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Stereotactic surgery aims to access critical areas of the brain with high accuracy. The 

classical surgical process requires two separate radiological imaging datasets (MRI-CT) and 

their precise registration. Additionally, specific anatomical landmarks (AC, PC, TAL) are 

manually identified by the neurosurgeon in both datasets, and MRI-CT registration is 

performed using these landmarks. To address the issues of patients' double exposure to 

radiological imaging and the manual identification of landmarks, this paper proposes a new 

approach based on the registration of facial landmarks. The proposed approach consists of 

four stages. The first stage involves creating 2D facial masks (MRHead and DHead) from 

the MRI and depth camera data obtained from the patient. Each mask, automatically 

generated using Google Mediapipe software, consists of 468 points. In the second stage, the 

mask points are transformed from 2D to 3D. In the third stage, precise registration of the 3D 

mask points is achieved using singular value decomposition (SVD) and random forest (RF) 

methods. In the final stage, using the registration matrix, the robotic arm is guided to reach 

the desired target point on a 3D-printed head prototype. Using the RF method for MHead 

and DHead mask registration, we obtained fiducial registration error (FRE) values of 1.633 

mm and 1.523 mm, and target registration error (TRE) values of 2.217 mm and 2.164 mm 

for each patient, respectively. These promising results will form the basis of further 

developments in fully autonomous brain-targeting software with robotic assistance. 
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1. INTRODUCTION

Stereotactic surgery is a surgical technique used to precisely 

identify and treat targeted areas within the brain and other 

organs. This technique employs a three-dimensional 

coordinate system and imaging methods (such as MRI and CT 

scans) to enable the surgeon to target a specific point with 

millimetric accuracy. In brain surgery, it is commonly used for 

the diagnosis and treatment of tumors, epilepsy, Parkinson's 

disease, and other neurological disorders. Stereotactic surgery, 

a long and laborious process, is performed under anesthesia 

and consists of two stages. The first stage involves imaging 

and planning procedures. The second stage, conducted either 

the next day or later, includes imaging, registration, and the 

surgical procedure. There are two different application 

methods: frame-based and frameless. In frame-based 

application, a special metal frame is attached to the patient's 

head during the first stage, and an MRI scan is performed. 

During the planning stage, the surgeon works on this MRI 

image, marking specific points in a process that takes an 

average of 221 ± 39 minutes (approximately 4 hours) [1]. 

These points are typically AC, PC, TAL, target, and entry 

points [2]. In the imaging process of the second stage, 

performed the next day, the metal frame is reattached to the 

patient's head, and a CT (or MRI) scan is conducted. Then 

MRI-CT registration is performed, and the surgical operation 

is manually carried out based on the registration of the MRI 

and CT images. 

Frameless application differs in two main ways. Firstly, a 

fixed frame is not attached to the patient's head in frameless 

application. Secondly, to accurately reach the target, specific 

markers are typically placed on the skull, and targeting is 

achieved through an auxiliary navigation system. 

Although frame-based systems have evolved over the years, 

their structure inherently tends to negatively impact the 

comfort of both the patient and the surgeon during the surgical 

procedure, despite all the changes that have been made [3]. 

However, particularly with the advent of robotic systems in 

surgery, frameless systems have undergone significant 

advancements in recent years [4]. Robotic systems are used in 

various fields such as stereotactic biopsy, deep brain 

stimulation, Parkinson's disease treatment, and brain lesion 

procedures. Although the reliability of robotic systems in 

diagnosis and treatment has been debated since they were 

introduced in this field, studies have indicated the reliability of 

these systems. Studies on biopsies [5-8] have reported that 

frameless robotic systems are more successful than frame-

based biopsy methods in terms of the duration of surgery and 
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patients' comfort. Additionally, researchers have observed that 

robotic frameless systems are similar to frame-based systems 

in terms of diagnostic accuracy, reliability, and rates of 

complications; they can also be used in surgical procedures. 

Various advantages---such as the absence of frame-related 

issues, more accurate targeting through techniques like image 

fusion and 3D image creation, and shorter surgical duration---

have also been observed when using frameless systems [9-11]. 

