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Obesity and overweight are well-documented risk factors for numerous diseases that 

negatively impact life expectancy and quality of life, including cardiovascular diseases, 

diabetes, and cancer. Although the effects of weight status on brain function have been 

extensively studied, the application of machine learning (ML) and deep learning (DL) 

techniques in this domain remains underexplored. This study aims to address this gap by 

creating a unique dataset comprising electroencephalography (EEG) data from 19 channels, 

recorded while participants with varying body mass indices were exposed to visual food 

cues. The primary objective was to classify the differences in brain signals between normal-

weight and overweight/obese individuals using advanced DL methods. To mitigate 

overfitting and data imbalance, tabular data augmentation was employed. Additionally, the 

Supervised Tabular Meta-Learning (SuperTML) method was utilized to embed EEG 

features into images, marking a novel application for this type of data. Classification results 

indicate that DenseNet-121 achieved the highest accuracy, with a rate of 0.97 at channel T4. 

Regionally, the temporal area yielded the best average accuracy rates. Furthermore, the 

study investigated the correlation between EEG data and eating behavior through regression 

analysis, applying Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient 

Boosting Machine (LightGBM), and Voting ensemble regression models to the participants' 

questionnaire responses. A significant relationship between EEG data and the questionnaires 

was identified, with the LightGBM regressor achieving an R² value of 0.966. These findings 

demonstrate superior performance compared to existing literature in several aspects. This 

study underscores the potential of DL in enhancing our understanding of the neural 

mechanisms underlying eating behaviors in individuals with different body weights and 

provides a robust methodological framework for future research in this field. 
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1. INTRODUCTION

Overweight and obesity are two of the leading causes of 

health issues influencing individuals of all ages. In 2016, the 

WHO reported that the number of obese and overweight 

individuals exceeded 1.9 billion worldwide, with 650 million 

adults, 340 million adolescents, and 39 million children being 

obese. In addition, this figure continues to rise [1]. Obesity is 

an established risk factor for metabolic disorders such as 

diabetes, cardiovascular disease, cancer, and sleep apnea. 

Nonetheless, obesity frequently co-occurs with mental illness, 

particularly affective disorders such as depression, and 

imposes a massive disease burden owing to the decline in 

quality of life and social functioning it causes [2, 3]. The Body 

Mass Index (BMI) is the most commonly used conventional 

method to measure obesity. However, calculating body fat 

percentage exclusively using BMI is difficult because of its 

unreliability, particularly when assessing various age groups. 

Bioelectric impedance analyzer (BIA), bio-impedance 

spectroscopy, dilution technique, hydrostatic weighing 

method, air displacement plethysmography (ADP), dual 

energy x-ray absorptiometry (DEXA), ultrasound, CT and 

MRI modalities are the other most commonly utilized 

techniques for evaluating body structure in obese subjects [4, 

5]. 

EEG is a non-invasive technique that measures the electrical 

activity generated by the nerve cells of the cerebral cortex 

using head-mounted electrodes. EEG signals are especially 

beneficial for studying how the human brain processes 

information due to their high temporal resolution [6]. EEG 

signals are increasingly being combined with ML and DL 

techniques to perform a variety of projects. Some applications 

of EEG signals include the following: emotion recognition [7, 

8], mental disorders [9, 10], sleep stage scoring [11], apnea 

detection [12], motor imagery [13], event related potential 

(ERP) [14, 15]. 

An online search for food addiction yields millions of search 

results, indicating a perceived link between food consumption 

and addiction in everyday language [16]. There are clear 

behavioral parallels between obesity and traditional substance 
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abuse. Both involve the persistent, uncontrollable 

consumption of a substance that has immediate rewarding 

effects but long-term detrimental effects on the individual's 

physical and psychosocial well-being [17]. Several research 

papers in the scientific literature examine the EEG signals of 

individuals with food-related stimuli; diverse situations were 

examined as stimuli while these studies were conducted. Some 

of these include reactions to food photographs, reactions to the 

aroma of food, reactions based on food sampling, and written 

food-related phrases. However, eating behavior questionnaires 

and regression analysis were not used in these studies. 

In their study of 66 women (26 overweight or obese, 40 

normal), Nijs et al. [18] studied the reactions of individuals to 

visual food stimuli in the states of hunger and satiety. The 

study found that in the deprivation condition, P300-related 

attentional bias to food was significantly higher in normal-

weight individuals compared to overweight/obese individuals, 

and that in the satiety condition, it was more likely to be higher 

in overweight/obese women than in normal-weight women 

[18]. The impact of food odours and visuals on 62 participants 

in three different weight categories (normal, overweight, and 

obese) was examined in the study by Zsoldos et al. [19]. As a 

result, it was found that weight status influences the brain 

activity that supports the unconscious processing of food 

signals, starting with the first observable P100 peak [19]. 

Hume et al. studied the EEG responses of normal, overweight, 

and obese women to food-related visual stimuli. Once more, 

this study's findings showed that different measurements were 

made in various weight groups for the P300 and P200 values 

[20]. In a different study, two groups of 28 participants were 

formed, with 14 of them being overweight or obese and 14 

being normal. The EEG responses of these two groups to 

images of high-calorie and low-calorie meals were then 

compared. The processing of foods with fewer calories 

eventually separated the two weight classes on assessments of 

neurological activity and was linked to snack food 

consumption in the overweight/obese group, despite the fact 

that every individual showed an attentional bias towards 

calorie-rich foods [21]. The EEG response of 20 participants 

to 188 distinct food images was examined in the study by Zhao 

and Xu done in 2019 [22]. As a result, within the same feeling, 

the EEG data gathered can be distinguished by mood and 

frequency range. Additionally, the variance in the size of the 

brain signal within the same frequency band is shown by the 

difference in standard deviation, which suggests that the band 

of signals needs to be broken down in order to get 

characteristics [22]. Nijs et al. [23] evaluated the EEG 

responses of 40 participants (20 obese, 20 normal weight) to 

written food-related sentences in another study. Therefore, it 

was found that during the instinctual stage of information 

processing, obese participants tended to pay more attention to 

food-related stimuli than neutral ones. There was a general 

food-related bias observed in reaction times and P300 scores, 

which are supposedly indicators of more aware, sustained 

attention, but there were no significant group differences. 

