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Among the most prevalent diseases affecting people and a major factor in the rising mortality 

rate is lung cancer. Using a lung nodule as an example, medical professionals consider that 

early identification of lung cancer utilizing computed tomography (CT) testing can minimize 

mortality. Considering the enormous number of CT scans might lessen the risk. Still, the CT 

scan images contain an enormous amount of data regarding nodules, and as an outcome of 

the increasing number of images, radiologists have a very difficult time accurately assessing 

them. Traditional diagnostic techniques, including chest X-rays, and positron emission 

tomography (PET) scans, provide essential visualization of lung abnormalities but are often 

constrained by factors such as radiation exposure, cost, and the risk of false positives and 

negatives. Recently, a number of approaches had been proposed based on handicraft to help 

radiologists. For giving a thorough analysis of various techniques, we analyzed numerous 

potential methods created in the Computer-Aided Design (CAD) system to identify and 

categorize the nodule with the analysis of CT images. The review addresses the challenges 

faced in lung cancer diagnosis, such as the high variability in tumor appearance and the need 

for large, annotated datasets for training robust models. Additionally, we discuss the 

potential of CAD systems in clinical practice and their impact on patient outcomes.  

Keywords: 

lung cancer, sputum test, CAD, multimodal 

CAD systems, 2D-CNN, F1 score, confusion 

matrix 

1. INTRODUCTION

Lung cancer came in as the third-leading cause of death for 

women and leading cause of dying for men according to the 

World Cancer Observatory database created by the IARC. 

Nearly 1.8 million deaths from lung cancer were recorded in 

2018, accounting for about 18.4% of all cancer-related deaths 

[1]. Because of the concerning increase in deaths from lung 

cancer and the disease's excessively high incidence in nature, 

several cancer control researches and early detection 

techniques have been developed to reduce mortality. Efficient 

diagnostic techniques lead to lower incidence rates for lung 

cancers, and early disease discovery is typically necessary for 

lung cancer recovery.  

Currently, seven methods can be used to treat lung cancer, 

including breath analysis, cytology sputum, positron emission 

tomography (PET), magnetic resonance imaging (MRI), 

computed tomography (CT) scans, and chest radiographies 

(CXRs) [2]. As indicated in Table 1, each of the lung cancer 

identification strategies now in use has a range of markers and 

distinct detection level. The CT, septum, and CXR are 

radiation-prone, and PET and MRI have limits in the 

identification and staging of lung cancer. These techniques 

also have certain drawbacks. Additionally, serum constitutes 

an invasive procedure, and its low level of early detection 

specificity and sensitivity makes it unacceptable. On the other 

hand, because of gene promoter methylation, sputum still 

required further testing but had the ability to identify lung 

cancer at an early stage [3]. Additionally, VOC in urine had a 

high level of specificity and sensitivity but needed a larger 

sample size [3], while CXR possesses a low level of sensitivity 

and frequently produces false-negative results [4, 5]. The most 

reliable method for finding lung cancer recently is CT imaging, 

which provides precise information on the positions and sizes 

of nodules. Early-stage cancer tumors were found by the low-

dose CT testing. In comparison to conventional radiography 

methods, it led to a 20.0% reduction in mortality and a 

considerable rise in the rate of positive screening tests [6]. 

Table 1. Techniques for early identification of lung cancer 

Techniques Markers 
Level of 

Detection 

Sputum test 
Methylated gene promoters and 

abnormal cells 

Molecule or 

Cell level 

Serum test 

Circulation of telomerase, plasma 

proteins, circulating DNA, tumor 

cells, etc. 

Molecule or 

Cell level 

PET Neoplastic tissue Tissue level 

Urine test Urine volatile odorants 
Molecule 

level 

CXR Neoplastic tissue Tissue level 

CTs Neoplastic tissue Tissue level 

Breath 

examination 

Non-Volatile and Volatile-

organic compounds 

Molecular 

level 
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While the nodule is tiny and isolated, the condition of lung 

cancer may be identified. The lung nodules often have a 

diameter of 3 mm. Radiologists divided nodules into benign 

and malignant categories based on CT scans. By cutting into a 

variety of 2D sections, the 3D-lung voxels must be carefully 

examined. The evaluation needs to be highly precise in order 

to classify nodules as benign or malignant because of the CTs' 

extensive inclusion of information. Radiologists generally find 

it challenging to examine 3D lung voxels slice through slice 

from 2D CTs since a CT scan offers an enormous quantity of 

details concerning lung nodules and made it challenging to 

interpret and identify cells derived from CT images. Human 

error has a significant negative impact on lung nodule 

identification. Therefore, employing CAD systems as 

radiologists' support for the precise classification and 

identification of malignancies, the diagnosis of lung cancer has 

been simplified. It has been proved that this strategy is 

effective for helping radiologists. In this research, this paper 

presents many CAD systems for classification and detection 

that have been recently created. The major goal of this paper 

is to compile important information from many prominent the 

most advanced Convolutional Neural Network (CNN) 

architectures in table style and conduct a comparison of all 

CNN on various criteria. This paper also highlights several 

critical elements that are important for researchers to 

remember while recognizing and classifying lung nodules, as 

well as the recently created models that are employed in these 

procedures. The paper is discussed as per the following 

sections: 

A description of the CAD technology is presented in 

Section II. It entails an analysis of two different CAD systems: 

a learnt CAD system and a handcrafted based CAD approach. 