Robots are programmable machines that replace human 

labor in repetitive, hazardous, or demanding tasks. Robots can 

be categorized as platform-dependent or mobile. According to 

the International Federation of Robotics (IFR), it is expected 

that by the end of 2024, approximately 4.7 million industrial 

robots will be in operation worldwide [12]. The use of 

industrial robots is rapidly gaining prominence and popularity 

in various industrial fields as well as in the medical field; this 

is due to the efficiency, precision, and repeatability that robots 

offer to production processes. Robots have the potential to 

revolutionize the healthcare field, especially when used in 

medical operations. Surgical robots enable minimally invasive 

surgical techniques, providing surgeons with enhanced vision 

and dexterity. These robots can perform movements with high 

accuracy and precision, being that they are free from the 

influences of tremor and fatigue that may affect the human 

hand. The combination of these features has the potential to 

reduce the duration of surgery, minimize the risk of 

complications, and allow patients to recover more quickly. 

Although robots are beneficial in the surgical field, it has also 

been stated that the use of robots in surgery should be 

evaluated from ethical and legal perspectives [13-15]. These 

studies emphasize the following issues that need to be 

addressed: 

• Surgeons may be held accountable for errors that 

occur during robotic surgery, highlighting the need for 

adequate training and correct utilization of the technology. 

• Patients need to be fully informed about the potential 

risks and benefits of robotic surgery. 

• Surgeons must provide accurate information about 

their experience and success in robotic surgery to enable 

patients to make informed decisions. 

• Concerns have arisen regarding the high costs of 

robotic surgery and its impact on equity in access to healthcare 

services. 

In this context, the benefits and potential ethical issues 

brought by the use of robots in surgical procedures must be 

carefully considered. By ensuring both patient safety and 

equity in access to healthcare services, the integration of 

robotic surgery into the healthcare system should be achieved. 

According to the form of interaction between surgeon and 

robot, robotic systems can be divided into three classes: 

telesurgery, controller-controlled, and shared-control systems 

[16]. The critical characteristic of all these classes is that the 

surgical procedure must be performed without error or with 

the minimum acceptable error. For this, the planning 

performed in the first stage of the surgical process must be 

accurately transferred to the second stage. This process 

depends on the registration of the MRI image, which is taken 

during the first stage and containing the details of the surgeon's 

planning, with the CT (or MRI) image from the second stage. 

In this study, we propose a new approach based on the 

registration of facial landmarks as an alternative to existing 

systems. The proposed method consists of four basic stages. 

The first stage involves obtaining a head model (MRHead) 

from the MRI image and detecting facial landmarks on this 

model. The second stage involves detecting facial landmarks 

on the head model (DHead) obtained by the depth camera. In 

the third stage, the MRHead and DHead models are registered 

using these landmarks, and in the fourth and final stage, the 

robot is directed to the target point.  

In landmark-based registration methods, the number of 

landmarks and their accurate positioning are crucial. The 

success of registration is directly related to the landmarks 

being in the same position on the head in both images (i.e., 

both fixed and moving). One of the advantages of the proposed 

method is that it utilizes Mediapipe [17] software, which can 

quickly and automatically detect facial landmarks. Each area 

of the face (eyes, nose, lips, etc.) is represented by multiple 

points, and the entire facial silhouette is represented by 468 

points. However, Mediapipe operates only on 2D images. 

Therefore, in the next stage, the 3D transformation of each 

point detected in 2D is performed. In a similar study [18] 

conducted by the BrainLab company, additional hardware is 

required for the registration process. 

The classical stereotactic surgery process [19] involves 

transferring the hours-long planning work done by the surgeon 

from the MRI image to a subsequent CT (or MRI) image of 

the same patient. The classical approach has the following 

disadvantages: 

• In current frame-based and frameless targeting 

applications, the imaging process (MRI-CT) is performed 

twice. This means that the patient is exposed to the 

radiological effect twice. 

• To register the data acquired from imaging, the 

surgeon is required to manually annotate both images. 

• During frame fixation, compression can potentially 

damage the bones. Using frameless methods, markers are 

screwed into the skull, adversely affecting patient comfort via 

both approaches. 

 

 

2. PROPOSED METHOD 

 

 

 
 

Figure 1. The stages of the proposed brain-targeting system 
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The stages of the proposed brain-targeting system are 

illustrated in Figure 1. The proposed approach is based on the 

combined processing of MRI and depth camera data taken 

from the patient. Accordingly, 2D and 3D facial landmark 

points are detected from the MRI and depth camera data, and 

the registration process is performed to accurately determine 

the patient's position in three dimensions. The output obtained 

from the registration matrix is transferred to the robot arm. 