Food yearning scores and P200/P300 amplitude biases 

exhibited a positive link in the normal-weight group; however, 

in the obese group, there were substantial positive 

relationships between food-related reaction time bias, food 

want, and external consumption [23]. In the 2021 investigation 

by Woltering et al. [24] on 40 participants (18 healthy, 22 

obese), EEG recordings were made by exposing the 

participants to food stimuli. The inverse relationship between 

BMI and P3 readings was highlighted as a conclusion [24]. In 

the study done by Ammar Ali et al. [25], it was determined 

how a long-term diet affected the EEG responses of 

overweight and obese people to food-related stimuli, and it 

was also discovered how closely healthy people's event-

related potential data were affected by the diet of the 

overweight and obese group. Additionally, ANN and SVM 

were used to categorize the groups, and the results of SVM and 

ANN differ when the control group and the overweight/obese 

group after the diet are compared. The ANN has an accuracy 

of 92,95% for nonfood photos compared to the SVM's 85,45% 

for food images [25]. In a different study, 24 male participants 

underwent resting-state functional magnetic resonance 

imaging (rs-fMRI) to record their hunger and satiety states. 

These images were then categorized using ML techniques. As 

a result, their classification accuracy using the support vector 

machine technique was 81% [26]. Snekhalatha and 

Sangamithirai [5] tried to distinguish between obese and 

normal instances in thermal pictures. The study built a bespoke 

DL network and evaluated how well it performed in 

comparison to the most advanced pre-trained CNN and ML 

models. In comparison to the pre-trained VGG16 net model, 

which had an accuracy of 79% and an AUC value of 0.90, the 

proposed custom CNN network-2 achieved an overall 

accuracy of 92% and an AUC value of 0.948 [5]. In order to 

create a ML model for identifying young people at risk of 

becoming overweight or obese, Singh and Tawfik used data 

from the UK's Millennium Cohort Study. The Synthetic 

Minority Oversampling Technique (SMOTE) was used in the 

study to overcome concerns with low prediction accuracy 

brought on by data imbalance. To benefit from the prediction 

accuracy of individual classifier algorithms, an ensemble of 

classifiers was deployed. The outcomes were positive, with the 

target class achieving a prediction accuracy of over 90% [27]. 

In other work using alpha band functional connectivity 

features generated from EEG data, the study created a unique 

ML model to identify the brain networks of obese females, 

attaining an overall classification accuracy of 0.937. 

According to the research, the obese brain exhibits a 

disordered network with weak regions in charge of handling 

information about oneself and the surroundings [28]. 

The impact of weight status on human brains has been the 

subject of numerous studies; however, ML and DL algorithms 

have not been widely used. Within the scope of this study, it is 

aimed to evaluate the detection of obese and overweight 

individuals, which are rapidly increasing worldwide, not only 

by looking at the BMI, but also by examining the EEG signals 

of the person and comparing them with different eating 

behavior questionnaires. Collecting unique data is important 

for the authenticity of the study. In addition, the ML methods 

that are used for the evaluation of the survey results make this 

study important since they have not been applied to the 

surveys conducted in previous studies, which shows the novel 

contribution of this study. Some of the methods, such as Super 

TML, are applied for the first time to the EEG dataset, and 

successful results are obtained. The following is a list of the 

study's contributions: 

 

• A unique EEG dataset is created within the scope of 

the study. 

• Data augmentation is applied effectively to address 

overfitting and imbalanced data issues. 

• The applicability of the Super TML technique to 

EEG data by converting table data to images is 

demonstrated. 
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• A CNN-based classification is implemented to obtain 

EEG data using ResNet152-v2, ResNet50-v2, 

Inception-v3, and DenseNet-121 algorithms. 

• The methods used show excellent performance in 

certain channels up to 0.97 accuracy rate, which is 

superior to studies in the literature according to the 

authors knowledge. 

• When conducting eating behavior surveys, a strong 

correlation between EEG data and questionnaire 

results is shown using regression methods (Random 

Forest, XGBoost, LightGBM, and Voting Ensemble 

Regression) with an R2 value of 0.966. This analysis 

has not been seen before in the literature. 

• It has been discovered which part of the brain is more 

decisive when you are exposed to visual stimuli in 

different weight groups. 

 

 

2. MATERIALS AND METHODS  

 

2.1 Participant 

 

In this research, EEG data were acquired from 20 male 

volunteers between the ages of 21 and 41 with a BMI ranging 

from 21.45 to 39.43kg/m2 from Yozgat Bozok University, 

Türkiye. The characteristics of the participants are displayed 

in Table 1. Participants were excluded from the study if they 

disclosed having a mental, neurological, or somatic condition 

or taking any medication within the previous month that could 

have influenced their eating patterns, body weight, or EEG 

activity. Each participant conducted three or four trials, with a 

ten-minute break between each session, for a total of seventy 

trials. 

 

Table 1. Details of participants 

 
Age Weight Height BMI 

35 79 175 25.80 

28 66 170 22.84 

21 62 170 21.45 

22 110 180 33.95 

31 72 174 23.78 

22 105 193 28.19 

35 85 170 29.41 

41 73 181 22.28 

27 130 186 37.58 

23 76 182 22.94 

35 118 173 39.43 

22 70 170 24.22 

26 75 169 26.26 

38 105 182 31.70 

37 80 176 25.83 

33 87 188 24.62 

35 90 170 31.14 

25 77 183 22.99 

35 82 174 27.08 

26 86 175 28.08 

 

2.2 Data acquisition and filtering 

 

In this study, 19 channels were used with experimental 

parameters to record EEG signals over the scalp. Using the 

international 10-20 electrode placement technique, the 

electrodes were positioned non-invasively. A1 and A2's left-

right earlobes were designated as the reference points, while 

the left eyebrow was designated as the ground. The EEG 

electrodes for monopolar placement are listed in Figure 1. 

Each electrode positioning point is designated by a letter 

associated with the specific brain lobe or region it is recording 

from: frontal (F), temporal (T), parietal (P), occipital (O), and 

central (C). The study was conducted in accordance with the 

Declaration of Helsinki, and approved by the Ethics 

Committee of Yozgat Bozok University (protocol code: 2017-

KAEK-189_2022.08.25_08 and date of approval: 25/08/2022) 

for studies involving humans. 

In this investigation, images from the FoodPics dataset were 

used as stimuli. In total, 34 photographs (17 food and 17 non-

food) were chosen. All images in this dataset are colour 

photographs with a resolution of 600x450 pixels (96 dpi, 

sRGB colour format). In terms of viewing distance (up to 80 

cm), angle, and fundamental figure-ground composition, 

images were selected/edited to be relatively uniform. Photos 

were standardised based on the colour of the background 

(white) [29]. During the experiment, each participant sat in a 

chair 50 cm from the computer monitor and was instructed to 

focus on the images. Each image was shown for two seconds, 

and an example trial is depicted in Figure 2. 