The third section focuses on several cutting-edge CNN 

architectures, which are the fundamental building blocks of the 

CAD approach. In a tabular style, this paper highlight and 

analyze several CNN architectures like as GoogLeNET, 

VGGNet, AlexNet, LeNet, etc. This paper also provides a few 

other newly created models. In section IV, this paper intends 

to summarize newly researched CNN-based CAD techniques 

for lung nodule identification and classification, along with 

their outcomes. Section V serves as the review's conclusion. 

 

 

2. RESEARCH GAPS IDENTIFIED 

 

Addressing of the following research gaps in the existing 

research would not only advance the understanding of lung 

cancer classification and detection but also facilitate the 

developing of more accurate, robust, and clinically relevant 

diagnostic tools for improving patient care. 

Incorporation of clinical context and prior knowledge: 

There may be a lack of emphasis on incorporating clinical 

context and prior knowledge into the classification and 

detection algorithms. Leveraging domain expertise and 

integrating relevant clinical variables (e.g., patient 

demographics, smoking history, comorbidities) could improve 

the accuracy and interpretability of the models.  

Longitudinal data analysis and prognostic prediction: 

Many existing studies may focus on binary classification tasks 

(e.g., distinguishing between benign and malignant tumors), 

overlooking the potential for longitudinal data analysis and 

prognostic prediction. Investigating how lung cancer evolves 

over time and predicting patient outcomes could provide 

valuable insights for personalized treatment planning and 

monitoring. 

Explainability and interpretability of models: The 

interpretability and explainability of machine learning based 

models used for lung cancer detection and classification may 

be insufficiently addressed in the literature. Understanding 

how these models make predictions is crucial for gaining 

insights into disease mechanisms and fostering trust among 

clinicians and patients. 

Limited validation on external datasets: Many studies 

may validate their proposed classification algorithms on a 

limited set of datasets, often collected from the same 

institutions or research groups. However, there may be a lack 

of validation on external, independent datasets, which is 

essential for getting the generalizability and robustness of the 

proposed methods across different populations and imaging 

platforms. 

Clinical translation and implementation challenges: 

While numerous classification algorithms may demonstrate 

promising performance in research settings, there may be 

limited discussion on the practical challenges associated with 

translating these algorithms into clinical practice. These 

challenges may include issues related to regulatory approval, 

integration with existing healthcare systems, and clinician 

acceptance. 

Data imbalance and diversity: The literature may not 

adequately address issues related to data imbalance and 

diversity in lung cancer datasets. Addressing these challenges 

is crucial for developing robust classification models that 

generalize well across different patient demographics, disease 

subtypes, and imaging protocols. 

Limited focus on specific modalities: Many existing 

studies may focus predominantly on a single imaging modality, 

for example, CT scans or X-rays, for lung cancer detection and 

classification. However, there may be limited research 

exploring the integration of multiple modalities (e.g., 

combining imaging with genomics or proteomics data) to 

enhance diagnostic accuracy and reliability. 

Long-term monitoring and surveillance strategies: 

Research might not sufficiently address long-term monitoring 

and surveillance planning for individuals at high risk of 

developing lung cancer or those who have undergone 

treatment. Developing effective surveillance protocols could 

improve early detection of recurrence and enhance patient 

outcomes. 

Need for comparative studies across different 

approaches: While individual studies may propose novel lung 

cancer detection methods, there could be a gap in comparative 

evaluations across different approaches. Comparative studies 

could provide insights into the strengths and limitations of 

various techniques and assist in choosing the best approach for 

particular clinical situations. 

Integration of biomarkers with imaging data: While 

some research may focus on imaging-based approaches for 

lung cancer detection, there could be a gap in integrating 

biomarkers, such as genetic or protein markers, with imaging 

data. Combining multiple types of data could enhance the 

reliability and accuracy of detection methods. 

Insufficient exploration of machine learning 

interpretability: While machine learning algorithms may 

achieve high accuracy in lung cancer detection, there could be 

a gap in understanding how these algorithms arrive at their 

predictions. Exploring methods for interpreting and explaining 

machine learning models could enhance trust and facilitate 

clinical adoption. 
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Limited attention to non-imaging modalities: The 

literature might predominantly concentrate on imaging 

modalities like CT scans or X-rays for lung cancer detection, 

overlooking other potentially valuable approaches. Research 

could explore the use of non-imaging modalities such as breath 

analysis, liquid biopsy, or electronic health records for early 

detection. 

Scarcity of studies on implementation challenges: There 

might be limited research on the real-world implementation 

challenges of lung cancer detection methods. Investigating 

barriers to adoption, such as cost-effectiveness, workflow 

integration, and clinician acceptance, could inform strategies 

for successful deployment in clinical practice. 

Inadequate representation of understudied populations: 

The literature might not adequately represent certain 

demographic groups, such as individuals from diverse racial 

or ethnic backgrounds, or those with specific risk factors. 

Understanding how lung cancer manifests in these populations 

could lead to more tailored detection strategies and improve 

equity in healthcare. 

Limited exploration of early detection methods: There 

might be a lack of focus on early detection methods for lung 

cancer, which could significantly improve patient outcomes. 

Research could explore innovative approaches for detecting 

lung cancer at its earliest stages when treatment options are 

more effective. 

Addressing these research gaps could lead to advancements 

in lung cancer detection methods, ultimately contributing to 

earlier diagnosis, improved treatment outcomes, and better 

patient care. 

