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No reference or blind image quality assessment (NR-IQA) pertains to the challenge of 

evaluating image visual quality in the absence of a reference image. NR-IQA is necessary 

for many applications such as medical imaging and surveillance. Consequently, there is a 

need to devise a novel metric independent of the pristine reference image. The current NR-

IQA metrics' performance may be satisfactory for a specific type of blurring but may prove 

inadequate for other types. This paper focuses on blurred images and presents a novel NR-

IQA metric based on restoration schemes and hybrid metrics. Specifically, we utilize a blind 

restoration technique to address the issue of image blurring. This restoration technique 

includes three steps: 1) estimating a point spread function (PSF) from the input blurred 

image, 2) applying a Winner filter to the blurred image to obtain a deblurred image, and 3) 

convolving the estimated PSF with the deblurred image to produce the reblur image, which 

is used as a reference image. Furthermore, we utilize the gradient magnitude similarity 

deviation (GMSD), structure similarity index method (SSIM), peak signal-to-noise ratio 

(PSNR), and as potent full reference metrics. These metrics are combined to form a viable 

strategy to enhance the system's performance. The metric under consideration can promptly 

evaluate an image's quality without necessitating prior learning or training. Compared to 

existing IQA models, the proposed metric requires no reference, prior learning, or training 

procedures, making it more convenient and time-efficient. The experimental findings 

obtained from the analysis of five IQA databases demonstrate that the metric proposed in 

this study exhibits a level of performance that is on par with the current leading NR-IQA 

metrics. The comparative results demonstrate that the proposed method outperforms existing 

NR-IQA methods such as SSEQ, ENIQA, BMPRI, and BLIINDS-II, with Spearman's rank 

ordered correlation coefficient (SROCC) values higher than 0.87, 0.78, and 0.88 for 

Gaussian, motion, and out-of-focus blur, respectively. 
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1. INTRODUCTION

Digital images possess a substantial amount of legitimate 

data and have found utility in diverse everyday applications, 

including object recognition, image steganography, facial 

emotion recognition, and image retrieval. Throughout the 

various stages of capture, enhancement, and other image 

processing procedures, it is inevitable that there will 

ultimately be a decline in quality, leading to the loss of 

valuable information within the image. Consequently, the 

assessment of image quality has a crucial function in 

determining the usability of images from the user's side [1, 2]. 

Images can experience different types of distortion when 

they are transmitted and processed. Hence, it is essential to 

evaluate or address their quality prior to their utilization. 

Image quality assessment is utilized in numerous applications, 

such as acquisition, enhancement, compression, and 

restoration [3]. 

IQA techniques can be classified as full reference (FR), 

reduced reference (RR), and non-reference (NR) [4, 5]. NR 

IQA pertains to the automated evaluation of image quality 

through an algorithm. This algorithm is designed to predict 

distorted image quality dependent solely on the information 

contained within that image [6, 7]. The process of FR IQA 

requires the inclusion of both a distorted image and a pristine 

image in order to evaluate the distorted image quality. The RR 

IQA dataset contains information pertaining to the reference 

image. Nevertheless, it does not include the actual reference 

image, irrespective of the presence of a distorted image [8]. 

Currently, digital images have become an indispensable 

component of various domains, encompassing scientific 

endeavors as well as social networking platforms. In the realm 

of digital imagery, the occurrence of image blurring is a 

prevalent phenomenon. Blurring is a primary contributor to 

image degradation, resulting in a reduction in image quality. 

Therefore, this study focuses on blurry image assessment by 

introducing a new hybrid NR-IQA metric. 

Digital images can exhibit three distinct types of blur effects, 

namely motion blur, out-of-focus blur, and Gaussian blur [9]. 

Blur is a phenomenon that arises due to the presence of air 

noise and improper camera configuration. In addition to its 

capacity to induce blurring, the presence of noise significantly 
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compromises the quality of the captured image. There are 

several primary factors that can contribute to the occurrence 

of a blurry image, including errors in the process of capturing 

pictures, lens defocusing, atmospheric problems, and low 

intensity during camera exposure. The human visual system 

possesses a high level of awareness regarding this 

phenomenon. Nevertheless, there remains a lack of 

comprehensive understanding regarding the intricacies of this 

particular processing mechanism [10, 11]. Hence, the 

development of metrics for evaluating image blurring is a 

challenging task. 

Over the last years, there has been a focus on the 

development of blind image quality metrics, including blind 

image quality metrics (IQMs) comprising spectral kurtosis [12, 

13], blind reference-less image spatial quality evaluator 

(BRISQUE) [14], and the natural image quality evaluator 

(NIQE) [15]. Some IQMs have employed the statistical 

characteristics of the deblurred image. In contrast, other 

researchers have estimated image quality by incorporating the 

Human Visual System (HVS) [16-19]. 

It should be noted that each quality metric may produce 

satisfactory performance when applied to a specific blurring 

type, such as Gaussian blur, while potentially yielding 

unsatisfactory results when applied to other types of blurring, 

such as motion blur and out-of-focus blur. Recent studies [20-

23] have demonstrated that the combination of different IQA

metrics can help enhance the full-reference and no-reference

image quality assessment results. However, the few existing

combined NR-IQA metrics require a training phase that may

vary from one dataset to another. Most existing combined NR-

IQA metrics show limited performance, and there is still

significant room for improvement.

In this paper, a novel NR-IQA metric is proposed to 

enhance the results of existing NR-IQA methods for blurred 

images. The proposed metric comprises three steps. First, a 

pseudo-reference image (PRI) is generated from the input 

blurry image using a re-blur algorithm. Second, quality scores 

of robust full-reference metrics are computed. Third, the 

quality scores for the input blurred image are integrated to 

produce the overall quality score. A non-linear mapping 

function employed in the studies [21, 23] is used in this study 

to align the quality scores of the proposed method. 

The main contributions of this study are listed below: 

• A novel hybrid metric for assessing the quality of

blurred images is proposed. The proposed method

does not necessitate a training phase.

• Combinations of various individual IQA metrics,

including the structural similarity (SSIM) [24],

Gradient Magnitude Similarity Deviation (GMSD)

[25], and peak signal-to-noise ratio (PSNR) [26],

and the use of two fusion techniques are studied

and presented.