 

 
 

Figure 1. Channel names of EEG electrodes and placement 

 

 
 

Figure 2. A depiction of the experimental setup for the 

examination of visual stimuli 
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Figure 3. Workflow of the method used 

 

During the research, EEG signals generated in response to 

visual stimuli were recorded using a Micromed SAM32RFO 

signal acquisition device and a Medcap electrode cap. The 

impedance of each channel was maintained below 10 kOhm, 

and each trial recording lasted 134 seconds. The sampling rate 

was set to 4096Hz, and the data was filtered at a frequency 

range of 0.03-70Hz. After the raw EEG data collection 

procedure was completed, the filtering step was applied. First 

of all, a 50Hz notch filter was applied to reduce power line 

noise. Then, a discrete wavelet transform was applied. In this 

step, a 10th-order Butterworth bandpass filter was used to filter 

the four sub-band frequency components: alpha, beta, theta, 

and delta. This step helps to remove artifacts, which can affect 

the proper classification results badly. Due to the superiority 

of the delta wave result, a classification frequency of 0.03-4Hz 

was chosen. After the filtering step, data normalization was 

applied. The data matrix was centered by making the mean 

value zero. Figure 3 illustrates the fundamental steps of this 

work. Multi-Task Process (MTP) approach can also be seen in 

the figure, which is explained in detail in the study [30]. In this 

method, feature extraction is followed by feature data 

augmentation. Then, the tabular data is converted into images 

and given to classification algorithms. In this work, Principle 

Component Analysis (PCA) is added as an extra step because 

the size of the data matrix is large, and using PCA, features 

that do not have much impact can be removed. Additionally, 

eating behavior questionnaires and EEG results were analyzed 

in order to find any relation between participant answers to 

questionnaires and EEG recordings. In this step, three different 

methods, which are Random Forest, XGBoost, and LightGBM, 

were used. Finally, using the combination of these methods, a 

voting regressor was applied. 

2.3 Feature extraction 

 

The feature extraction stage involves the transformation of 

unprocessed signal data into a feature vector in order to extract 

crucial information. This stage is capable of emphasizing the 

distinguishing characteristics of the signal. Using the Burg 

method, power spectral density (PSD) was utilized in this 

investigation for future extraction. PSD is a valuable signal 

processing technique for stationary signals, and it is 

particularly effective for narrowband signals. It is a standard 

method of signal processing that distributes signal power 

across frequencies and displays signal energy as a function of 

frequency [31]. 

Burg's method generates an estimate of reflection 

coefficients by minimizing the mean of prediction errors in 

both forward and backward directions, while also adhering to 

the Levinson-Durbin recursion. This method resolves closely 

spaced, low-level sinusoids and estimates transient data 

records [32]. Following is an explanation of the Burg method: 

 

𝑃𝑏𝑢𝑟𝑔(𝑓) =
Ê𝑃

|1+= ∑ â𝑝(𝑘)𝑒−2𝜋𝑓𝑝

𝑘=0
|^2

 (1) 

 

In this investigation, raw data was collected in segments of 

size (2*67*4096)*19 for each trial, where 19 represents the 

number of channels, 4096 the sampling frequency, 67 the 

number of images, and 2 the duration of each image in seconds. 

After collecting raw data, responses to 2-second food stimuli 

for each participant were subtracted. 17 food images 

multiplied by 2 seconds equals 34 data length, yielding 

34*4096 data matrices per trial. Finally, the method of feature 
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extraction was implemented. Using the Burg method, a 

34*129 data matrix was acquired, and for 70 trials, a 2380*129 

data matrix was created. 

 

2.4 Tabular data augmentation 

 

In the field of data science, datasets can be divided into 

structured and unstructured data. Tabular data, the most 

prevalent form of data in real-world applications, consists of a 

set of rows and columns containing features. Many difficulties 

arise when supplying them to deep neural networks, such as 

lack of locality, absent values, mixed feature types, and, unlike 

text or images, lack of prior knowledge of the data set's 

structure [33]. It can be said that there are several reasons for 

data augmentation [34], such as: limited training data [35], 

lack of relevant data [36], model overfitting [37] and 

imbalanced data [38]. 

There are a total of 2380 data columns in the dataset 

compiled for this study, of which 1462 represent individuals 

who are overweight/obese and 918 represent individuals who 

are normal. In order to eliminate imbalance and overfitting 

problems, data augmentation is applied. After synthetically 

increasing the data, the total number reached 2924 (1462 

overweight/obese and 1462 normal). 

 

2.5 Dimension reduction 

 

PCA is a method for reducing the number of features. It 

calculates the variance within the data by creating a new set of 

perpendicular characteristics called principal components 

(PCs). PCA endeavors to eradicate duplicate dimensions from 

a given data space. This provides an easy method for ML 

algorithms to generate reduced data sets [39, 40]. In this 

investigation, feature-extracted data for each trial was reduced 

to 2924*2 dimensions using the Burg method. Figure 4 

illustrates the principal components extracted for the data set 

used in the study. 

 

 
 

Figure 4. Principal component distribution of used data 

 

2.6 Feature embedding into the images 

 

In this stage, the SuperTML method was used in order to 

convert the tabular data into images. This method is motivated 

by the resemblance between the challenges encountered in 

TML and those in text classification tasks [41]. Using this 

method, all instances and their features were embedded in the 

images, resulting in 2924 images. The dimension of the images 

was chosen as 224*224 because of the deep model input size. 

Figure 5 shows the tabular data conversion to images and 

filing procedures. 

 

 
 

Figure 5. Feature conversion from tabular data to images 

 

After all the pictures were saved in class folders, the data 

was split into train and test parts with a ratio of 80:20. Then, 

30% of the train data is set aside for validation with the Keras 

image data generator pipeline. As a result, 2339 of 2924 data 

points were reserved for training, and 702 of them were 

selected for validation. For the test set, 585 pieces of data were 

reserved. 

 

2.7 Classification using CNN models 

 

CNNs have attained remarkable efficacy in image 

classification and detection. A CNN identifies an object by 

searching for basic characteristics, such as edges, lines, and 

curves, and then constructs additional features with an overall 

perspective. DL draws its inspiration from traditional neural 

networks but significantly outperforms its predecessors. 

Furthermore, DL utilizes transformations and graph 

technologies concurrently to construct multi-layer learning 

models [42]. 

Performance evaluation metrics are crucial evaluation 

criteria for the ML system used in biomedical signal 

processing. This study included four assessment metrics: 

accuracy, precision, recall, and F1-Score. The following are 

mathematical representations of assessment metrics: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

Here, TP represents true positive decision, TN means true 

negative, FP stands for false positive and FN is false negative 

decision. 

In this study, four different CNN models (DenseNet121, 

Inception-v3, ResNet50-v2 and ResNet152-v2) were used. 