 

 

3. CAD REVIEW 

 
 

Table 2. A range of CAD system 
 

CAD System Description Advantages Limitations Advancements 

Traditional 

Rule-Based 

CAD 

Systems 

Traditional CAD systems are 

rule-based and rely on 

predefined criteria or thresholds 

to identify suspicious regions in 

medical images. They typically 

involve preprocessing steps like 

segmentation and feature 

extraction, followed by 

classification. 

Relatively simple and 

interpretable, with 

established 

methodologies. 

Limited adaptability to 

complex and 

heterogeneous data. 

Performance highly 

dependent on the 

quality of predefined 

rules. 

While traditional rule-based CAD 

systems are still used, their 

advancements mostly involve 

improvements in segmentation and 

feature extraction techniques to 

enhance performance. 

CAD 

Systems with 

Explainable 

AI 

CAD systems incorporating 

explainable artificial intelligence 

(XAI) techniques aim to provide 

insights into the decision-making 

process of complex models, 

enhancing their interpretability 

and trustworthiness. 

Improved 

transparency and 

interpretability, 

facilitating better 

understanding and 

acceptance by 

clinicians. 

Trade-offs between 

model complexity and 

interpretability. 

Potential performance 

degradation compared 

to black-box models. 

Recent advancements involve the 

development of XAI methods 

tailored for deep learning 

architectures, such as attention 

mechanisms and saliency maps, 

which highlight important features 

contributing to model predictions. 

Real-Time 

CAD 

Systems 

Real-time CAD systems provide 

immediate feedback to 

radiologists during image 

interpretation, enabling rapid 

decision-making. 

Accelerated diagnosis 

workflow, leading to 

faster patient 

management and 

reduced turnaround 

time. 

High computational 

requirements for real-

time processing. 

Potential for increased 

false positives due to 

time constraints. 

Recent advancements involve 

optimizations for parallel 

processing and hardware 

acceleration, as well as the 

integration of cloud-based 

computing resources to handle the 

computational demands of real-

time CAD systems. 

CAD 

Systems for 

Early 

Detection 

CAD systems designed 

specifically for early detection 

focus on identifying subtle or 

early signs of disease before they 

are clinically apparent. 

Potential to improve 

patient outcomes by 

facilitating early 

intervention and 

treatment. 

Limited availability of 

annotated early-stage 

datasets. Challenges in 

distinguishing true 

positives from benign 

abnormalities. 

Recent advancements include the 

exploration of novel biomarkers 

and imaging features associated 

with early-stage disease, as well as 

the development of advanced 

machine learning algorithms 

tailored for detecting subtle 

abnormalities. 

Multimodal 

CAD 

Systems 

Multimodal CAD systems 

integrate information from 

multiple imaging modalities 

(such as, PET, MRI, CT) or 

combine imaging data with non-

imaging data (e.g., genomics, 

proteomics) to improve detection 

accuracy and reliability. 

Enhanced diagnostic 

capabilities by 

leveraging 

complementary 

information from 

different sources. 

Integration and fusion 

of heterogeneous data 

sources can be 

challenging. Increased 

computational 

complexity. 

Recent advancements involve the 

development of sophisticated 

fusion techniques, such as deep 

learning-based multimodal fusion 

networks, to effectively combine 

information from diverse sources 

for improved detection 

performance. 

Machine 

Learning-

Based CAD 

Systems 

Machine learning-based CAD 

systems leverage algorithms like 

random forests, SVM, or deep 

learning neural networks for 

learning patterns directly from 

data without explicit rule 

definitions. 

Greater adaptability 

to diverse data types 

and improved 

performance through 

learning from 

examples. 

Require large annotated 

datasets for training. 

Deep learning models 

may lack 

interpretability. 

Recent advancements include the 

usage of deep learning 

architectures such as CNN, that 

have demonstrated superior 

performance in image 

classification tasks. Techniques 

like data augmentation and transfer 

learning have also been employed 

to address data scarcity issues. 
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For the purposes of classification and detection, some 

CADs employed learnt features while other of them used 

manually created features. Traditional CAD systems 

employed handmade features, but presently, CNN-based CAD 

is utilized to support radiologists because to CNN's capacity to 

learn through data. Below, this paper go into extensive detail 

on both traditional and CNN-based CAD systems. CAD 

systems play a vital role in assisting radiologists and clinicians 

in detecting abnormalities, including lung cancer, in medical 

imaging data. These systems utilize various algorithms and 

techniques to highlight potential areas of concern, improving 

efficiency and accuracy in diagnosis. Table 2 shows a 

comparison of different CAD systems, along with their latest 

advancements up to the current year. The latest advancements 

aim to improve detection accuracy, efficiency, interpretability, 

and clinical relevance, ultimately contributing to better patient 

outcomes in the diagnosis of lung cancer. 

 

3.1 CAD system based on handcrafts 

 

These methods utilized a variety of innovative methods to 

extract features from the data, such as the Local Binary 

Patterns (LBP) [6-9]. Some other techniques for extracting 

feature are Speeded-Up Robust Features (SURF) [10], Gray-

Level Co-occurrence Matrix (GLCM) [8, 9, 11-13], Histogram 

of Oriented Gradients (HOG) [6, 7, 11], etc. Image capture, 

preprocessing, nodule identification, feature extraction, and 

classification are the five processes that make up the 

fundamental architecture of traditional CAD systems, which is 

depicted in Figure 1. Recently suggested CAD system 

implementations had handcrafted features [6-14]. The HOG 

descriptor was used by Dhara et al. [11] and Shen et al. [6, 7] 

to divide the nodule patches into blocks then to create 

histograms. Dhara et al. used GLCM, emphasizing texture-

based procedure of extraction, calculating Haralick features, 

and removing duplicate features from images [11]. examining 

the connections between the core pixel and each neighboring 

pixel, Shen et al. used LBP feature extractor [6, 7]. For 

extracting texture data, Li et al. utilized the convergence index 

filter and stationary wavelet transform techniques [14]. The 

accuracy of the CAD method was enhanced by Boroczky et al. 