• Comprehensive evaluations of the proposed

method and comparisons with state-of-the-art

methods are provided using five IQA databases:

SCID [27], SIQAD [28], LIVE [29], TID2013 [30],

and KADID-10k [31]. Additionally, three

different distortion types-out-of-focus blur,

motion blur, and Gaussian blur-are considered in

the study.

The remainder of this article includes four sections: Section 

2 discusses the related literature, Section 3 presents the 

proposed NR-IQA method, Section 4 provides the 

experimental results, and Section 5 presents the conclusions. 

2. RELATED WORK

NR-IQA has garnered considerable attention in the past few 

decades. However, due to the absence of a reference image, 

NR-IQA algorithms must make assumptions about the 

distortions present in each input image. For instance, Moorthy 

and Bovik [32] proposed a NR-IQA algorithm known as the 

DIIVINE index. The DIIVINE algorithm relies on a two-stage 

framework involving the identification of distortions and the 

evaluation of their quality. Although this method has achieved 

good performance with some IQA datasets, it yields limited 

results with unseen distortions. Rajevenceltha and Gaidhane 

[33] proposed a NR-IQA method based on texture and

structural features extracted from input images. Texture

features are extracted using a local binary pattern (LBP), while

structural features are extracted using hyper-smoothing LBP

(H-LBP) and Laplacian of H-LBP (LH-LBP). These extracted

features are then fed into a support vector regression (SVR)

algorithm to estimate image quality. While the method

demonstrate promising results, it requires an extensive

training phase and time-consuming feature hand-crafting,

which may vary from one dataset to another. Besides, Min et

al. [34] proposed a method known as the PRI-based blind scale

(BPRI), which utilizes PRI. However, BPRI method

demonstrates good performance, it has a quite high

computational complexity.

Furthermore, the BRISQUE method proposed by Mittal et 

al. [14] utilizes scene statistics to train a SVR algorithm for 

predicting perceptual quality. Although BRISQUE shows 

performance improvements over state-of-the-art methods, it 

remains unclear how well the BRISQUE model performs on 

images with complex distortions. 

In turn, several deep learning-based NR-IQA methods have 

been proposed in the last years. Zhang et al. [35] proposed a 

deep bilinear convolutional neural network (CNN) for NR-

IQA. This model comprises two distinct CNN streams, each 

tailored to address specific distortion scenarios individually. 

However, one limitation of this method is its separate handling 

of synthetic and authentic distortions through fine-tuning the 

NR-IQA CNN model on either synthetic or authentic datasets. 

Consequently, the method's performance may vary depending 

on the diversity and complexity of the datasets used for fine-

tuning, potentially limiting its generalizability across different 

image databases and real-world applications. Liu et al. [36] 

proposed the RankIQA method, a NR-IQA approach that 

learns from ranking. A Siamese network is trained on 

synthetic distorted images to rank them. However, it does not 

consider modeling the type of distortion. 

Although various deep learning-based methods like [37-43] 

have been proposed to improve the results of NR-IQA, the use 

of such methods faces challenges with small-sized datasets 

and resource-limited computing devices. Differently, this 

study is focused on presenting NR-IQA that can work with 

small-sized datasets and resource-limited computing devices. 

The proposed method is based on restoration schemes and the 

combination of simple hybrid metrics. 

Different attempts have been made in the literature to 

combine image quality metrics for both full-reference and no-

reference image assessment. For instance, Bouida et al. [44] 

proposed a combined FR-IQA method by fusing structural 

quality, texture-based quality, and edge-based quality. 

Specifically, they combined SSIM, image texture quality 

(ITQ), and EdgeIQA metrics [45]. Ieremeiev et al. [20] 

proposed a FR-IQA method for remote sensing images by 
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combining five IQMs using alpha-trimmed mean. 

Few combined metrics have been presented in the literature 

for NR-IQA. For instance, Rubel et al. [21] introduced a no-

reference neural network-based combined metric for remote 

sensing images. They employed a Lasso algorithm to select 

the best combinations of IQMs. One limitation of the study 

presented in the study [21] is that the effect of various 

distortion types on the performance of the combined metric 

has not been investigated. Additionally, the correlation of the 

combined metric with subjective quality scores is high. 

Indeed, the development of stable and robust no-reference 

IQA metrics remains challenging and essential for numerous 

tasks. In an effort to enhance the results of no-reference IQA, 

a new combined NR-IQA metric is introduced for blurred 

images. Specifically, combinations of various efficient IQMs 

(SSIM, GMSD, PSNR) computed from PRIs, along with the 

use of two fusion techniques, are presented. One advantage of 

the proposed method is that it does not require a training phase. 

3. METHODOLOGY

Figure 1 depicts the steps of the proposed NR-IQA method 

for blurred image quality assessment: 1) generating a pseudo 

reference image (PRI) using a re-blur algorithm, 2) calculating 

the quality scores of hybrid yet robust full reference metrics 

(here we used SSIM, GMSD and PSNR), and 3) computing 

the final quality score (qs) for the input blurred image by 

integrating the quality scores of the individual metrics (i.e., q1, 

q2 and q3). It should be noted that each selected metric has a 

certain advantage. Perceptual differences are captured by 

SSIM, gradient information preservation is emphasized by 

GMSD, and fidelity is fundamentally measured by PSNR. The 

proposed hybrid NR-IQA metric maximizes the benefits of 

each individual statistic by integrating them. Such 

combination makes it possible to evaluate image quality more 

thoroughly, taking into account various factors that influence 

both subjective and objective evaluations. 

Figure 1. The proposed NR-IQA method 

In this section, we demonstrate the proposed metric. First, 

we illustrate the re-blur process, providing the PRI (twice-

blurred image), and then revisit the FR SSIM, GMSD, and 

PSNR. In addition, we explain the combination of the 

individual quality metrics' quality scores to generate the final 

quality score to assess the quality of blurred images. 

3.1 Re-blur algorithm 

A 're-blurred' image is created by purposely blurring the test 

image. The following equation describes the image 

degradation model: 

𝑔 = 𝐻 ∗ 𝑓 + 𝑛 (1) 

where, g denotes the blurry image, n is the added noise, * 

represents the convolution operator, and H is the distortion 

factor, known as the point-spread function (PSF) [46]. In the 

spatial field, the PSF characterizes the rate at which the optical 

system blurs the spotlight [3, 47]. 