These models are well known and widely used in the field of 

biomedical signal processing. One of our aims in using these 

models is to compare our results with established benchmarks 

in the literature, which provide a reference point for evaluating 

the effectiveness of our approach. It is important for the study 

that each of the models used has a different level of complexity 

and capacity. Here, ResNet-50 is a lighter model than ResNet-

152 or DenseNet-121. Using these models, it is aimed at 

exploring how model complexity affects performance on a 

given task. Different architectures can capture different types 

of features from input images. For example, Inception-v3 is 

known for its ability to capture fine-grained details due to its 

use of multiple filter sizes. By using various models, different 

types of features were utilized, and higher classification results 

were sought. These models, which have been tested for 

robustness and generalization using different datasets and 

architectures, help to see the robustness of our findings on 

different architectures. These models have been used with high 

accuracy in various studies in the literature. They are also used 

both in the processing of the EEG signal and in the processing 

of the EEG signal converted into an image [43, 44]. The pre-

trained CNN models were supplied with ImageNet weights for 

transfer learning, and the model's top property was set to false. 

Gaussian noise was added at a rate of 0.7, and dropout was 

chosen as 0.3 in order to avoid the model becoming overfitted. 

Additionally, 4096 neurons were added for fully connected 

layers. CNN models were trained with Keras over the course 

of 30 epochs. All convolutional layers were defrozen, time-

based decay was implemented, and the initial learning rate was 

set to 0.004. The rate of decay is proportional to the rate of 

learning, the epoch value, and momentum. Momentum applied 

0.4 to the Stochastic Gradient Descent (SGD) optimizer, 

which tends to produce superior outcomes. 

 

2.8 Application of eating behavior questionaries 

 

In the paper, two different eating behavior questionnaires 

were applied to the participants. These are Turkish versions of 

the Dutch Eating Behavior Questionnaires (DEBQ) and Three-

Factor Eating Questionnaires (TFEQ). Validity and reliability 

of the Turkish versions of these questionnaires were proven in 

the researches [45, 46]. While the questionnaires were scored, 

the Likert scale was used and the results are given in Table 2. 

 

Table 2. Questionnaire results 

 
Dutch Eating Behavior 

No BMI Mean 
Restraint 

Eating 

Emotional 

Eating 

External 

Eating 

1 25.80 2.45 2.80 1.77 3.00 

2 22.84 2.06 1.80 1.54 3.00 

3 21.45 2.73 1.60 2.92 3.60 

4 33.95 3.03 2.20 3.69 3.00 

5 23.78 2.24 2.20 1.54 3.20 

6 28.19 3.09 2.20 2.92 4.20 

7 29.41 1.70 1.40 1.23 2.60 

8 22.28 1.67 1.90 1.08 2.20 

9 37.58 3.42 1.80 3.62 4.80 

10 22.94 3.48 2.50 3.77 4.10 

11 39.43 2.12 1.20 2.15 3.00 

12 24.22 2.33 1.60 2.00 3.50 

13 26.26 2.33 2.30 1.54 3.40 

14 31.70 1.85 2.20 1.08 2.50 

15 25.83 3.33 4.00 2.23 4.10 

16 24.62 2.06 1.80 1.15 3.50 

17 31.14 2.45 2.80 1.23 3.70 

18 22.99 2.64 1.70 2.15 4.20 

19 27.08 2.91 3.20 2.00 3.80 

20 28.08 2.03 1.90 1.08 3.40 

Three-Factor Eating Behavior 

No BMI Mean 
Uncontrolled 

Eating 

Cognitive 

Restraint 

Emotional 

Eating 

1 25.80 2.67 2.88 2.83 2.00 

2 22.84 2.00 2.25 1.67 2.00 

3 21.45 2.39 3.00 1.33 3.00 

4 33.95 2.50 2.63 1.83 3.67 

5 23.78 2.17 2.63 2.17 1.00 

6 28.19 2.72 3.13 2.33 2.67 

7 29.41 1.83 2.38 1.67 1.00 

8 22.28 1.72 1.38 2.50 1.00 

9 37.58 2.67 3.25 1.50 3.67 

10 22.94 2.78 2.75 2.33 4.00 

11 39.43 1.72 1.88 1.50 2.00 

12 24.22 2.50 2.63 2.33 2.33 

13 26.26 2.00 1.25 3.00 2.00 

14 31.70 2.11 2.25 2.33 1.67 

15 25.83 2.67 2.88 3.00 1.67 

16 24.62 2.00 2.13 2.17 1.33 

17 31.14 2.33 2.50 2.33 1.67 

18 22.99 2.17 2.63 1.67 1.67 

19 27.08 2.39 2.88 2.17 2.00 

20 28.08 2.06 1.88 2.33 2.00 

 

After questionnaires were scored, regression analyses were 

carried out in order to seek out the correlation between the 

EEG recording of participants and the questionnaire results. In 

this step, the features extracted from the EEG using the burg 

method were augmented utilizing the SMOGN algorithm. This 

technique can be used in order to eliminate imbalance 

problems in regression models and is explained in detail in the 

research [47]. A widely used technique for model selection is 

the method of cross-validation. Essentially, this involves 

partitioning the data into subsets. One portion is used for 

fitting each candidate model or method, and the remaining 

portion is used for evaluating their performance. The model 

exhibiting the most favorable overall performance is 

ultimately chosen [48]. In this study, 10-fold cross validation 

is applied. Then, Random Forest, XGBoost, and LightGBM 

techniques were applied for regression analysis using the best-

scoring EEG channel, which is T4. Finally, the voting 

regressor, which is combination of these three methods, was 

applied. Random Forest, XGBoost, and LightGBM, all tree-

based ensemble methods, are based on different algorithms 

and hyperparameters. Using a combination of these models 

can capture the various patterns and relationships present in 

the data. The aim of using an ensemble approach is to reduce 

the weaknesses of individual models and improve their overall 

performance. These ML-based algorithms can manage 

complex relationships between predictor variables and target 

variables, making them suitable for capturing fine details in 

survey data. Ensemble methods such as Random Forest and 

boosting algorithms (XGBoost and LightGBM) are less likely 

to suffer from overfitting than some other ML methods. This 

is important in regression tasks where the goal is to generalize 

well to unseen data, ensuring that the predictions of the model 
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created are reliable. Random Forest, XGBoost, and LightGBM 

have built-in mechanisms to evaluate feature importance. This 

feature can be valuable for interpreting the results of your 

regression analysis. Knowing which characteristics have the 

most significant impact on eating behavior may provide 

insight for further research. It is possible to improve the overall 

performance and robustness of regression analysis by 

combining the predictions of several models using a voting 

regressor. The ensemble reduces the risk of making decisions 

based on the weaknesses of a single model, while exploiting 

the strengths of each model. In addition, these models are 

widely used in regression analysis and give very promising 

results [49, 50]. 