[15] using the genetic algorithm, for selecting feature among a 

set of features. since the number of CT scans grows rapidly 

over time, selecting features from the feature space is a 

challenging process. 

 

 
 

Figure 1. Procedure of CAD 

 

3.2 CAD systems based on CNN 

 

The effectiveness of deep learning, particularly that of CNN, 

led to the development of the CAD system, which depends on 

the data-driven CNN approach. CAD systems based on CNN, 

as seen in Figure 2, place a focus on automated feature learning 

using CNN. In-depth features from images may be extracted 

using sophisticated standard CNNs, such as dual path 

networks (DPN), region proposal networks (RPN), etc., which 

further improves the efficiency of the CAD system as a whole. 

They have demonstrated astonishingly exceptional 

performance in the realm of medicine to identify diseases 

including lung cancer, breast, prostate, and brain and to more 

successfully treat patients. A CAD method based on a 

lightweight multiview CNN for lung nodule malignancy and 

classification estimate, for instance, was presented by Sahu et 

al. [16]. several more CNN-based CAD methods was 

suggested by Nasrullah et al. [17], Masood et al. [18], etc. and 

shown a notable improvement in the identification of nodules. 

in this research, this paper reviewed various CAD systems 

utilized in the classification and identification of lung cancer. 

 

 
 

Figure 2. Architecture of CNN model 

 

 

4. OVERVIEW OF CNN  

 

4.1 CNN 

 

The majority of CNNs are created using the fundamental 

layers presented in Figure 2. The designs often have several 

FC layers, max-pooling layers, convolutional layers, and then 

SoftMax layers or output layers as the last layers. VGGNet 

[19], AlexNet [20], and LeNet [21] are a few implementations 

of CNN models. The Densely Connected Convolutional 

Network (DenseNet) [22], Residual Networks (ResNet) [23], 

and GoogLeNet with Inception units [24] are three further, 

more effective advanced designs that have been developed. 

These designs share a lot of the same basic elements, such as 

pooling and convolution. On the other hand, considering 

connections, computing complexity, and operations carried 

out in various levels, certain variances are seen in these 

systems. due to their progressive effectiveness, DenseNet [22], 

GoogLeNet [24], VGGNet [19], and AlexNet [20] are 

typically regarded as the most prevalent designs. In contrast to 

the VGG network, which is viewed as a generic architecture, 

ResNet and GoogleNet are specifically created for the 

processing of vast amounts of data. In terms of connection, a 

few of the designs, like DenseNet [22], are dense. All of the 

main details pertaining to these advanced architectures are 

listed in Table 3. According to multiply and accumulates 

(MACs), the total number of weights, the number of FC layers, 

input size, and error rates, Table 4 compares several CNN 

models. 
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Table 3. CNN architectures analysis 
 

Parameters DenseNet [24] 
ResNet-50 

[23] 
GoogLeNet [22] 

VGG-16 

[21] 

ZFNet 

[25] 
AlexNet [20] 

LeNet-5 

[19] 

No. of FC layers n/a 1 1 3 3 3 2 

Activation 

function 
ReLU ReLU ReLU ReLU ReLU ReLU Tanh 

Stride 2 1, 2 1, 2 1 2 2, 4 1, 2 

Size of filter 
[1×1], [3×3], 

[7×7] 

[1×1], [3×3], 

[7×7] 

[1×1], [3×3], [5×5], 

[7×7] 

[7×7], 

[3×3] 

[7×7], 

[3×3] 

[11×11], [5×5], 

[3×3] 

[5×5], 

[2×2] 

Convolution 

layers 
n/a 50 21 16 5 5 2 

Input size 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224 256 × 256 28 × 28 

Top 5 error rate 5.17 3.6 6.7 7.3 14.8 15.3 n/a 

Total weights 15 M 25.5 M 7 M 138 M n/a 61 M 432 K 

Total MACs 2.1G 3.9G 1.43G 15.5G n/a 724 M 2.3 M 
 

Table 4. Research on CNN architectures 
 

CNN 

Architecture 
Reference Key Points 

DenseNet Huang et al. [22] 

It includes 264, 201, 169, and 121 layers and is made up of tightly linked CNN layers with It includes 

264, 201, 169, and 121 layers and is made up of tightly linked CNN layers with L (L + 1)/2 

interconnections. 

The framework includes dense blocks comprising batch normalization (BN), ReLU after which 

convolution is conducted, and a transition layer comprising BN-assisted convolutional operations after 

which an average pooling layer is applied. 

DenseNet works efficiently whenever there is a lack of training data and is simple to train because of 

its dense connections. It includes 264, 201, 169, and 121 layers and is made up of tightly linked CNN 

layers with L (L + 1)/2 interconnections. 

ResNeXt Xie et al. [26] 

The number of paths or ResNet with cardinality is a different acronym for it. 

A network identified as the multi branch has 3 convolutions of the following types: Conv 1×1, Conv 

3×3, and Conv 1×1. 

It had a top-5 error percentage of 3.03%. 

ResNet He et al. [23] 

A deep residual network was implemented. 

It enables 1202, 152, 101, 50, and 34 layers, among many more layer counts. 