An initial input was made as a two-dimensional image 

𝑓(𝑥, 𝑦) as the following: 

𝑔(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (2) 

where, 𝑔(𝑥, 𝑦)  is the degraded image, * represents the 

convolution operator, 𝐻(𝑥, 𝑦) indicates the distortion factor, 

known as PSF, and 𝑛(𝑥, 𝑦) is the added noise [3, 46, 47]. 

Digital image recovery may be seen as a process in which we 

try to approximate f(x, y). 

In this study, the parameters of the PSF, specifically the 

length and angle, are estimated through an initial, relatively 

accurate assessment of the angle using analysis in the 

Cepstrum domain, following the method presented by Kumar 

[48]. For a given angle, the blur length in the image is 

determined using the method presented by Chang et al. [3]. 

The proposed algorithm involves the acquisition of a 

blurred image through a blurring kernel (i.e., PSF) as well as 

convolving the original image. The Winner filter is applied to 

the blurred image in order to obtain the image, as represented 

by the following equation: 

𝐺(𝑢, 𝑣) =
𝐻∗(𝑚, 𝑛)

|𝐻(𝑚, 𝑛)|2 + 𝑁𝑆𝑅
(3) 

where, NSR is the noise variance, and H refers to the blurring 

filter. When the filtered PSF rembles to real PSF (h), it can 

reproduce the identical blur in the reblurred image, and the 

restoration filter will produce decreased resonance and noise. 

The image that has been blurred is subsequently processed 

through the Winner filter, which aims to remove the blur and 

generate an approximation of the original image. Following 

this, the PSF is convolved once more to modify the blur level 

in the image, resulting in the re-blurred image denoted as "g" 

or PRI, as depicted in Figure 2. 

Figure 2. The steps of the re-blur algorithm used to generate 

the PRI 
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An example to illustrate the generation of the PRI is shown 

in Figure 3, where the I01 image in the KADID-10k dataset 

[31] is used as an input image (Figure 3 (a)). Figure 3 (b)

shows the I01 image blurred with motion PSF at 46 degrees.

Figure 3 (c) and (d) (e) (f) demonstrate the deblurred images

due to PSF angles of 25, 36, 46, and 57 degrees, respectively.

Figure 3 (e) demonstrates that the deblurred image is like the

original image, and the ringing as well as the level of noise are

tolerated. The image that has been deblurred using a blur

kernel resembling the PSF is the one that will exhibit a

comparable level of blurring when subjected to re-blurring.

Figure 3. Example of the image deblurring process used to 

generate the PRI 

3.2 Combined NR IQA image quality metrics 

As depicted in Figure 1, we employ SSIM, GMSD, and 

PSNR in this study to compute the quality scores q1, q2, and 

q3 and then combine them into one quality score value qs. 

Many metrics vary from 0 to 1, but not all. In the case of scales 

that do not have the same bounds, we make a normalization 

for them. This study uses the mean fusion function of three 

metrics to obtain the final quality score qs. 

It should be noted that each of the three metrics used in this 

study has its own advantages: SSIM is designed to mimic 

human visual perception. It considers structure, contrast, and 

luminance, making it a better indicator of perceived image 

quality. GMSD is particularly sensitive to changes in the 

gradient magnitude of the image. It is good at capturing 

blurriness and other distortions that affect image edges. Since 

PSNR is based on a simple mathematical formula, it can be 

calculated quickly and with little processing complexity. In 

some circumstances, this simplicity may be helpful. 

Below, we introduce the mathematical formulation of the 

SSIM, GMSD, and PSNR metrics and explain the combination 

of their quality scores to generate the final quality score (qs) 

to evaluate the quality of blurred images. 

3.2.1 Structure similarity index method (SSIM) 

The method known as the Structural Similarity Index is a 

model based on perception. The structural similarity index 

(SSIM), which has been widely studied, represents a shift in 

IQA from the pixel-based phase to the structure-based phase 

[24, 49]. The SSIM Quality Assessment Index depends on 

calculating three terms, namely the structural, contrast, and 

luminance terms [50]. This method involves the perceptional 

alteration of structural information, resulting in image 

degradation. Additionally, it collaborates with various other 

significant factors pertaining to perception, including contrast 

masking and luminance masking. SSIM values the perceived 

quality of images and videos. It measures the similarity 

between the original and the recovered images. The structural 

Similarity Index Method is defined through these three terms: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 . [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (4) 

In this context, l represents luminance, which is utilized for 

comparing the brightness levels between two images. c 

denotes contrast, serving to distinguish the ranges between the 

brightest and darkest regions of the two images. s stands for 

structure, employed to compare the local luminance patterns 

between the images, revealing their similarities and 

dissimilarities. The positive constants α, β, and γ are also 

introduced [13]. The individual representations of luminance, 

contrast, and structure for an image are expressed as follows: 

𝑙(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)
(5) 

𝑐(𝑥, 𝑦) =
(2𝜎𝑥𝜎𝑦 + 𝐶2)

(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
(6) 

𝑠(𝑥, 𝑦) =
(𝜎𝑥𝑦 + 𝐶3)

(𝜎𝑥𝜎𝑦 + 𝐶3)
(7) 

Here, 𝜇𝑥 and 𝜇𝑦 represent the local means, while 𝛼𝑥 and 𝛼𝑦

denote the standard deviations and 𝛼𝑥𝑦  represents the cross-

covariance for images x and y respectively. If α=β=γ=1, the 

index is simplified as the following structure utilizing Eq. (2), 

Eq. (3) and Eq. (4): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝜎𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
(8) 

From Eq. (8), SSIM is on the normalized scale (the values 

between 0 to 1). 