 

 

3. RESULTS 

 

3.1 Classification results 

 

For the purpose of determining the most informative EEG 

channels and brain regions, the unprocessed EEG signals from 

all 19 channels in 20 subjects have been collected. After 

preprocessing the collected data, the results were organized 

according to five different brain regions. The first region is the 

frontal, which consists of channels Fp1, Fp2, F7, F3, FZ, F4, 

and F8. The second part is the temporal, which has 4 channels: 

T3, T4, T5, and T6. The third region has channels: C4, Cz, and 

C3, which denote the central region. While the parietal region 

consists of channels P4, Pz, and P3, the last region is occipital, 

which indicates O1 and O2. 

In Table 3, Frontal lobe including 7 channels results are 

given. When the classification results are analyzed according 

to average accuracy, DenseNet-121 achieved the best 

performance with a rate of 0.859 among the others. On the 

other hand, ResNet50-v2 has the lowest average accuracy rate 

of 0.831. 

In terms of channel results, it is seen that F7 shows the least 

successful results, whereas F4 has the highest accuracy rate for 

all classification algorithms. Inception-v3 and DenseNet-121 

reach a rate of 0.96 at this channel. 

Figure 6 shows the accuracy, loss, and confusion matrix of 

the best classification algorithm for the frontal lobe after 30 

epochs. Although Inception-v3 and DenseNet-121 have the 

same accuracy rate, the average accuracy of DenseNet-121 is 

higher than that of Inception-v3. Therefore, the DenseNet-121 

results are illustrated in Figure 6. 

 

Table 3. Frontal region results for used algorithms 

 

 Channel Fp1 Prec Rec F1-Score Channel Fp2 Prec Rec F1-Score 

ResNet152-v2 

Channel Fp1 Prec Rec F1-Score Channel Fp2 Prec Rec F1-Score 

Type0 0.98 0.86 0.91 Type0 0.88 0.88 0.88 

Type1 0.88 0.98 0.93 Type1 0.89 0.89 0.89 

Accuracy   0.92 Accuracy   0.88 

Macro avg 0.92 0.92 0.92 Macro avg 0.88 0.88 0.88 

ResNet50-v2 

Weighted avg 0.92 0.92 0.92 Weighted avg 0.88 0.88 0.88 

Type0 0.86 0.90 0.88 Type0 0.95 0.77 0.85 

Type1 0.90 0.86 0.88 Type1 0.80 0.96 0.87 

Accuracy   0.88 Accuracy   0.86 

Macro avg 0.88 0.88 0.88 Macro avg 0.87 0.87 0.86 

Inception-v3 

Weighted avg 0.88 0.88 0.88 Weighted avg 0.88 0.86 0.86 

Type0 0.88 0.93 0.90 Type0 0.89 0.89 0.89 

Type1 0.93 0.88 0.90 Type1 0.88 0.88 0.88 

Accuracy   0.90 Accuracy   0.88 

Macro avg 0.90 0.90 0.90 Macro avg 0.88 0.88 0.88 

DenseNet-121 

Weighted avg 0.90 0.90 0.90 Weighted avg 0.88 0.88 0.88 

Type0 0.94 0.91 0.92 Type0 0.89 0.89 0.89 

Type1 0.92 0.94 0.93 Type1 0.89 0.89 0.89 

Accuracy   0.93 Accuracy   0.89 

Macro avg 0.93 0.93 0.93 Macro avg 0.89 0.89 0.89 

 Channel F7 Prec Rec F1-Score Channel F3  Prec Rec F1-Score 

ResNet152-v2 

Type0 0.72 0.78 0.75 Type0 0.88 0.78 0.83 

Type1 0.78 0.70 0.73 Type1 0.83 0.89 0.86 

Accuracy   0.74 Accuracy   0.84 

Macro avg 0.74 0.74 0.74 Macro avg 0.85 0.84 0.84 

Weighted avg 0.75 0.74 0.74 Weighted avg 0.85 0.84 0.84 

ResNet50-v2 

Type0 0.70 0.86 0.77 Type0 0.95 0.64 0.76 

Type1 0.84 0.66 0.74 Type1 0.74 0.97 0.84 

Accuracy   0.75 Accuracy   0.81 

Macro avg 0.77 0.76 0.75 Macro avg 0.84 0.80 0.80 

Weighted avg 0.77 0.75 0.75 Weighted avg 0.84 0.81 0.80 

Inception-v3 

Type0 0.77 0.54 0.63 Type0 0.97 0.75 0.85 

Type1 0.67 0.85 0.75 Type1 0.81 0.97 0.89 

Accuracy   0.70 Accuracy   0.87 

Macro avg 0.72 0.70 0.69 Macro avg 0.89 0.86 0.87 

Weighted avg 0.72 0.70 0.69 Weighted avg 0.88 0.87 0.87 

DenseNet-121 

Type0 0.74 0.76 0.75 Type0 0.90 0.82 0.86 

Type1 0.78 0.76 0.77 Type1 0.84 0.91 0.88 

Accuracy   0.76 Accuracy   0.87 

Macro avg 0.76 0.76 0.76 Macro avg 0.87 0.86 0.87 

Weighted avg 0.76 0.76 0.76 Weighted avg 0.87 0.87 0.87 
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 Channel Fz  Prec Rec F1-Score Channel F4 Prec Rec F1-Score 