This enables precise access to the targeted point in the real 

world. 

In order for the proposed approach to be applied in real-

world scenarios, MRI and depth camera data must be taken 

from the same patient. However, since public MRI datasets 

were used in this study, and the dataset did not contain depth 

camera data, additional processing was required. The purpose 

of this additional process is to obtain the 'external head surface 

model and print it on a 3-D printer', as shown in green in 

Figure 1. This head printout was used instead of the real 

patient. Thus, the RGBD data that should have been obtained 

from the real patient (shown with a red dashed line) was 

obtained from the 3D head printout. 

 

2.1 MRI process 

 

Using the MRI data taken from the patient, the head object, 

external surface model, and facial landmark detection 

processes were carried out. After segmenting the head object 

from the MRI, the external surface model of this object was 

obtained and printed on a 3D printer. Additionally, facial 

landmarks on the head were detected. In the next section, the 

details of these sub-operations are explained. 

 

2.1.1 Segmentation of the head object 

The MRI data consist of foreground objects (in the head 

region) and background (data-free) voxels. In this section, the 

process of separating foreground voxels from the background 

was carried out. Typically, the brightness values of 

background voxels are within a given range [0-200], while 

foreground voxels may be scattered across a wider range (such 

as [0-5000]). Differences in MRI devices, variations in the 

parameters selected during imaging, and variation in patients' 

physical characteristics contribute to the wide range of voxel 

brightness values. All these differences prevent the use of a 

fixed threshold value for segmenting the head region. 

Therefore, the dynamic thresholding approach specified in Eq. 

(1) was used to perform foreground/background separation in 

the original MR image (see Figure 2(1)). 

 

threshVal = Mean(MR) + 𝑘 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑡𝐷𝑒𝑣(𝑀𝑅) 

Foreground(Head)  =  MR ≥  threshVal 
Background =  MR < threshVal 

(1) 

 

The variable k used in Eq. (1) is a coefficient used to limit 

the effect of standard deviation. In this study, k was chosen as 

0,1. It is observed that with this simple proposed dynamic 

thresholding approach, the head region can be robustly 

extracted without being affected by the MRI characteristics 

(modality, resolution, slice thickness, and intensity 

distribution) (see Figure 2(2)). 

 

2.1.2 Detection of the external surface of the head 

In this stage, the voxels in the inner area of the head object 

were cleaned, and a suitable external surface model for 3D 

printer output was obtained. For this purpose, we extracted the 

inner and outer boundary lines of the two-level head object 

detected in the previous stage (see Figure 2(3)). The binary 

contour image filter found in the ITK toolkit was found to be 

suitable for this operation [20]. After the boundary lines were 

detected, we observed that a significant amount of the 

structure within the inner region of the head still needed to be 

removed (see Figure 2(3)). To clean up these structures and 

obtain only the boundary line of the external surface, a second 

operation was performed using the Surface Wrap Solidify [21] 

plugin found in 3D Slicer. Using the same plugin, outlines of 

the outer surface of structures can be extracted and given a 

specified thickness. Through iterative morphological 

operations, external surfaces can be obtained (see Figure 2(4)). 

In this study, the thickness of the outer boundary line was set 

at 1.5 mm. In the final stage, the 3D model transformation of 

the outer boundary line was performed (see Figure 2(5)), and 

the corresponding model was saved in an STL file format 

before being printed out from a 3D printer. 

 

 
 

Figure 2. Extraction of the external head model: (1) Original 

MRI, (2) Detection of the head object, (3) Detection of inner 

and outer boundaries, (4) Detection of the external boundary 

surface, (5) External surface model of the head 

 

2.1.3 Detection of the facial landmarks on the MRI head model 

 

Algorithim 1. Transformation of 2D facial landmarks to 3D 

Input: Point2b, MR 

Çıktı: Point3b 

 
tDV=slicer.app.layoutManager().threeDWidget(0).threeDView() 

modelDispManager = tDV.displayableManager() 

for each, i ∈ len(Point2b) do 

    X = int(Point2b[i].x ∗ MR.width) 

    Y = int(Point2b[i].y ∗ MR.height 

    if modelDispM anager.P ick(X, Y ) then 

        rasPos = modelDispManager.GetPickedRAS() 

        Point3b.append([rasPos[0], rasPos[1], rasPos[2]]) 

 

 

 
 