There were 1201, 151, 100, 49, and 33 convolution layers in ResNet-1202, 152, 101, 50, and 34 

respectively, as well as 1 FC layer. 

It managed to deal with vanishing gradient issues with an error percentage that went up to 3.57%. 

VGGNet 
Simonyan et al. 

[19] 

With three distinct convolution layer architectures have been used. 

There were 16 layers in VGG-19, 13 layers in VGG-16, and 8 layers in VGG-11. 

A single max-pooling layer, three completely linked layers, and a Softmax layer for classification make 

up the following layers. 

The advantages of VGGNet include fewer parameters, quicker convergence, and less overfitting issues. 

It also achieves an error percentage that is up to 7.3%. 

GoogLeNet 
Szegedy et al. 

[24] 

22 layers thick ConvNet, which integrates the inception unit, aims to make computations less difficult 

than in the case of conventional CNN architecture. 

A decrease in network parameters and an error percentage that was up to 6.67% were obtained by using 

a stack of Inception layers. 

ZFNet 
Matthew Zeiler 

and Rob [25] 

An enhancement to AlexNet is the ZFNet model. 

It lowered the error ratio on ImageNet by up to 14.8% by using the deconvolution network for feature 

visualization. 

AlexNet 
Krizhevsky et al. 

[20] 

It has eight levels and is deeper than LeNet-5. 

For classifying, a soft-max layer for is added after two FC layers, two convolution layers with Local 

Response Normalization (LRN), three convolution layers for feature mapping with activation function 

of ReLU, and two convolution layers including LRN. 

On the ImageNet benchmark, this framework obtained a decreased error percentage of up to 15.3%. 

LeNet LeCun et al. [21] 

The convolution network with 7 levels was employed in this architecture. Two of those are FC layers, 

two are sub-sampling layers, two are convolution layers, and then there is an output layer corresponding 

to the backpropagation concept using Tanh to be the activation function. 

 

4.2 CNN for 3D objects 

 

4.2.1 Multiview CNN (MVCNN) 

This variation of CNN also gets referred to as 2-dimensional 

CNN (2D-CNN). Representing 3D structures, such as voxel 

grids or polygon meshes, for identification from a series of 

generated views of 2D images is an aspect of computer vision. 

Su et al. [27] designed an MVCNN that integrates data from 

multiple perspectives of polygon meshes into a single, 

condensed shape descriptor. This architecture produces 

images by positioning several virtual cameras that are aimed 

at the centroid of 3D structures. In the multi-view description 

of a 3D structure, each image is delivered independently via 

CNN1s with the same parameters, combined at a view-pooling 

layer, and finally transmitted through CNN2 to classify the 

object. Sahu et al. [16], who demonstrated that the architecture 

in Figure 3 obtained cutting-edge results when classifying the 

lung nodules, is one example of how MVCNN is used in the 

2027



 

medical industry. 

 

4.2.2 CNN for volumetric 3D representation 

Wu et al. [28] proposed novel Approach for 3D structure 

recognition. The objects are first transformed into a volumetric 

representation, after which the space, depth, and surface are 

determined, along with the object category and entire 3D 

structure. The fundamental 3D CNN design, which includes 

3D convolution using fixed temporal convolution kernel 

depths, is depicted in Figure 4. It substituted 2D filters with 

pooling kernels and 3D (s × s × d) filters. Here d representing 

the kernels temporal depth corresponding to the count of 

frames utilised as input across the framework. Size of Kernel 

spatial is represented by s. An output layer and a dense layer 

that are densely connected are then utilized to classify the 

objects. As can be seen in the Table 5, there are several 

applications in medical imaging wherein 3D CNN is employed 

for classification and detection. 
 

 

4.3 Other techniques 
 

There are also additional techniques, such as faster region-

based CNNs (faster R-CNNs), which are mostly employed for 

producing k bounding box suggestions and detecting areas via 

the faster selective search method. Usually, it is employed in 

real-time detection. The UNet framework was first presented 

by Ronneberger et al. [29] and has two paths: an up-sampling 

path and a down-sampling path. Achieving outstanding results 

were designs like Dual Path Network, Xception, and CMixNet 

[17], which combine the benefits of other advanced CNN 

models like Inception, DenseNet, and ResNet model. There 

were less redundant hyperparameters and improved feature 

extraction when CNN was combined with alternative 

techniques like CMixNet and particle swarm optimization 

(PSO). Ensemble learning models (ELM), that integrate 

weaker models and provide conclusions depending on 

majority vote, are one technique to improve efficiency. These 

approaches helped to improve identification ability and 

created more dependable systems for clinical decision support.  
 

Table 5. Recent research on lung nodule identification using CNN models 
 

CNN 

Architecture 
Benchmarks Significant Points Results Obtained References 

CNN LIDC-IDRI 

The comparison provided in this article compares Stacked Auto-

Encoder (SAE), Deep Neural Network (DNN), and CNN, with CNN 

outperforming the others. 

Spec. 84.32%, 

Sens. 83.96%, 

Accur. 84.15% 

Song et al. 

[30] 

MVCNN 
DLCST, 

ANODE09 

Analysis is done on the effects of two factors, including the range of 

views and the integration of the three fusion techniques. By 

combining fusions and adding more viewpoints, candidate 

identification is improved. 

At 1 and 4 FPs 

per scan, Sens. 

85.4% and 90.1%, 

CPM score 0.637 

Setio et al. 

[31] 

CNN LIDC-IDRI 
The CNN model has four separate channels that are intended to 

identify nodules of four distinct sizes. 