ResNet152-v2 

Type0 0.81 0.83 0.82 Type0 0.98 0.92 0.95 

Type1 0.84 0.83 0.83 Type1 0.92 0.98 0.95 

Accuracy   0.83 Accuracy   0.95 

Macro avg 0.83 0.83 0.83 Macro avg 0.95 0.95 0.95 

Weighted avg 0.83 0.83 0.83 Weighted avg 0.95 0.95 0.95 

ResNet50-v2 

Type0 0.75 0.78 0.77 Type0 0.98 0.93 0.95 

Type1 0.79 0.76 0.78 Type1 0.93 0.98 0.95 

Accuracy   0.77 Accuracy   0.95 

Macro avg 0.77 0.77 0.77 Macro avg 0.95 0.95 0.95 

Weighted avg 0.77 0.77 0.77 Weighted avg 0.95 0.95 0.95 

Inception-v3 

Type0 0.82 0.78 0.80 Type0 0.99 0.93 0.96 

Type1 0.81 0.85 0.83 Type1 0.93 0.99 0.96 

Accuracy   0.81 Accuracy   0.96 

Macro avg 0.81 0.81 0.81 Macro avg 0.96 0.96 0.96 

Weighted avg 0.81 0.81 0.81 Weighted avg 0.96 0.96 0.96 

DenseNet-121 

Type0 0.79 0.79 0.79 Type0 0.98 0.94 0.96 

Type1 0.81 0.81 0.81 Type1 0.94 0.98 0.96 

Accuracy   0.80 Accuracy   0.96 

Macro avg 0.80 0.80 0.80 Macro avg 0.96 0.96 0.96 

Weighted avg 0.80 0.80 0.80 Weighted avg 0.96 0.96 0.96 

 Channel F8 Prec Rec F1-Score 
Average 

Accuracy 
   

ResNet152-v2 

Type0 0.82 0.86 0.84     

Type1 0.84 0.80 0.82     

Accuracy   0.83 0.856    

Macro avg 0.83 0.83 0.83     

Weighted avg 0.83 0.83 0.83     

ResNet50-v2 

Type0 0.78 0.86 0.82     

Type1 0.83 0.74 0.78     

Accuracy   0.80 0.831    

Macro avg 0.80 0.80 0.80     

Weighted avg 0.80 0.80 0.80     

Inception-v3 

Type0 0.88 0.69 0.77     

Type1 0.73 0.90 0.80     

Accuracy   0.79 0.844    

Macro avg 0.80 0.79 0.79     

Weighted avg 0.81 0.79 0.79     

DenseNet-121 

Type0 0.87 0.72 0.79     

Type1 0.74 0.88 0.81     

Accuracy   0.80 0.859    

Macro avg 0.81 0.80 0.80     

Weighted avg 0.81 0.80 0.80     

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

Figure 6. DenseNet-121 performance at channel F4: (a) 

Accuracy graph, (b) Loss graph and (c) Confusion matrix 
 

Temporal lobe channel results are shown in Table 4. In 

terms of average accuracy rate, DenseNet-121 is the most 

successful algorithm, with a rate of 0.917. RestNet50-v2 has 

the lowest score of 0.897 for the temporal lobe, similar to the 

frontal lobe. When channel performances are analyzed, it can 

be seen that T4 has the highest score for this region. In addition, 

DenseNet-121 achieves the best classification performance of 

0.97 at this channel. On the other hand, T3 rates are the lowest 

for the temporal region. 

Figure 7 illustrates the best classification algorithm results 

for the temporal region at channel T4. Similar to the frontal 

lobe, DenseNet-121 has the highest accuracy score in this 

region, which is 0.97. 

The results of the central region channels can be seen in 

Table 5. The best average accuracy rate is observed for 

DenseNet-121, with a rate of 0.827 in the central region, while 

Inception-v3 has the lowest score, which is 0.803. 

In contrast to the other regions, when the single channel 

results are analyzed, the highest classification results are 

obtained with 0.85 in ResNet50-v2, Inception-v3, and 

DenseNet-121. Additionally, channel C4 rates are higher than 

other channels in this region. 

Table 4. Temporal region results for used algorithms 
 

 Channel T3 Prec Rec F1-Score Channel T4 Prec Rec F1-Score 

ResNet152-

v2 

Type0 0.86 0.91 0.88 Type0 0.98 0.92 0.95 

Type1 0.91 0.86 0.88 Type1 0.91 0.98 0.95 

Accuracy   0.88 Accuracy   0.95 

Macro avg 0.88 0.88 0.88 Macro avg 0.95 0.95 0.95 

Weighted avg 0.88 0.88 0.88 Weighted avg 0.95 0.95 0.95 

ResNet50-

v2 

Type0 0.92 0.82 0.87 Type0 0.98 0.90 0.93 

Type1 0.83 0.93 0.88 Type1 0.91 0.98 0.94 

Accuracy   0.87 Accuracy   0.94 

Macro avg 0.88 0.87 0.87 Macro avg 0.94 0.94 0.94 

Weighted avg 0.88 0.87 0.87 Weighted avg 0.94 0.94 0.94 

Inception-

v3 

Type0 0.89 0.83 0.86 Type0 0.96 0.92 0.94 

Type1 0.84 0.89 0.86 Type1 0.91 0.95 0.93 

Accuracy   0.86 Accuracy   0.94 

Macro avg 0.86 0.86 0.86 Macro avg 0.93 0.94 0.94 

Weighted avg 0.86 0.86 0.86 Weighted avg 0.94 0.94 0.94 

DenseNet-

121 

Type0 0.89 0.89 0.89 Type0 0.98 0.95 0.97 

Type1 0.89 0.89 0.89 Type1 0.95 0.98 0.96 

Accuracy   0.89 Accuracy   0.97 

Macro avg 0.89 0.89 0.89 Macro avg 0.97 0.97 0.97 

Weighted avg 0.89 0.89 0.89 Weighted avg 0.97 0.97 0.97 

 Channel T5 Prec Rec F1-Score Channel T6 Prec Rec F1-Score 

ResNet152-

v2 

Type0 0.90 0.91 0.91 Type0 0.88 0.90 0.89 

Type1 0.91 0.91 0.91 Type1 0.90 0.89 0.90 

Accuracy   0.91 Accuracy   0.89 

Macro avg 0.91 0.91 0.91 Macro avg 0.89 0.90 0.89 

Weighted avg 0.91 0.91 0.91 Weighted avg 0.90 0.89 0.89 

ResNet50-

v2 

Type0 0.94 0.91 0.92 Type0 0.90 0.77 0.83 

Type1 0.92 0.94 0.93 Type1 0.81 0.92 0.86 

Accuracy   0.93 Accuracy   0.85 

Macro avg 0.93 0.93 0.93 Macro avg 0.85 0.84 0.85 

Weighted avg 0.93 0.93 0.93 Weighted avg 0.85 0.85 0.85 

Inception-

v3 

Type0 0.96 0.88 0.92 Type0 0.91 0.85 0.88 

Type1 0.88 0.97 0.92 Type1 0.86 0.91 0.88 

Accuracy   0.92 Accuracy   0.88 

Macro avg 0.92 0.92 0.92 Macro avg 0.88 0.88 0.88 

Weighted avg 0.92 0.92 0.92 Weighted avg 0.88 0.88 0.88 

DenseNet-

121 

Type0 0.93 0.90 0.92 Type0 0.86 0.92 0.89 

Type1 0.91 0.94 0.92 Type1 0.92 0.86 0.89 

Accuracy   0.92 Accuracy   0.89 

Macro avg 0.92 0.92 0.92 Macro avg 0.89 0.89 0.89 

Weighted avg 0.92 0.92 0.92 Weighted avg 0.89 0.89 0.89 

Avr. Acc. ResNet152-v2 ResNet50-v2 Inception-v3 DenseNet-121 

 0.907 0.897 0.900 0.917 
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Table 5. Central region results for used algorithms 