Figure 3. Detection of facial landmarks on the MRI and 

depth head models 
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In this section, the detection of facial landmarks on the 3D 

head model was undertaken. The Google Mediapipe library 

was used to detect these landmark points. Since Mediapipe 

works only on 2D images, a 2D image was first taken from the 

facial area of the 3D head model and used as an input for the 

Mediapipe application. Mediapipe detects facial landmarks in 

a given image and outputs a list containing the (x,y) 

coordinates of 468 points. To determine the real-world 

positions of these points on the 3D head model using the 2D 

image plane, we carried out the transformation process 

detailed in Algorithm 1. The GetPickedRAS method in 

Algorithm 1 starts from the given x and y points and 

progresses along the z-axis, providing the x, y, and z 

coordinates of the first object it encounters within a specified 

radius. This transformation utilizes the threeDView object 

from 3D Slicer, which is used for visualizing 3D objects. After 

the 3D model positions of the 2D facial points were 

determined, images of the head model and facial landmarks 

were obtained, as shown in Figure 3. 

Using the MRI data taken from the patient, the head object, 

external surface model, and facial landmark detection 

processes were carried out. After segmenting the head object 

from the MRI, the external surface model of this object was 

obtained and printed on a 3D printer. Additionally, facial 

landmarks on the head were detected. In the next section, the 

details of these sub-operations are explained. 

 

2.2 Depth camera process 

 

At this stage, which is one of the main contributions of the 

study, the processes of acquiring data from a depth camera 

mounted on the end of a robotic arm, generating a depth head 

model, and detecting facial points on the model were 

performed. The use of a depth camera eliminates the second 

radiographic imaging procedure in traditional brain-targeting 

methods, thus reducing the patient's exposure to radiation from 

radiological imaging. Therefore, the proposed approach will 

have positive effects through its provision of a shorter and 

healthier solution, increased patient comfort, and a lesser 

workload for hospitals. 

 

2.2.1 Detection of 3D face landmarks from RGBD data 

At this stage, the Mediapipe library was used to detect 468 

points on the RGB image of the patient's face in the RGBD 

data. Then, with the aid of depth data (D), the detected 2D 

facial points were transformed into 3D. The transformation 

approach used for this process is shown in Algorithm 2. 

 

Algorithim 2. Transformation of 2D facial points to 3D 

Input:Point2d, 

RGBD.Depth,TCamera,width,height,cx,cy,fx,fy 

Çıktı: Point3d 

 

for Point in range(Point2d) do 

    u = Point.x * width 

    v = Point.y * height 

    z = RGBD.Depth[u, v] 

    x = (u – cx)* z/fx 

    y = (v – cy) * z/fy 

    point = TCamera * [x, y, z, 1] 

    Point3d.append(point) 

end for 

 

In the algorithm, the variable Point2D represents the 2D 

facial landmarks obtained using Mediapipe. Additionally, the 

width and height variables represent the dimensions of the 

depth image, while the cx and cy variables represent the 

central point of the image. The fx and fy variables are the 

camera's horizontal and vertical focal length parameters. The 

TCamera variable is a transformation matrix representing the 

position and orientation of the camera relative to the end-

effector of the robot arm. This matrix is used to perform 3D 

transformation based on the camera's position in space. The 

calculated 3D facial landmarks are multiplied by the TCamera 

transformation matrix to compute their real-world positions. 

Figure 3 shows the facial points obtained using the MRI and 

depth models. The first row shows the MR head model (green) 

and the detected facial points (red dots), and the second row 

shows the head model obtained with the depth camera (yellow) 

and the facial points detected using the depth matrix. 

Upon careful examination of the head models, the MRI head 

model is smooth and of high quality. In contrast, some holes 

and undetectable regions (especially in the ear, nose, and lip 

areas) can be observed in the depth head model. However, due 

to the holistic approach of the Mediapipe algorithm in 

detecting the facial model, it can be observed that these small 

imperfections on the model do not negatively affect the 

detection of facial landmarks. 