At 4.7 and 15.1 

FPs per scan, 

Sens. 80.06% and 

94% 

Jiang et al. 

[32] 

3D-CNN LIDC-IDRI 

To distinguish between non-nodule and nodule patches, a significant 

amount of 3D cubes is generated using methods of data augmentation 

and input into a 3D CNN. 

At 5 FPs per 

Scan, Sens. 90% 

Huang et al. 

[33] 

Ensemble of 

3D-CNNs 
LIDC-IDRI 

Integration of five 3D-CNNs fed with input from CT images at five 

distinct scales to differentiate between non-nodules and micro 

nodules. 

Sens. 96.57%, F 

score 96.42% 

AUC 0.98, Accur. 

97.35% 

Monkam et 

al. [34] 

2D-CNN LIDC-IDRI 

For obtaining patches of non-nodules and micro nodules of various 

sizes, three CNNs of varying depth are used. It demonstrates CNN's 

depth and efficacy. 

Sens. 83.82%, F 

score 83.45%, 

AUC 87%, Accur. 

88.28% 

Monkam et 

al. [35] 

PSO based 

CNN 
LIDC-IDRI 

By doing away with the need for human parameter-finding, the PSO 

method is utilized to optimize the network hyperparameters. 

Sens. 92.20% 

Spec. 98.21%, 

Accur. 97.62% 

Da Silva et 

al. [36] 

3D Faster R-

CNN 

LIDC-IDRI, 

LUNA 16 

Candidate nodules are produced using a 3D Faster R-CNN, which is 

subsequently input into a 3D DPN with deep feature extraction and 

improved classification. 

FROC score 

84.42% 

Zhu et al. 

[37] 

CMixNet, 3D 

Faster R-CNN 

LIDC-IDRI, 

LUNA 16 

DenseNet's and ResNeXt proposed CMixNet (Mixed Link Network) 

integrates both architectures for improved feature extraction. Faster 

R-CNN is used to propose regions for improved nodule detection. 

FROC score 

94.21% 

Nasrullah et 

al. [17] 

3D Faster LIDC 

Real and varied 3D nodules are created using the Multi-Conditional 

Generative Adversarial Network (MCGAN) DA approach and input 

into the 3D Faster R-CNN for generalized bounding box nodule 

identification. 

CPM score 0.550 
Han et al. 

[38] 

MBEL-3D-

CNN 
LUNA 16 

DenseNet, IResNet, together with VGGNet, three 3DMB models are 

combined into MBEL-3D-CNN (Multi-Branch Ensemble 3D-CNN). 

Each was provided a 3D lung image at three distinct scales. Each 

model makes an individual prediction of likelihood before combining 

the findings to forecast nodule. 

CPM score 87.3% 
Cao et al. 

[39] 

m-RPN, 

3DDCNN 

LUNA 16, 

ANODE09, 

LIDC-IDRI, 

SPH6 

The VGG-16 standard was modified by the proposed m-RPN 

workers for five convolution layers merged with a deconvolution 

layer, and nodule identification was subsequently carried out by the 

various levels of RPN. For False Positive reduction, cloud-based 3D 

Deep CNN (3DDCNN) based on RESNET-101 is employed. 

At 1.97 and 2.1 

FPs per scan, 

sens. 98.7% and 

98.4%, FROC 

score 0.946 

Masood et 

al. [18] 
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Figure 3. Classification of lung nodule using multi-view CNN model 

 

 
 

Figure 4. Architecture of 3D CNN model 

 

 

5. MALIGNANCY DETERMINATION USING 

NODULE CLASSIFICATION AND DETECTION 

 

5.1 Detection of lung nodule 

 

To identify lung nodules through screening at the earliest 

stages of the lung nodule detection phase is crucial. The 

majority of research on lung nodule detection involving a 

decrease in false positives are currently being done. Experts 

can now recognize patches using CT screens without any prior 

knowledge of features thanks to deep learning's notable 

accomplishment. Table 5 lists a few most recent research for 

the identification of nodules from CT scans, together with their 

techniques, results, benchmarks, and references. In the table 

sens., accur. and spec. represents the sensitivity, accuracy and 

specificity, respectively. 

5.2 Classification of lung nodule 

 

The classification between lung nodules and non-nodules 

became automatic and has become more successful as a result 

of deep learning's notable results. The accurate classification 

of malignant nodules and the measurement of them using CT 

screens is currently rather difficult. In addition, not every 

nodule classified as malignant. As a result, several approaches 

have been put forth and evaluated against various standards to 

aid specialists in the duty of classifying malignant from benign 

lung nodules. Table 6 lists many models that have been put 

into practice on various benchmarks along with brief 

references to some newly established techniques for 

identifying as non-cancerous or cancerous lung nodules.  

2029



Table 6. Recent research on lung nodule classification using CNN models 

 
CNN 

Architecture 
Benchmarks Significant Points Results Obtained References 

U-Net, 

3D-CNNs 

LUNA 16, 

Kaggle’s data 

DSB 

To differentiate between normal and pathological CT scans, the 3D 

CT volume was initially pre-processed along with segmentation. The 

input region encompassing any nodule candidates that were found by 

the U-Net were then fed into the 3D-CNN classifier. 

Accur. 86.6% 
Alakwaa et 

al. [40] 

2D-Deep 

CNN 

private 

dataset, 

LIDC-IDRI 

VGG-16 network containing adjusted FC layers make up the 2D-

DCNN, which also uses a random search to optimize the 

hyperparameters. 