 
 Channel C3 Prec Rec F1-Score Channel Cz Prec Rec F1-Score 

ResNet152-v2 

Type0 0.82 0.79 0.81 Type0 0.86 0.68 0.76 

Type1 0.79 0.82 0.81 Type1 0.73 0.89 0.80 

Accuracy   0.81 Accuracy   0.78 

Macro avg 0.81 0.81 0.81 Macro avg 0.79 0.78 0.78 

Weighted avg 0.81 0.81 0.81 Weighted avg 0.80 0.78 0.78 

ResNet50-v2 

Type0 0.90 0.64 0.75 Type0 0.93 0.65 0.76 

Type1 0.71 0.92 0.81 Type1 0.72 0.95 0.82 

Accuracy   0.78 Accuracy   0.79 

Macro avg 0.81 0.78 0.78 Macro avg 0.82 0.80 0.79 

Weighted avg 0.81 0.78 0.78 Weighted avg 0.83 0.79 0.79 

Inception-v3 

Type0 0.88 0.77 0.82 Type0 0.80 0.62 0.70 

Type1 0.79 0.89 0.84 Type1 0.68 0.84 0.76 

Accuracy   0.83 Accuracy   0.73 

Macro avg 0.83 0.83 0.83 Macro avg 0.74 0.73 0.73 

Weighted avg 0.83 0.83 0.83 Weighted avg 0.74 0.73 0.73 

DenseNet-121 

Type0 0.90 0.77 0.83 Type0 0.92 0.65 0.76 

Type1 0.79 0.91 0.85 Type1 0.72 0.94 0.82 

Accuracy   0.84 Accuracy   0.79 

Macro avg 0.85 0.84 0.84 Macro avg 0.82 0.79 0.79 

Weighted avg 0.85 0.84 0.84 Weighted avg 0.82 0.79 0.79 

 Channel C4 Prec Rec F1-Score Avr.Acc.    

ResNet152-v2 

Type0 0.89 0.76 0.82     

Type1 0.81 0.92 0.86     

Accuracy   0.84 0.810    

Macro avg 0.85 0.84 0.84     

Weighted avg 0.85 0.84 0.84     

ResNet50-v2 

Type0 0.93 0.73 0.82     

Type1 0.80 0.95 0.87     

Accuracy   0.85 0.807    

Macro avg 0.87 0.84 0.84     

Weighted avg 0.86 0.85 0.85     

Inception-v3 

Type0 0.97 0.72 0.83     

Type1 0.77 0.97 0.86     

Accuracy   0.85 0.803    

Macro avg 0.87 0.85 0.84     

Weighted avg 0.87 0.85 0.84     

DenseNet-121 

Type0 0.88 0.79 0.83     

Type1 0.83 0.91 0.87     

Accuracy   0.85 0.827    

Macro avg 0.86 0.85 0.85     

Weighted avg 0.86 0.85 0.85     

 

 
 

(a) 

 

 
 

(b) 
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Figure 7. DenseNet-121 performance at channel T4: (a) 

Accuracy graph, (b) Loss graph and (c) Confusion matrix 

 

Although ResNet50-v2, Inception-v3, and DenseNet-121 

have the same accuracy rate, which is 0.85, the average 

accuracy of DenseNet-121 is higher than the others. Therefore, 

the accuracy, loss, and confusion matrix graphs of DenseNet-

121 are illustrated in Figure 8. 

 

 
 

(a) 

 
 

(b) 

 

 
 

(c) 
 

Figure 8. DenseNet-121 performance at channel C4: (a) 

Accuracy graph, (b) Loss graph and (c) Confusion matrix 
 

In Table 6, the classification results of the parietal lobe are 

shown. In terms of average accuracy rate, Resnet152-v2 and 

DenseNet-121 have the highest score with a rate of 0.837, 

while ResNet50-v2 shows the lowest rate of 0.810. 

Additionally, according to single channel results, Inception-v3 

is the most successful algorithm, reaching a 0.86 accuracy rate 

at channel P3. 

 

Table 6. Parietal region results for used algorithms 

 
 Channel C3 Prec Rec F1-Score Channel Cz Prec Rec F1-Score 

ResNet152-v2 

Channel P3 Prec Rec F1-Score Channel Pz Prec Rec F1-Score 

Type0 0.94 0.74 0.81 Type0 0.78 0.85 0.81 

Type1 0.80 0.98 0.88 Type1 0.85 0.78 0.81 

Accuracy   0.85 Accuracy   0.81 

Macro avg 0.89 0.84 0.84 Macro avg 0.81 0.81 0.81 

ResNet50-v2 

Weighted avg 0.88 0.85 0.84 Weighted avg 0.81 0.81 0.81 

Type0 0.85 0.80 0.82 Type0 0.71 0.83 0.76 

Type1 0.82 0.87 0.85 Type1 0.81 0.68 0.74 

Accuracy   0.84 Accuracy   0.75 

Macro avg 0.84 0.83 0.84 Macro avg 0.76 0.76 0.75 

Inception-v3 

Weighted avg 0.84 0.84 0.84 Weighted avg 0.76 0.75 0.75 

Type0 0.92 0.81 0.86 Type0 0.77 0.72 0.74 

Type1 0.81 0.92 0.88 Type1 0.76 0.80 0.78 

Accuracy   0.86 Accuracy   0.76 

Macro avg 0.87 0.87 0.86 Macro avg 0.76 0.76 0.76 

DenseNet-121 

Weighted avg 0.87 0.86 0.86 Weighted avg 0.76 0.76 0.76 

Type0 0.91 0.79 0.85 Type0 0.81 0.81 0.81 

Type1 0.79 0.91 0.85 Type1 0.83 0.83 0.83 
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Accuracy   0.85 Accuracy   0.82 

Macro avg 0.85 0.85 0.85 Macro avg 0.82 0.82 0.82 

 Channel P4 Prec Rec F1-Score Avr. Acc.    