 

2.3 Registration methods 

 

The aim of landmark-based registration methods is to 

calculate the transformation matrix required to minimize the 

distance between sets of moving and fixed points. In this study, 

two different methods were used for landmark-based 

registration: 

• Singular value decomposition (SVD)-based 

registration [22] 

• Random forest (RF)-based registration [23] 

In the registration process, the facial landmarks obtained 

from the depth camera were deemed “fixed”, while those 

obtained from the MRI data were deemed “moving”. In the 

singular value decomposition (SVD)-based method, initially, 

the center points of both sets of facial landmarks (fixed and 

moving) were set to the point of origin (0,0,0). Thus, we 

ensured that the two point sets were centered at the same 

centroid. Then, the rotation angles between the point sets were 

estimated. To achieve this, we obtained a large square matrix 

(M) that represents the effect of each moving point on the fixed 

set by projecting the moving-point set onto the fixed set. By 

performing singular value decomposition of this 468 x 468 

matrix, the eigenvectors (U and V) of the M.MT and MT.M 

matrices were obtained. Using these matrices containing 

orthonormal vectors, the rotation matrix (R) was calculated. 

Finally, the calculation of the transformation matrix was 

completed by adding the scale and translation coefficients to 

this matrix. The calculated transformation matrix was applied 

to the entire moving-point set to obtain the registered point set. 

We found the SVD-based registration method to be relatively 

efficient compared to other approaches. The pseudo-code for 

this method is shown in Algorithm 3. 

The second method used for registration is the random 

forest (RF)-based method [24]. The random forest method, 

which is based on machine learning, has widespread use in the 

field. It works by combining the prediction results of multiple 

decision trees. Each tree is trained independently, and after 

training, the input data are passed through all the decision trees 

to obtain the predicted positions; then, the averages are taken. 
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Compared to other methods, the advantages of the RF method 

are high accuracy, generalizability, and speed. However, this 

method does require enough data. In this study, the high 

number of points (468) positively increased the accuracy of 

the RF method; we thus found it a powerful approach to 

modeling the relationship between two sets of points. In the 

study, we used the RandomForestRegressor model from the 

Scikit-learn Python library. It was observed that the number of 

decision trees more than 200 did not contribute significantly 

to the result. Therefore, the number of decision trees was 

determined as 200. 

 

Algorithim 3. SVD-based registration 

Input: fixedP, movingP 

Çıktı: registeredP 

 

movingP = movingP – mean(movingP) 

fixedP = fixedP – mean(fixedP) 

M = movingPT * fixedP 

U, S, V = SVD(M) 

R = VT. U. V 

registeredP = movingP * RT 

scale = norm(fixedP) / norm(movingP) 

registeredP = registeredP * scale + mean(fixedP) 

 

2.4 Robotic application 

 

The aim of the robotic application is to guide the tip of a 

needle, which is mounted at the end of a robotic arm and has 

known physical properties, to a desired target point on the head 

prototype. For example, when the tip of the nose was selected 

from the features of the set of facial landmarks, the goal was 

for the robotic arm to touch the tip of the needle to the tip of 

the nose on the head prototype. A registration matrix was used 

to accurately guide the robotic arm. The RF method detailed 

in the previous section was able to successfully calculate this 

matrix. 

In this study, the CRB 15000-5/0.95 robot arm model from 

ABB company was utilized. Figure 4 shows the robot arm and 

the coordinate systems it utilizes. The robot has a 6-axis 

structure and can be categorized as a COBOT (collaborative 

robot). This is because, unlike standard robots, it has actuators 

that can measure torque with high precision in all axes. This 

makes COBOT suitable for operation alongside humans, 

which is why it was chosen for this study. The robot's 

repeatability is 0.02 mm, and its reach distance is 950 mm. The 

end effector of the robot can reach speeds of up to 2.2 m/s. 

 

 
 

Figure 4. Robot and reference frames 

The robot has two different reference frames, TBase and TFlans. 

Before robot movements are executed, position information is 

transformed into the TBase reference frame and then used. It is 

generally assumed that TBase = [0,0,0]. In this study, the camera 

and end effector have two different reference frames, named 

TCamera and TTool, respectively. The image taken from camera 

and the generated point cloud are determined with respect to 

the TCamera reference frame. However, the robot should be 

moved with respect to the TTool frame. Therefore, all 

transformations should be converted to the robot's TBase frame 

before use. The basic transformation matrices used in this 

study were calculated as shown in Eq. (2) and Eq. (3). Finally, 

the needle length to be used was added to the Z-axis and 

subjected to translation operation.  