Avg. validation 

accur. 68.0% 

Nishio et al. 

[41] 

DFCNet 

LUNA 16, 

ANODE09, 

LIDC-IDRI 

Each identified pulmonary nodule is classified into one of four lung 

cancer stages by DFCNet using a fully convolutional neural network: 

stage 1 (greater than 3 mm and less than or equal to 20 mm), stage 2 

(ranging from 21 to 30 mm), stage 3 (greater than 30 mm and less 

than or equal to 70 mm), and stage 4 (greater than 70 mm). 

Sens. 84.58% 
Masood et 

al. [42] 

Hybrid CNN LIDC-IDRI 

ALexNet and LeNet were combined into a hybrid CNN using layer 

and parameter values. By changing the values for the kernel size, 

learning rate, etc., this work examined the CNN model's efficiency in 

more detail. 

Accur. 88.1% 
Zhao et al. 

[43] 

E-CNN LIDC-IDRI 

The E-CNN (Enhanced CNN) classifier classifies input having a size 

of 256×256 using three convolutional layers with ReLU pooling 

normalisation and then an FC layer using a ReLu Dropout layer. 

With 1.7 and 3.8 

FPs per scan Sens. 

89% and 95.01% 

and Accur. 97% 

Kasinathan 

et al. [44] 

MRC-DNN LIDC-IDRI 

Classification via Multiple Regularization the Deep Neural Network 

(MRC-DNN) directly makes classification of the input 3D CT 

images on the basis of the novel regularisation notion that it proposes 

for network training. 

Spec. 95%, 

Sens. 81%, Accur. 

90% 

Ren et al. 

[45] 

CNN LIDC-IDRI 

To demonstrate the efficacy of various layer settings for CNN under 

the same parameters, three distinct CNN designs have been 

examined. 

Spec. 83.8%, 

Sens. 79.4%, 

Accur. 82.3% 

da Silva et 

al. [46] 

VGG-16, 

LeNet, 

AlexNet 

TCGA-LUAD 

In order to determine the optimal classification outcome, the 

suggested model combined three CNN models (VGG-16, LeNet, and 

AlexNet) with six classifiers (Softmax, DT, LDA, LR, SVM, and k-

NN), then utilized feature optimization techniques (k-NN, PCA, and 

mRMR). 

Spec. 99.71%, 

Sens. 

99.32%, Accur. 

99.51%, 

Toğacar et 

al. [47] 

Taguchi 

parametric 

optimized 2D-

CNN 

LIDC-IDRI, 

SPIE-AAPM 

Initially the Taguchi technique is used to determine the best 

parameter combinations. Next, 2D CNN optimization parameters are 

set up for training the model using input CT images, after which the 

model is eventually classified as malignant or benign. 

Accur. SPIE-

AAPM) 99.97%, 

Accur. (LIDC-

IDRI) 

98.83% 

Lin et al. 

[48] 

Modified 

AlexNet 

(MAN) 

LIDC-IDRI 
To increase the accuracy of classifying lung CT images, the 

framework suggested combines MAN with SVM classifiers. 

Accur. greater 

than 97.27% 

Bhandary 

et al. [49] 

MVCNN LIDC-IDRI 

Eight CNN1s with common parameters were provided with cross-

sections of lung nodules from eight various angles, and their outcome 

was sent into a second stage CNN2 that further classified the nodules 

as benign or malignant. 

Accur. 93.18% 
Sahu et al. 

[16] 

 

 

6. CRITERIA FOR COMPARING CNN 

ARCHITECTURES 

 

When comparing Convolutional Neural Network (CNN) 

architectures, several criteria are commonly considered to 

assess their performance, efficiency, and suitability for 

specific tasks. These criteria help researchers and practitioners 

understand the strengths and weaknesses of different 

architectures and choose the most appropriate one for their 

applications. Some key criteria for comparing CNN 

architectures are: Accuracy, Model Size and Complexity, 

Computational Efficiency, Generalization Performance, 

Transfer Learning Capability, Interpretability, Robustness to 

Adversarial Attacks, Resource Efficiency, Scalability, 

Availability of Pretrained Models and Framework Support. By 

considering these criteria, researchers and practitioners can 

perform comprehensive evaluations and comparisons of CNN 

architectures, ultimately selecting the most suitable 

architecture for their specific needs and applications. 

Performance outcomes for CNN-based architectures in 

identifying lung cancer through classification and detection 

tasks vary depending on the specific architecture, dataset used, 

and evaluation metrics employed. Table 7 gives an overview 

of typical performance outcomes used in the literature. 

 

Table 7. Performance comparison methods 

 
Parameter Description 

Comparison 

with 

CNN-based architectures are often compared with baseline approaches, such as rule-based systems or traditional machine 

learning algorithms, to demonstrate their superiority in terms of accuracy, sensitivity, specificity, or other performance 

metrics. 
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Baseline 

Methods 

Cross-

Validation 

Results 

The cross-validation is a method that divides the dataset into several subgroups for training and testing in order to evaluate a 

model's generalization performance. Cross-validation results provide insights into the robustness and stability of CNN-based 

architectures across different data splits. 

Confusion 

Matrix 

A comprehensive examination of the model's performance is given by the confusion matrix, which displays the quantity of 

false negatives, false positives, true negatives, and true positives. It aids in evaluating the trade-offs between specificity and 

sensitivity and identifying common types of classification errors made by the model. 