3.2.2 Gradient magnitude similarity deviation (GMSD) 

GMSD, a method influenced by SSIM, utilizes the concept 

of structure similarity to evaluate digital image visual quality 

by measuring the similarity of their gradient magnitudes [25]. 
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The gradient magnitudes of the reference image r and the 

distorted image d, denoted mr and md, are determined as 

follows: 

𝑚𝑟 = √(𝑟 ∗ ℎ𝑥)2 + (𝑟 ∗ ℎ𝑦)2 (9) 

𝑚𝑑 = √(𝑑 ∗ ℎ𝑥)2 + (𝑑 ∗ ℎ𝑦)2 (10) 

where, the symbol "*" denotes the convolution operation and 

hx and hy are the Prewitt filters along the horizontal and vertical 

directions, respectively. GMS is estimated as follows: 

𝐺𝑀𝑆(𝑟, 𝑑) =
2𝑚𝑟𝑚𝑑 + 𝑐

𝑚𝑟
2 + 𝑚𝑑

2 + 𝑐
(11) 

where, c is a positive constant that provides numerical stability. 

The lighter the gray level in the GMS map, the higher the 

similarity and the higher the predicted local quality. The 

GMSD algorithm uses the standard deviation of the GMS map 

as the IQA index indicates. 

𝐺𝑀𝑆𝐷(𝑟, 𝑑) = 𝑆𝑇𝐷(𝐺𝑀𝑆(𝑟, 𝑑)) (12) 

In this context, STD(●) denotes the computation of the 

standard deviation for the input variable. The GMSD value 

serves as an indicator of the extent of distortion present in an 

image. A higher GMSD score corresponds to lower perceived 

image quality. In the absence of distortion, the GMSD value is 

0, showcasing its effectiveness in detecting structural 

distortions with a minimal computational cost. 

3.2.3 Peak signal-to-noise ratio (PSNR) 

The equation representing PSNR can be written as [26]: 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 [
2252

𝑀𝑆𝐸
] (13) 

The value of MSE is estimated by the difference between 

the blurred and reblurred image as: 

𝑀𝑆𝐸 =  
1

𝑀𝑁
∑ ∑[𝑇(𝑥, 𝑦) − 𝑇′(𝑥, 𝑦)]2

𝑁

𝑌=1

𝑀

𝑋=1

(14) 

where, 𝑇(𝑥, 𝑦) and 𝑇′(𝑥, 𝑦) denote the pixel value at position

(x, y) of the blurred and reblurred images, respectively. 

3.3 Combining the quality scores 

After computing the quality scores of SSIM, GMSD, and 

PSNR (i.e., q1, q2, and q3), we calculate the final quality score, 

qs, of the input blurred image using the mean fusion function: 

𝑞𝑠 =
1

𝑁𝑆
∑ 𝑞𝑖

𝑁𝑆

𝑖=1

(15) 

where, 𝑞𝑖 is the quality score of ith quality assessment method

(SSIM, GMSD, or PSNR), and 𝑁𝑆 is the number of quality 

assessment methods. In this study, we experimentally set 𝑁𝑆 

to 3. 

Following Sheikh et al. [51], we use a nonlinear mapping 

before the calculation of evaluation metrics. Firstly, we intend 

to align the quality scores. After that, we utilize the following 

five-parameter logistic function for mapping the quality scores: 

𝑞𝑠 = 𝛽1 (
1

2
−

1

1 + 𝑒𝑥𝑝 (𝛽2(𝑞 − 𝛽3))
) + 𝛽4𝑞 + 𝛽5, (16) 

where, 𝑞𝑠 and q stand for the original and mapped quality 

scores, respectively;  {𝛽𝑗|𝑗 = 1,2, … .5}  are five parameters

identified based on curve fitting. In prior research, the 

𝑞𝑠 values are considered for evaluation metrics' computation. 

Notably, the MATLAB function 'nlinfit' is used in this study 

to estimate the coefficients of the nonlinear mapping function 

shown in (16). 

3.4 Evaluation metrics 

In this study, three evaluation metrics are used to compare 

the performance of the different indices: Pearson Linear 

Correlation Coefficient (PLCC), Spearman's Rank Ordered 

Correlation Coefficient (SROCC), and Root-Mean-Square 

Error (RMSE). Both PLCC and SROCC are statistical 

methods used to measure the correlation between two 

variables. In the context of IQA, PLCC and SROCC are 

widely used to evaluate the performance of image quality 

metrics by comparing their predicted scores with human-rated 

scores. Higher PLCC and SROCC values stand for better 

agreement between the predicted quality scores and human 

scores. 

The PLCC index can be expressed as follows: 

PLCC =
1

n − 1
∑ (

xj − x̅

σx

)

n

j=1

(
yj − y̅

σy

) (17) 

where, {𝑥1, 𝑥2, … . , 𝑥𝑛} are subjective scores, {𝑦1, 𝑦2, … . , 𝑦𝑛}
are objective scores, 𝜎𝑥  and 𝜎𝑦 are their variances and 𝑥 ̅and

�̅� are their average scores. PLCC is a metric measuring how 

well the objective scores are associated with the subjective 

scores. 

The SROCC index can be formulated as follows: 

SROCC = 1 −
6

n(n2 − 1)
∑ (rxj

− ryj
)

2

,

n

j=1

 (18) 

where, 𝑟𝑥𝑗
 and 𝑟𝑦𝑗

 are the rank positions of 𝑥𝑗 and 𝑦𝑗 in Arrays

{x} and {y}, respectively. SROCC is a metric measuring the

relative monotonicity between the objective and subjective

and objective sores.

RMSE can be expressed as follows: 

RMSE = [
1

n
∑(xj − yj)

2
n

j=1

] 
1
2 , (19) 

RMSE is a metric utilized to determine the absolute error 

between the objective as well as subjective scores. A good 

algorithm exhibits reduced RMSE value. RMSE is a prevalent 

measure representing the quadratic mean’s square root of the 

differences between the objective predicted scores and 

subjective quality scores. 
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Through the utilization of these three statistical measures, it 

becomes feasible to effectively examine the uniformity 

between the subjective quality score as well as the objectively 

predicted score signifying the IQA methods' performance. 

This subsection provides an overview of evaluating NR-

IQA metrics. NR-IQA ranking algorithms and performance 

assessment depend on the association between the ground as 

well as predicted truth quality scores. To quantitatively assess 

our proposed model performance, we examine the proposed 

IQA metrics utilizing RMSE, PLCC, SROCC. 