 

𝑇 = 𝑇𝐵𝑎𝑠𝑒 × 𝑇𝑇𝑟𝑎𝑛𝑠(𝑥=300,𝑦=0,𝑧=450) × 𝑇𝑅𝑜𝑡_𝑦(180°)𝐹𝑙𝑎𝑛𝑠
𝐵𝑎𝑠𝑒  (2) 

 

𝑇 = 𝑇𝐹𝑙𝑎𝑛𝑠
𝐵𝑎𝑠𝑒 × 𝑇𝑇𝑟𝑎𝑛𝑠(𝑥=−57,5,𝑦=0,𝑧=29) × 𝑇𝑅𝑜𝑡_𝑧(180°)𝐶𝑎𝑚

𝐵𝑎𝑠𝑒  (3) 

 

𝑇𝐵𝑎𝑠𝑒 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

], 

𝑇𝐹𝑙𝑎𝑛𝑠 = [

−1 0 0 300
0 1 0 0
0 0 −1 450
0 0 0 1

], 

𝑇𝐶𝑎𝑚 = [

1 0 0 357,5
0 −1 0 0
0 0 −1 421
0 0 0 1

] 

(4) 

 

As shown in Figure 5, we used socket programming 

between the robot and the developed software. The robot can 

communicate bidirectionally via Python socket programming 

over the TCP/IP protocol. After registering the MRI and 

camera images, the resulting transformation matrix enables 

precise targeting of the robot to the marked positions in the 

MRI. 

 

 
 

Figure 5. The flow diagram of socket programming used 

between the developed software and the robot 

 

 

3. RESULTS 

 

3.1 Preparing dataset 

 

In this study, we used ADNI [25], which is a publicly 

available dataset. Firstly, two patients (Patient 8 and Patient 

10) were selected from the ADNI dataset. The MRI and depth 

camera processes were performed sequentially on each set of 

patient data. During MRI procedures, extraction of the 
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automatic head object (MHead) and detection of facial points 

were carried out. Additionally, the 'Extraction of the External 

Head Surface Model' process was applied to the MRHead 

model, resulting in the removal of interior parts and the 

generation of a 3D-printed output. The printed hollow head 

model was fixed on a table, and RGBD data were obtained 

using a depth camera (Intel RealSense d435) mounted on the 

robot arm. A 3D point cloud was created from the RGBD data, 

and then it was converted into a surface model to obtain the 

depth head (DHead) model. Facial landmarks on the DHead 

were obtained in a similar manner to those on the MRHead. 

During the checks, no issues were observed with the points on 

the MRHead. However, abnormal shifts in the locations of 

facial landmarks detected on the DHead, along with instances 

in which the model structure protruded, were noted. The 

presence of a small number of unmeasurable pixel values in 

the depth matrix (which contain NaN values) is the reason for 

this. When the position of the facial landmarks detected by 

Mediapipe coincided with such a pixel, the locations of the 

points shifted abnormally. Hence, we conducted the detection 

and removal of points displaying abnormal shifts within the 

point sets, followed by an assessment of their impact on the 

registration process. For this purpose, the results of two 

different conditions within the registration process (original 

facial landmarks and the filtered version with abnormal points 

removed) are presented in the following tables. 

Registration processes were performed, and we analyzed 

the effect of different facial landmarks on said processes. For 

this purpose, four different combinations of landmark sets 

were created, as shown in Table 1. 

 

Table 1. Landmark sets used in registration 

 

 Face Area 
Landmark 

Count 

Set 1 All 468 

Set 2 Silhouette of the face 36 

Set 3 Eye, eyebrow, mouth, nose, cheek 181 

Set 4 
Silhouette, eye, eyebrow, mouth, 

nose, cheek 
217 

 

3.2 Registration results 

 

The registration process was carried out in two different 

ways, both using the original point set combinations and 

excluding the anomalous points. To accurately evaluate the 

registration performance, three different metrics were 

calculated: root mean squared error (RMSE), fiducial 

registration error (FRE) and correlation coefficient. The 

registration results for Patient 8 from the ADNI dataset are 

presented in Table 2, while the registration results for Patient 

10 are presented in Table 3. 

In addition to the results shown in Table 2 and Table 3, the 

lowest TRE values for both patients were obtained with the RF 

method on Set1. These values were calculated as 2.217 mm 

and 2.164 mm for each patient, respectively. 

Upon examining Table 2 and Table 3, which contain the 

registration results, removing anomalous points from the point 

sets significantly improved the registration accuracy. For 

example, when examining the registration performance of 

Set1's points using the SVD method, as shown in Table 1, the 

original point set results in a high FRE value of 394.0313. 

