 12 shows the confusion matrix of Hybrid CNN. 

The difference in accuracy of proposed model 1 and 2 was 

0.3%. The architectural complexity of CNN model was seen 

to have 5 layers while CNN + LSTM model had 2 CNN and 2 

LSTM layers. Figure 13 gives a comparison of the accuracies 

of previous and current work, wherein the current model 

shows better performance. 

The proposed models were also evaluated with Precision, 

Recall and F1 score. The results as in Figure 14 shows that, 

the two proposed models have shown similar performance. 

 

 
 

Figure 14. Comparison of performance metrices 

 

 

4. CONCLUSION 

 

A hybrid BCI constructed with EEG and fNIRS has become 

common in obtaining good classification. However, the 

computational complexity is still higher with the selection of 

good channels before feature extraction and the selection of 

good features after feature extraction. In the proposed system 

CNN was applied to bypass these in fNIRS and Thin-ICA for 

feature extraction in EEG. The classification accuracy of the 

CNN model was 98.3% and that of the CNN + LSTM model 

was 98%. Although the performance metrices were similar for 

both the proposed models, the generalization and accuracy 

were better for CNN. Comparatively, we conclude that the 

performance of CNN model was better in terms of accuracy, 

complexity, performance and generalization with that of other 

previous works. Also, this model implies a lesser 

computational load for both EEG and fNIRS signals and had 

performed much better than the previous models which used 

additional pre-processing methods like channel selections, 

noise removal and feature selections. Other feature extraction 

methods can be implemented in future for the same or different 

dataset to verify the consistency of the model performance. 

Thus, we propose a less complex, generalized CNN model 

which can give a good classification accuracy for multi-class, 

contralateral and ipsilateral hand movements. 
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NOMENCLATURE 

 

b Spatial filter 

J(b) Spatial filter matrix 

A Mixing matrix 

s Independent source 

w Zero mean Gaussian noise 

U Orthogonal matrix 

z Pre-whitened observations 

N Number of splits 

P Number of independent components 

T Delays 

Cum Cumulative 

var Variance 

log Logarithm 

𝒖𝒊
𝑻𝒛 Filtered signal 

 

Greek symbols 

 

µ Mean 

σ Standard deviation 

Σ Covariance matrix 

φ Contrast function 

γ Order of the statistic 

τ Delay 

 

Subscripts 

 

i and n Iterations 

norm Normalization 

 

Superscripts 

 

T Transpose 
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