4. RESULTS AND DISCUSSION

4.1 Databases 

Table 1. IQA benchmark databases utilized in this study 

Databases 
Original 

Images 

Motion 

Blurred 

Images 

Gaussian 

Blur 

Images 

Out-of-

Focus Blur 

Images 

SCID [27] 40 200 200 --- 

SIQAD 

[28] 
20 140 140 --- 

LIVE [29] 29 --- 145 --- 

TID2013 

[30] 
25 --- 125 --- 

KADID-

10k [31] 
81 405 405 405 

Five IQA databases are utilized as testing platforms, 

comprising SCID [27], SIQAD [28], LIVE [29], TID2013 [30] 

and KADID-10k [31]. All datasets include multiple subsets (of 

various types of distortion). Detailed information is provided 

in Table 1. In this paper, we utilized blur distortion for 

experiments. Specifically, the SCID dataset contains 200 

Gaussian blur images, 200 motion-blurred images, and 40 

original screen images. The SIQAD dataset contains 140 

motion-blurred images 20 original screen images, and 140 

Gaussian blur images. In contrast, the LIVE dataset contains 

145 Gaussian blur images and 29 original images. The 

TID2013 dataset contains 125 Gaussian blur images and 25 

original images. The KADID-10k dataset contains 405 Out-

of-focus blur images, 405 Gaussian blur images, 405 motion-

blurred images, and 81 reference images. 

4.2 Deblurring results 

This section presents deblurring outcomes using the 

proposed scheme for images, focusing on images affected by 

motion blur. The experiments conducted for the proposed 

algorithm involve testing on a variety of images. These include 

commonly referenced "Standard" test images such as 

cameraman, peppers, and Lena, all in uncompressed tif format 

and size of 512x512. Additionally, some medical images 

(COVID-19_CT_image, breast MRI, head CT image, and eye 

fundus image) are demonstrated in Figure 4. Some results of 

images for our proposed method using combined metrics are 

shown in Figure 5. 

Figure 4. Example of test images 

Figure 5. Sample images from the KADID-10k database and 

corresponding results of the proposed method 

Table 2. Deblurring results of test images with SSIM and GMSD metrics 

Image 

Length Using 

Cepstrum 

Analysis 

Original 

Angle 

Estimated 

Angle 

SSIM GMSD 

Blurred 

Reblurred 

Original 

Blurred 

Original 

Deblurred 

Blurred 

Reblurred 

Original 

Blurred 

Original 

Deblurred 

Camera Man 17 33 33.2 0.8456 0.5114 0.5571 0.000044 0.2294 0.0615 

Goldhill 23 27 26.9 0.8716 0.4177 0.4733 0.000014 0.2302 0.0457 

Lena 25 13 13 0.9130 0.4747 0.5303 0.000011 0.2444 0.0534 

Peppers 20 42 41.9 0.8442 0.4004 0.5921 0.00013 0.1697 0.0503 

Eye Fundus Image 31 41 40.3 0.9525 0.8887 0.8964 0.0021 0.1314 0.0771 

Tomosynthesis 23 26 26.1 0.9743 0.8658 0.8677 0.1902 0.2206 0.4218 

COVID-

19_CT_image 
11 32 32.2 0.7826 0.4298 0.4910 0.00049 0.1732 0.0291 

MRI_animation.ogv 13 45 45.8 0.7050 0.5105 0.5781 0.0036 0.1865 0.0472 

AbdomenCT 17 26 26.1 0.9135 0.9812 0.6568 0.000021 0.1845 0.0616 

Brain MRI 

segmentation 
19 44 44.1 0.6289 0.7745 0.5410 0.0017 0.1501 0.0459 

BreastMRI 9 28 29 0.7012 0. 9873 0.6125 0.0032 0.1850 0.0112 

ChestCT 7 46 46.3 0.9998 0.9977 0. 5854 0.000012 0.0524 0.0170 

Hand 9 37 37.6 0.7225 0.9759 0. 4819 0.00074 0.0531 0.0318 

HeadCT 23 56 56.1 0.7657 0.9160 0.3513 0.0002 0.1075 0.0651 

x_ray_covid 28 48 48.1 0.8297 0.7948 0. 1989 0.00019 0.1432 0.0520 
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Table 3. Deblurring results of test images with PSNR metric 

Image 
Length Using Cepstrum 

Analysis 

Original 

Angle 

Estimated 

Angle 

PSNR 

Blurred 

Reblurred 

Original 

Blurred 

Original 

Deblurred 

Camera Man 17 33 33.2 65.2 19.9 30.3 

Goldhill 23 27 26.9 70 21.1 30.3 

Lena 25 13 13 69.9 18.5 30.6 

Peppers 20 42 41.9 63.7 23.6 32.3 

Eye Fundus Image 31 41 40.3 50.1 29.1 32.7 

Tomosynthesis 23 26 26.1 66.1 32.4 44.7 

COVID-19_CT_Image 11 32 32.2 56.9 20.8 31.5 

MRI_animation.ogv 13 45 45.8 46.7 21.3 33.3 

AbdomenCT 17 26 26.1 71.4 23.8 32.7 

Brain MRI 

segmentation 
19 44 44.1 51.3 27.7 34.1 

BreastMRI 9 28 29 46.3 20.1 33 

ChestCT 7 46 46.3 50.7 32.3 39 

Hand 9 37 37.6 58.9 36.8 36.8 

HeadCT 23 56 56.1 63.9 27.2 34.5 

x_ray_covid 28 48 48.1 63.3 26.9 32.8 

Table 4. SROCC, PLCC, and RMSE of the SSIM, GMSD, 

PSNR, SC, NAE, and NCC for SIQAD motion blur 

distortion datasets 

Criteria PSNR GMSD SSIM SC NAE NCC 

SROCC 0.25206 0.3325 0.5721 0.06180 0.07201 0.1929 

PLCC 0.14738 0.2914 0.5926 0.08557 0.13692 0.1856 

RMSE 12.8598 12.4375 10.4739 12.9548 12.8794 12.974 

Tables 2 and 3 summarize the blur's PSNR, GMSD, and 

SSIM results. Motion-blurred images were utilized in this case, 

and the PSF parameter angle theta was determined utilizing 

Cepstrum analysis. SSIM, GMSD, and PSNR were calculated 

for three sets of images: original and blurred, original and 

blurred, and blurred and reblurred. The reblurred and original 

blurred images are compared utilizing PSNR, GMSD, and 

SSIM, as demonstrated in Tables 2 and 3. Therefore, re-

blurring can determine the blur PSFs in the case of motion-

blurred images. An elevated SSIM, GMSD, and PSNR value 

indicates a high-quality picture. 