However, after removing anomalous points from the set, the 

FRE value significantly decreases to 6.788. This situation 

clearly demonstrates the impact of eliminating anomalous 

points on the registration. However, when we examine the 

results in Tables 2 and 3 together, the following question can 

be answered conclusively: "Which set of points provides high 

registration accuracy?". Accordingly, Set1's combination of 

points, in which all facial landmarks are used, provides the 

highest registration accuracy. On the other hand, Set2 

provided less registration accuracy: its number of landmarks 

is lowest, and its number of anomalous landmarks is highest. 

Furthermore, upon careful examination of the results, we 

observed that the RF method outperforms SVD in registration 

accuracy across all set combinations.  

For comparison, in a landmark-based 3D head model 

registration study [26], an RMSE error of less than 3 mm was 

achieved, and this error was reported to be acceptable. In 

another study [27], which compared the effect of skin markers 

(SM) and natural markers (NM) on registration and used real 

neurosurgery patient data, an RMSE of 3.2 mm was reported 

when using NM, and 2.9 mm when using SM. In the study [28] 

that measured the effect of the number of landmarks (LM) on 

surgical navigation accuracy, different TRE values ranging 

from 1.63 to 2.06 were calculated, and it was reported that 

there is no linear relationship between FRE and TRE. In 

another study [29], which measured the performance of a 

commercial MRI registration application, it was reported that 

the TRE error between two points after rigid, whole-volume 

registration was calculated as 1.6 mm. 

The registration results achieved using the SVD and RF 

methods for both patients are visually presented in Figure 6. 

Facial landmarks obtained from the depth camera data (fixed) 

are shown in red, while those obtained from the MR data 

(moving) are shown in blue. The first column shows the data 

for Patient 8, while the second column shows the data for 

Patient 10. 

 

Table 2. Registration results for Patient 8 
 

 
With Abnormal Points Without Abnormal Points 

Initial SVD RF Initial SVD RF 

Set 1 

RMSE 227.494 23.861 7.787 227.025 3.919 0.943 

FRE 394.0313 41.328 13.487 393.219 6.788 1.633 

Correlation 0.113 0.784 0.986 0.273 0.951 0.998 

Set 2 

RMSE 227.494 30.849 24.819 227.025 7.817 7.696 

FRE 394.0313 53.432 42.988 393.219 13.539 13.330 

Correlation 0.709 0.739 0.709 0.273 0.932 0.934 

Set 3 

RMSE 227.494 22.809 22.241 227.025 4.211 3.977 

FRE 394.0313 39.506 38.522 393.219 7.294 6.888 

Correlation 0.113 0.768 0.773 0.273 0.943 0.944 

Set 4 

RMSE 227.494 23.425 21.829 227.025 3.995 3.943 

FRE 394.0313 40.574 37.810 393.219 6.920 6.829 

Correlation 0.113 0.781 0.788 0.273 0.950 0.951 

2018



 

Table 3. Registration results for Patient 10  

 

 
With Abnormal Points Without Abnormal Points 

Initial SVD RF Initial SVD RF 

Set 1 

RMSE 205.099 19.711 7.114 205.571 3.734 0.879 

FRE 355.242 34.140 12.322 356.060 6.467 1.523 

Correlation 0.083 0.784 0.985 0.084 0.965 0.999 

Set 2 

RMSE 205.099 33.386 22.389 205.571 6.019 4.780 

FRE 355.242 57.826 38.779 356.060 10.425 8.280 

Correlation 0.083 0.602 0.708 0.084 0.956 0.959 

Set 3 

RMSE 205.099 18.372 18.359 205.571 3.947 3.914 

FRE 355.242 31.821 31.799 356.060 6.836 6.779 

Correlation 0.083 0.781 0.783 0.084 0.962 0.963 

Set 4 

RMSE 205.099 19.049 18.496 205.571 3.763 3.631 

FRE 355.242 32.994 32.036 356.060 6.518 6.289 

Correlation 0.083 0.775 0.776 0.084 0.964 0.965 

 
 

Figure 6. Registration results (blue: MR landmarks, red: 

depth landmarks). (1) Patient 8: initial position. (2) Patient 

10: initial position. (3) Patient 8: SVD result. (4) Patient 10: 

SVD result. (5) Patient 8: RF result. (6) Patient 10: RF result 

 