F1 Score 

The F1 score offers a fair assessment of a model's performance as it is the harmonic mean of recall and precision. Both false 

negatives and false positives are taken into consideration. CNN-based architectures typically achieve F1 scores ranging from 

0.7 to 0.9 in lung cancer detection tasks. 

Area Under 

the ROC 

Curve 

(AUC) 

The ROC curve plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) at various threshold 

settings. The AUC quantifies the overall performance of a classification model, with higher values indicating better 

discrimination between positive and negative cases. CNN-based architectures often achieve AUC values exceeding 0.8 or 

even 0.9 in lung cancer classification tasks. 

Specificity 

and 

Sensitivity 

The proportion of actual negative instances that are accurately classified as negative is measured by specificity, also known 

as the true negative rate. The proportion of actual positive cases (lung cancer) that the model accurately detected is measured 

by sensitivity, also known as true positive rate. Sensitivity and specificity values for CNN-based models in lung cancer 

detection typically range from 70% to 90% or higher. 

Accuracy 

The proportion of correctly classified occurrences—both true negatives and true positives—compared to the total number of 

instances is known as accuracy. CNN-based architectures often achieve high accuracy rates in identifying lung cancer, 

ranging from 80% to over 90% in many studies. 

 

 

7. IMPLICATIONS OF RESULTS OBTAINED FROM 

CNN-BASED ARCHITECTURES FOR IDENTIFYING 

LUNG CANCER 

 

The adoption of CNN-based architectures for identifying 

lung cancer has profound implications for clinical practices, 

including improved accuracy and efficiency in diagnosis, early 

detection of cancerous lesions, reduction of diagnostic 

variability, facilitation of screening programs, tailored 

treatment planning, support for clinical trials, and integration 

with electronic health records. These advancements contribute 

to better patient outcomes, enhanced quality of care, and 

accelerated progress in the fight against lung cancer. CNN 

have significant implications for clinical practices in several 

ways: 

• Integrating CNN-based architectures with electronic 

health records (EHR) systems enables seamless access to 

imaging data, diagnostic reports, and clinical 

information. This integration streamlines workflow 

processes, facilitates data sharing and collaboration 

among healthcare providers, and enhances the continuity 

of patient care. 

• CNN-based architectures play a crucial role in patient 

selection and stratification for clinical trials investigating 

novel treatments and therapies for lung cancer. By 

accurately identifying eligible patients and predicting 

treatment responses, these architectures support the 

advancement of precision medicine approaches and 

accelerate the development of new therapies. 

• Accurate identification of lung cancer subtypes and 

disease stages by CNN-based architectures enables 

clinicians to tailor treatment plans according to 

individual patient characteristics. Personalized treatment 

strategies, including immunotherapy, or radiation 

therapy, chemotherapy, surgery, can be optimized based 

on precise diagnostic information provided by these 

architectures. 

• CNN-based architectures support the implementation of 

lung cancer screening programs by improving the 

efficiency and accuracy of screening processes. 

Automated detection of lung nodules and suspicious 

lesions enables large-scale screening efforts, particularly 

among high-risk populations, that leads to earlier 

detection and intervention. 

• CNN-based architectures help standardize the 

interpretation of medical images by reducing 

interobserver variability among radiologists. By 

providing consistent and objective assessments, these 

architectures contribute to more reliable and 

reproducible diagnoses, leading to better patient care and 

treatment planning. 

• CNN-based architectures serve as valuable tools for 

assisting radiologists and clinicians in interpreting 

medical images and making diagnostic decisions. By 

highlighting suspicious regions and providing 

quantitative assessments, these architectures help 

radiologists prioritize cases, reduce interpretation time, 

and increase diagnostic confidence. 

• CNN-based architectures excel in identifying subtle 

abnormalities indicative of early-stage lung cancer, 

enabling earlier detection and diagnosis. Early detection 

is crucial for improving patient outcomes by facilitating 

timely intervention and treatment, potentially leading to 

higher survival rates and reduced disease progression. 

• CNN-based architectures have demonstrated increased 

accuracy in identifying lung cancer from medical 

imaging data, often outperforming traditional methods. 

Integrating these architectures into clinical workflows 

can enhance the efficiency and accuracy of lung cancer 

detection, reducing the risk of false positives and false 

negatives. 

 

 

8. CONCLUSION AND FUTURE WORK 

 

The exact early identification, as well as the inspection of 

pulmonary nodules, are generally necessary for determining 

lung cancer mortality. This article provided a quick overview 

of the most recently proposed CAD algorithms that use deep 

learning to extract features, identify nodules, and classify them. 

This paper included a thorough analysis of the current models 

using CNN for CT screening classification and recognition. In 

addition, this paper discussed several CNN designs and 

examined modern CNN models. The research included 
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examples of recently created deep learning models like 3D-

CNN and MVCNN, which perform superior on 3D data and 

are effective for image classification and segmentation. Then, 

using the standards utilized for validation and detection, this 

paper examined the recently established CNN-based 

approaches for classification, false positive reduction, and 

nodules detection. The CNN-based CAD technique represents 

a reliable strategy, according to recent research on the 

identification and classification of lung cancer nodules, and it 

may considerably enhance early disease diagnosis and therapy. 

Yet there continues to be plenty of research being done to 

create a better, quicker, and more universal CAD system 

because the current approaches have several drawbacks that 

must be fixed via research. Therefore, a thorough 

understanding of CNNs, their benefits, and current research on 

the classification and detection of lung cancer can aid in the 

development of CAD systems that will aid radiologists in the 

diagnosis of serious illnesses like lung cancer as well as other 

fields of medical imaging. 
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