In Tables 2 and 3 PSNR, GMSD, and SSIM were 

scrutinized. The re-blurred images are acquired from re-

convolved deblurred images (with the determined PSF). It has 

been determined that when the PSF of the original closely 

resembles the original PSF, the resulting blurring in the re-

blurred image will be equivalent to that of the original blurred 

image. It is apparent that in the context of motion deblurring, 

the utilization of SSIM, GMSD, and PSNR has resulted in the 

production of deblurred images with enhanced visual quality. 

Table 4 provides an overview of the results for motion-

blurred images, including SSIM, GMSD, PSNR, and other 

metrics (SC, NAE, and NCC) [52] values. Based on the 

obtained SROCC, PLCC, and RMSE values, it is evident that 

the metrics SSIM, GMSD, and PSNR outperform the other 

metrics, such as SC, NAE, and NCC. 

4.3 Ablation study 

The subsequent selection of primary metrics for the 

amalgamation of two or more metrics was predicated on the 

correlation observed within their respective subsets. 

Specifically, the four combinations of three metrics were 

chosen, and all combinations of two and three metrics were 

evaluated across all datasets. 

In our experiments, we have tested other methods to 

combine the quality scores of the individual quality 

assessment methods, like the median fusion functions. Based 

on the findings presented in Table 5, it was determined that the 

utilization of the mean fusion function yielded the most 

favorable outcome. 

Table 5. Performance of proposed fusion function using 

mean, median for SSIM, GMSD, PSNR metrics on KADID-

10k, SIQAD and SCID for motion blur distortion 

Criteria Database 
Fusion Function 

Mean Median 

SROCC 

KADID-10k 0.7812 0.7243 

SIQAD 0.5741 0.4761 

SCID 0.5810 0.5492 

PLCC 

KADID-10k 0.5848 0.5977 

SIQAD 0.7913 0.7213 

SCID 0.4072 0.3041 

Table 6 shows SSIM+GMSD, SSIM+PSNR, 

GMSD+PSNR, and SSIM+GMSD+PSNR combinations for 

LIVE, SIQAD, and TID2013 data sets. The SSIM+GMSD 

combination performed better for SIQAD than other 

combinations, which scored 8.6605 by RMSE. The 

SSIM+PSNR combination achieved better performance for 

SIQAD than other combinations, with a score reaching 0.8955 

from PLCC. The GMSD+PSNR combination achieved better 

performance for TID2013 than other combinations in SROCC 

and better performance for LIVE than other combinations in 

PLCC and RMSE, respectively. It achieved SROCC, PLCC, 

and RMSE of 0.8951, 0.9748, and 6.2601, respectively. The 

SSIM+GMSD+PSNR combination achieved better 

performance for LIVE and SIQAD than other combinations in 

SROCC. It achieved 0.9864 and 0.6205, respectively. In 

addition, it achieved better performance for TID2013 than 

other combinations in PLCC and RMSE, yielding 0.8935 and 

0.5015, respectively. 

Table 7 shows the combinations of SSIM+GMSD, 

SSIM+PSNR, GMSD+PSNR, SSIM+GMSD+PSNR for 

SIQAD and SCID records. The SSIM+GMSD combination 

outperformed alternative combinations for SIQAD, attaining a 

PLCC score of 0.7976. The SSIM+PSNR combination 

outperformed other combinations for SCID and SIQAD, with 

respective RMSE values of 8.7675 and 0.4122 obtained from 
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PLCC. Compared to SSIM+GMSD, SSIM+PSNR, and 

SSIM+GMSD+PSNR, the performance of SIQAD and SCID 

was lowest when GMSD+PSNR was utilized. The 

SSIM+GMSD+PSNR combination outperformed other 

combinations for SIQAD, with an SROCC value of 0.5741. 

Additionally, it outperformed other combinations for SCID, 

attaining SROCC and RMSE values of 0.5810 and 8.0471, 

respectively. 

Table 8 shows the mixtures of SSIM+GMSD, SSIM+PSNR, 

GMSD+PSNR and SSIM+GMSD+PSNR for the KADID-10k 

dataset. GMSD+PSNR combination obtained better 

performance for Gaussian Blur distortion than other 

combinations which value reaches 0.874 by SROCC. 

SSIM+GMSD+PSNR combination obtained better 

performance for Motion Blur and Out-of-focus Blur distortion 

than other combinations in SROCC, it achieved 0.781, 0.884 

respectively. 

Table 6. Performance of proposed SSIM+GMSD, SSIM+PSNR, GMSD+PSNR, SSIM+GMSD+PSNR on LIVE, SIQAD, and 

TID2013 data combinations sets for Gaussian blurring 

Criteria Database SSIM+GMSD SSIM+PSNR GMSD+PSNR SSIM+GMSD+PSNR 

SROCC 

LIVE 0.9841 0.9827 0.9798 0.9864 

SIQAD 0.6181 0.5824 0.6201 0.6205 

TID2013 0.8873 0.8710 0.8951 0.8911 

PLCC 

LIVE 0.9669 0.9704 0.9748 0.9712 

SIQAD 0.8312 0.8955 0.8871 0.8916 

TID2013 0.8103 0.8546 0.8759 0.8935 

RMSE 

LIVE 7.3170 7.1521 6.2601 6.7128 

SIQAD 8.6605 9.1265 9.8504 9.0472 

TID2013 0.5381 0.6238 0.6426 0.5015 

Table 7. Performance of proposed combinations of SSIM+GMSD, SSIM+PSNR, GMSD+PSNR, SSIM+GMSD+PSNR on 