The initial positions of the facial landmarks are shown in 

the first row (Figure 6(1) and Figure 6(2)). At this stage, when 

registration had not yet been performed, the fixed and moving 

landmarks exhibited significant differences in terms of 

rotation, scale, and translation. Moreover, when addressing the 

red-colored facial landmarks in Figure 6(1), it is clearly visible 

that there are abnormal points extending beyond the silhouette 

of the face. The second row shows the registration results of 

the SVD method for both patients. When examining the lip 

area in Figure 6(4), there is a significant registration error. The 

third row shows the registration results of the RF method for 

both patients. As depicted in Figure 6(6), the points in the lip 

area overlap significantly better compared to the results of the 

SVD method. These results demonstrate that the RF-based 

method is a reasonable approach to the registration of facial 

landmarks. 

Figure 7(1) shows the selection of the nose tip point (red). 

Since this point is calculated with respect to the robot's 

reference frame, the robot is directed to the specified point 

without requiring any additional action. As shown in Figure 

7(2), the robot targeted the specified point with high accuracy. 

In the second targeting task, the midpoint of the patient's 

forehead was selected (see Figure 8(1)). The robotic arm was 

directed to the selected point with similar precision (see Figure 

8(2)). 

 

 
 

Figure 7. Targeting the robot to the tip of the nose. (1) 

Selection of target point (red) (2) Real-world environment 

2019



 

 
 

Figure 8. Targeting the robot to the midpoint of the forehead. 

(1) Selection of target point (red) (2) Real-world environment 

 

The success of our activities, as detailed herein, instilled us 

with confidence in the potential of the robotic arm to be used 

in advanced medical procedures such as brain targeting, 

thereby fueling our motivation to carry out further research in 

this area. We will of course strive to minimize risk in reaching 

target points within sensitive organs such as the brain. The 

authors will continue their work on predicting and minimizing 

possible computational risks. 

 

 

4. DISCUSSSION 

 

In this study, high accuracy was achieved in calculations 

performed for the case of two sample patients. Such a result 

was confirmed when we directed the robot to targeted regions 

following registration. In doing so, we observed that the 

detection of landmarks and the registration process could be 

completed within a time frame suitable for surgical procedures. 

The system can execute the radiological imaging process in a 

single procedure and automatically obtains a large number of 

landmarks (e.g., 468). However, its limitations require further 

discussion. In this study, deformations---which may occur 

affect the patient's face between the MRI and registration---

were not accounted for. In additional, we have not yet 

evaluated the system's accuracy when working with patients 

with different skin tones, skin textures, and facial hair; this is 

an area of interest that will be probed in future studies. In this 

study, tests were conducted on two patient samples. Increasing 

the number of tests performed and evaluating their results 

would serve to reinforce our results concerning the system's 

accuracy. Moreover, it would be interesting to test the system's 

performance using depth camera images of patients who have 

had MRI scans (instead of the depth head model obtained from 

the MRI images). Finally, comparing performances using 

different registration methods will be a further important step 

in identifying the most accurate approach to this critical 

process. 

 

 

5. CONCLUSION 

 

Traditional deep brain-targeting systems are used to 

accurately pinpoint critical areas within the brain. These 

systems typically use two different scans (MRI and CT). 

Additionally, neurosurgeons perform thorough and detailed 

examinations of these scans, manually identifying anatomical 

points. The accuracy of the MRI-CT registration process can 

be compromised by factors such as insufficient scan quality, 

lack of sufficient experience on the part of the surgeon, and 

errors in manual marking. This situation hinders our ability to 

accurately reach the targeted point. 

In this paper, we propose an alternative targeting approach 

to eliminate the shortcomings of the traditional targeting 

method. During this approach, depth camera data obtained 

from the patient's facial region are used along with the MRI 

data. Thanks to this use, the patient is prevented from being 

exposed to radiological imaging twice. Additionally, the 

proposed approach overlays a facial mask containing 468 

points (MHead and DHead) onto the MRI and depth data 

instead of manually marking anatomical points. In the next 

step, the registration of these masks is performed using 

singular value decomposition (SVD) and random forest 

methods to calculate the transformation matrix. In the last step, 

a robot arm in a real-world environment is provided with 

precise access to the desired point on the patient's head. In our 

experimental study, the ADNI dataset was used, and we 

observed that the robot arm could reach targeted points with 

great accuracy. 
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