SIQAD and SCID motion blur distortion datasets 

Criteria Database SSIM+GMSD SSIM+PSNR GMSD+PSNR SSIM+GMSD+PSNR 

SROCC 
SIQAD 0.5607 0.5712 0.5689 0.5741 

SCID 0.5795 0.5736 0.5747 0.5810 

PLCC 
SIQAD 0.7976 0.7962 0.7881 0.7913 

SCID 0.4034 0.4122 0.4011 0.4072 

RMSE 
SIQAD 9.0521 8.7675 9.0549 9.0358 

SCID 8.1123 8.0874 8.1426 8.0471 

Table 8. Blur performance of the proposed mixtures of SSIM+GMSD, SSIM+PSNR, GMSD+PSNR, SSIM+GMSD+PSNR on 

KADID-10k dataset for Motion Blur, Out-of-focus Blur, and Gaussian distortions 

Criteria Database Dist. Type SSIM+GMSD SSIM+PSNR GMSD+PSNR SSIM+GMSD+PSNR 

SROCC KADID-10k 

Gaussian Blur 0.851 0.866 0.874 0.873 

Motion Blur 0.761 0.701 0.775 0.781 

Out-of-focus Blur 0.820 0.814 0.742 0.884 

4.4 Comparison to the state-of-the-art 

We compared the performance of the proposed 

combinations of SSIM+GMSD, SSIM+PSNR, GMSD+PSNR, 

SSIM+GMSD+PSNR with NR IQA models such as 

BRISQUE [14], BLIINDS-II [53], IL-NIQE [54], NIQE [15], 

BMPRI [55], ENIQA [56] and SSEQ [57]. As already 

mentioned, five benchmark IQA databases are used in this 

study: SCID [27], SIQAD [28], LIVE [29], TID2013 [30], and 

KADID-10k [31]. 

Gaussian blurring as in Table 9, the highest SROCC 

correlation for proposed SSIM+GMSD+PSNR and the highest 

PLCC correlation for proposed GMSD+PSNR and the highest 

RMSE correlation for NIQE in LIVE dataset can be easily 

observed, the highest SROCC, PLCC and RMSE correlation 

for proposed SSIM+GMSD+PSNR, SSIM+PSNR and 

SSIM+GMSD, in SIQAD dataset, respectively. The highest 

SROCC correlation for proposed GMSD+PSNR and highest 

PLCC, RMSE correlation for proposed SSIM+GMSD+PSNR, 

in TID2013 dataset, respectively. 

These results for the proposed method are still better 

compared to the results obtained for some alternative metrics. 

As can be observed, the SROCC and PLCC correlation of the 

BLINDS-II and RMSE correlation of the BRISQUE metric 

obtained for the LIVE dataset vary noticeably less than other 

metrics. The SROCC, PLCC, and RMSE correlation of the 

BLIINDS-II metric obtained for the SIQAD dataset varies 

significantly less than other metrics, and the SROCC and 

RMSE correlation of the NIQE metric that obtained for the 

TID2013 dataset varies significantly less than other metrics. 

The results obtained are presented in Table 10 for motion 

blur, with the highest SROCC correlation for proposed 

SSIM+GMSD+PSNR and the highest PLCC correlation for 

SSIM+ GMSD and the highest RMSE correlation for proposed 

SSIM+ PSNR in SIQAD can be easily observed. the highest 

SROCC, RMSE correlation for proposed 

SSIM+GMSD+PSNR and the highest PLCC correlation for 

SSIM+ PSNR in SCID can be easily observed. As can be seen, 

the SROCC and correlation of BLINDS-II and PLCC, RMSE 

of the NIQE metric obtained for the SIQAD dataset vary 

significantly less than other metrics. The SROCC, PLCC 

correlation of the BRISQUE and RMSE correlation of the 

BLIINDS-II metric obtained for the SCID dataset varies 

significantly less than other metrics. 
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Table 9. SROCC, PLCC, RMSE comparison in three databases on Gaussian Blur distortion type 

Criteria Database 

Method 

BLIINDS-II 

[53] 

BRISQUE 

[14] 

NIQE 

[15] 

ILNIQE 

[54] 

Proposed 

SSIM+GMSD SSIM+PSNR GMSD+PSNR SSIM+GMSD+PSNR 

SROCC 

LIVE 0.9150 0.9513 0.9326 0.9154 0.9841 0.9827 0.9798 0.9864 

SIQAD 0.4404 0.6318 0.5266 0.4556 0.6181 0.5824 0.6201 0.6205 

TID2013 0.8367 0.8137 0.7986 0.8148 0.8873 0.8710 0.8951 0.8911 

PLCC 

LIVE 0. 9232 0.9501 0.9446 0.9327 0.9669 0.9704 0.9748 0.9712 

SIQAD 0.4585 0.6597 0.6066 0.5505 0.8312 0.8955 0.8871 0.8916 

TID2013 0.8492 0.8476 0.8190 0.8475 0.8103 0.8546 0.8759 0.8935 

RMSE 

LIVE 6.5417 7.5814 6.0625 6.6621 7.3170 7.1521 6.2601 6.7128 

SIQAD 13.487 11.405 12.065 12.669 8.6605 9.1265 9.8504 9.0472 

TID2013 0.6589 0.6622 0.7160 0.6623 0.5381 0.6238 0.6426 0.5015 

Table 10. SROCC, PLCC, and RMSE comparison in three databases on Motion Blur distortion type 

Criteria Database 

Method 

BLIINDS-II 

[53] 
BRISQUE 

[14] 
NIQE 

[15] 
ILNIQE 

[54] 

Proposed 

SSIM+GMSD SSIM+PSNR GMSD+PSNR SSIM+GMSD+PSNR 

SROCC 
SIQAD 0.2512 0.4401 0.3514 0.4480 0.5607 0.5712 0.5689 0.5741 

SCID 0.2378 0.2050 0.3190 0.3354 0.5795 0.5736 0.5747 0.5810 

PLCC 
SIQAD 0.3425 0.5318 0.1842 0.4681 0.7976 0.7962 0.7881 0.7913 

SCID 0.3048 0.2592 0.2790 0.3212 0.4034 0.4122 0.4011 0.4072 

RMSE 
SIQAD 12.3921 11.0113 12.6856 11.2463 9.0521 8.7675 9.0549 9.0358 

SCID 10.9752 10.5570 10.4966 10.5149 8.1123 8.0874 8.1426 8.0471 

Table 11. SROCC in the KADID-10k database on three distortion types: Gaussian blur, Out-of-focus blur and motion blur 

Criteria Database Distortion Type 

Method 

BLIINDS-II 

[53] 
BMPRI 

[55] 
ENIQA 

[56] 
SSEQ 

[57] 

Proposed 

SSIM+

GMSD 

SSIM+P

SNR 

GMSD+P

SNR 

SSIM+GMS

D+PSNR 

SROCC 
KADID-

10k 

Gaussian blur 0.789 0.839 0.785 0.714 0.851 0.866 0.874 0.873 

Motion blur 0.416 0.390 0.574 0.368 0.761 0.701 0.775 0.781 

Out-of-focus blur 0.755 0.815 0.797 0.739 0.820 0.814 0.742 0.884 

4.5 Performance over different distortion types 

We test the state-of-the-art NR-IQA methods’ performance 

over the three distortion types, including lens blur (i.e., out-of-

focus blur), Gaussian blur, and motion blur. We compare the 

proposed combinations of SSIM+GMSD, SSIM+PSNR, 

GMSD+PSNR, SSIM+GMSD+PSNR with five NR-IQA 

metrics (BLIINDS-II [53], BMPRI [55], ENIQA [56] and 

SSEQ [57]) on each distortion type of the KADID-10k 

database. 

In particular, we report SROCC values measured across the 

different bias types of the KADID-10k database [31]. This 

database includes images with 25 various types of distortions, 

such as Gaussian blur, Out-of-focus blur and motion blur. The 

outcomes are depicted in Table 11. As one can see, the highest 

correlation for proposed GMSD+ PSNR and the lowest for 

SSEQ for Gaussian blur can be easily observed, and motion 

blur as well as out-of-focus blur the highest correlation for 

proposed SSIM+GMSD+PSNR and the lowest for SSEQ can 

easily be observed. 

The experiments performed have confirmed the proposed 

NR-IQA metric based on SSIM, GMSD, and PSNR using 

blind recovery schemes for blurred images that the multiply 

distorted images' specificity requires a combination of various 

metrics. Furthermore, the application of the reblurring model, 

as proposed in the study, demonstrates a substantial 

enhancement in performance across the majority of the 

datasets examined. 

It is worth noting that the improved performance of 

SSIM+GMSD+PSNR combination can be attributed to its 

ability to capture complementary aspects of image quality. 

Indeed, the combination of SSIM, GMSD, and PSNR 

leverages perceptual differences, gradient information 

preservation, and fidelity measurement, respectively. These 

metrics address distinct aspects of image quality, providing a 

more comprehensive evaluation by considering factors that 

influence both subjective and objective assessments. The 

synergistic effects of these complementary metrics lead to a 

more thorough and accurate representation of image quality 

across diverse scenarios, enhancing the overall effectiveness 

of the proposed hybrid NR-IQA method. 

4.6 Computational complexity 

Table 12. Comparing the computational complexity of the 

proposed method with other methods in terms of the average 

execution time in seconds 

Method Average Time (s) 

Proposed 9.7 

DIIVINE [32] 15.1 

NIQE [15] 3.3 

BRISQUE [14] 1.4 

Table 12 presents the execution time of the proposed 

method as well as other NR-IQA metrics. All experiments 

were carried out on a computer with a 2.4GHz Intel Core i5-

2430M CPU and 8GB RAM. As shown, the execution time is 

9.7s, with 6.2s spent on estimating the PSF. The average 

execution time of DIIVINE is much longer than that of the 

proposed method. However, NR-IQA metrics like NIQE and 
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BRISQUE have shorter execution times than the proposed 

method, though their performance is lower. It should be noted 

that we are using a non-optimized version of our code, and 

optimizing our implementation will significantly reduce the 

execution time of our method, especially during the estimation 

of PSF. 

4.7 Limitations of the proposed method 

This paper presents a comprehensive analysis of 

experimental results to illustrate the benefits of the proposed 

approach. The methodology demonstrates favorable 

performance in NR-IQA, substantiating its efficacy in 

evaluating the quality of blurred images. However, the 

proposed approach is validated using five publicly available 

IQA datasets with multiply distorted images, which may not 

be representative of all possible image distortions. The 

proposed NR-IQA method does not exhibit substantial 

enhancements across all datasets with respect to all indices. 

Nevertheless, considering variations in image complexity, 

including factors such as image size, contrast, and diversity 

across different datasets, the experimental findings indicate 

that the suggested approach can be successfully applied to 

various image categories. Finally, the execution time of the 

proposed method is about 9s, with the highest time spent in 

estimating PSF. It is worth noting that optimizing the 

implementation of the proposed method will decrease the 

computational time. 

5. CONCLUSIONS

Digital images are vital components of various domains, 

including scientific and industrial applications. Therefore, 

there is a need for accurate image quality assessment methods 

to determine the usability of images for each specific 

application. In this paper, we proposed a novel NR-IQA metric 

based on SSIM, GMSD, and PSNR. Additionally, we focus on 

blurred IQA. The proposed method uses the advantages of 

SSIM, GMSD, and PSNR, like mathematical ease, and 

extends it from FR to NR. The distorted image is subsequently 

subjected to a blurring process, followed by the application of 

a blurring operation to serve as a reference. The combination 

of elementary metrics is considered to be a highly effective 

approach for enhancing performance. The experimental 

results suggest that the proposed method demonstrates 

promising performance and exhibits high credibility in 

relation to the HVS. In contrast to the existing models for IQA, 

the method proposed in this study does not necessitate the use 

of a reference image. This characteristic enhances the 

efficiency and convenience of its application. 

The proposed NR-IQA method, designed for blurred images, 

is invaluable in diverse domains, such as medical imaging for 

ensuring diagnostic accuracy and in surveillance applications 

for enhancing the reliability of image analysis, contributing to 

improved outcomes in healthcare and security domains. 

In future studies, we will investigate more efficient methods 

to achieve IQA. For NR-IQA, it may be interesting to explore 

other types of distortion. However, it should be noted that the 

development of any objective measure closely related to 

human perception of multiple abnormalities would remain 

limited by the availability of appropriate databases. 

Additionally, we will apply metrics based on trained CNNs 

using images affected by multiple distortions. 
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