ResNet152-v2 

Type0 0.96 0.74 0.84     

Type1 0.78 0.97 0.87     

Accuracy   0.85 0.837    

Macro avg 0.87 0.86 0.85     

Weighted avg 0.87 0.85 0.85     

ResNet50-v2 

Type0 0.92 0.76 0.83     

Type1 0.78 0.93 0.85     

Accuracy   0.84 0.810    

Macro avg 0.85 0.84 0.84     

Weighted avg 0.85 0.84 0.84     

Inception-v3 

Type0 0.93 0.73 0.82     

Type1 0.80 0.95 0.87     

Accuracy   0.85 0.823    

Macro avg 0.87 0.84 0.84     

Weighted avg 0.86 0.85 0.85     

DenseNet-121 

Type0 0.96 0.72 0.82     

Type1 0.77 0.97 0.85     

Accuracy   0.84 0.837    

Macro avg 0.86 0.84 0.84     

Weighted avg 0.87 0.84 0.84     

 
 

(a) 
 

 
 

(b) 

 

 
 

(c) 

 

Figure 9. Inception-v3 performance at channel P3: (a) 

Accuracy graph, (b) Loss graph and (c) Confusion matrix 

 

Figure 9 shows the performance graphs of Inception-v3 at 

channel P3, which is the best algorithm for this region. 

Lastly, the results of the occipital lobe can be seen in Table 

7. DenseNet-121 performed the best in both average accuracy 

and single channel results, with a rate of 0.865 for this region. 

On the other hand, the lowest accuracy rate is observed in 

ResNet50-v2. 

Table 7. Occipital region results for used algorithms 

 
 Channel O1 Prec Rec F1-Score Channel O2 Prec Rec F1-Score 

ResNet152-v2 

Type0 0.96 0.70 0.81 Type0 1.00 0.68 0.81 

Type1 0.76 0.97 0.85 Type1 0.78 1.00 0.88 

Accuracy   0.83 Accuracy   0.85 

Macro avg 0.86 0.83 0.83 Macro avg 0.89 0.84 0.84 

Weighted avg 0.86 0.83 0.83 Weighted avg 0.88 0.85 0.84 
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ResNet50-v2 

Type0 0.74 0.86 0.80 Type0 0.86 0.77 0.81 

Type1 0.83 0.69 0.76 Type1 0.82 0.89 0.85 

Accuracy   0.78 Accuracy   0.84 

Macro avg 0.79 0.78 0.78 Macro avg 0.84 0.83 0.83 

Weighted avg 0.79 0.78 0.78 Weighted avg 0.84 0.84 0.83 

Inception-v3 

Type0 0.95 0.69 0.80 Type0 0.99 0.67 0.80 

Type1 0.75 0.96 0.84 Type1 0.77 1.00 0.87 

Accuracy   0.82 Accuracy   0.84 

Macro avg 0.85 0.83 0.82 Macro avg 0.88 0.83 0.83 

Weighted avg 0.85 0.82 0.82 Weighted avg 0.88 0.84 0.84 

DenseNet-121 

Type0 0.94 0.79 0.86 Type0 0.93 0.78 0.85 

Type1 0.83 0.95 0.89 Type1 0.82 0.94 0.88 

Accuracy   0.87 Accuracy   0.86 

Macro avg 0.88 0.87 0.87 Macro avg 0.88 0.86 0.86 

Weighted avg 0.88 0.87 0.87 Weighted avg 0.88 0.86 0.86 

Avr. Acc. ResNet152-v2 ResNet50-v2 Inception-v3 DenseNet-121 

 0.840 0.810 0.830 0.865 

Figure 10 illustrates the accuracy, loss, and confusion 

matrix graphs of the best classification algorithm, DenseNet-

121, for the occipital region. 
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Figure 10. DenseNet-121 performance at channel O2: (a) 

Accuracy graph, (b) Loss graph and (c) Confusion matrix 

 

3.2 Eating behavior questionnaires regression results 

 

In this section, eight different metrics are taken into account 

under two different questionnaires, as mentioned Table 2. 

DEBQ has four metrics, which are mean results (output1), 

restrain eating (output2), emotional eating (output3) and 

external eating (output4). Likewise, TFEQ metrics are as 

follows: mean results (output5), uncontrolled eating (output6), 

cognitive restrain (output7) and emotional eating (output8). 

For each algorithms output, Median Absolute Error (MedAE), 

Mean Square Error (MSE), Mean Absolute Error (MAE) and 

Correlation Square (R2) are given in Figure 11. The 

performance of the regression models is measured by these 

metrics. Lower values of MSE, MedAE, and MAE indicate 

improved performance, while higher values of R2 indicate a 

more suitable fit of the model to the data. 
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Figure 11. Model results for each questionnaires score 

 

Table 8. Performance metrics of regression models 

 
  MSE MedAE MAE R2 

R
a

n
d
o

m
 F

o
re

st
 

Output 1 0.039 0.050 0.119 0.882 

Output 2 0.081 0.102 0.181 0.922 

Output 3 0.142 0.145 0.245 0.839 

Output 4 0.032 0.051 0.105 0.916 

Output 5 0.019 0.049 0.088 0.830 

Output 6 0.040 0.047 0.111 0.829 

Output 7 0.037 0.057 0.112 0.833 

Output 8 0.129 0.051 0.194 0.853 

 Mean 0.057 0.054 0.137 0.872 

X
G

B
o

o
st

 

Output 1 0.020 0.015 0.065 0.939 

Output 2 0.040 0.024 0.100 0.962 

Output 3 0.068 0.031 0.126 0.922 

Output 4 0.022 0.017 0.070 0.943 

Output 5 0.010 0.011 0.047 0.911 

Output 6 0.027 0.013 0.073 0.885 

Output 7 0.021 0.014 0.070 0.904 

Output 8 0.051 0.019 0.096 0.942 

 Mean 0.031 0.028 0.084 0.092 

L
ig

h
tG

B
M

 

Output 1 0.024 0.015 0.074 0.928 

Output 2 0.036 0.023 0.096 0.966 

Output 3 0.066 0.027 0.128 0.925 

Output 4 0.022 0.013 0.076 0.941 

Output 5 0.013 0.009 0.050 0.887 

Output 6 0.027 0.011 0.075 0.883 

Output 7 0.022 0.010 0.072 0.899 

Output 8 0.055 0.015 0.106 0.937 

 Mean 0.034 0.020 0.101 0.918 

V
o

ti
n

g
 R

eg
re

ss
o

r 

Output 1 0.021 0.033 0.078 0.936 

Output 2 0.040 0.060 0.114 0.962 

Output 3 0.070 0.068 0.152 0.921 

Output 4 0.021 0.031 0.077 0.946 

Output 5 0.011 0.027 0.057 0.901 

Output 6 0.026 0.029 0.079 0.887 

Output 7 0.022 0.035 0.080 0.898 

Output 8 0.057 0.046 0.121 0.935 

 Mean 0.036 0.042 0.106 0.921 

 

Table 8 appears to show the performance metrics of 

different regression models for various output variables. 

XGBoost achieved the lowest mean MSE (0.0314), MedAE 

(0.0276), and MAE (0.0848), indicating superior performance 

compared to the other models in minimizing prediction errors. 

Random Forest and LightGBM also score well. They exhibit 

slightly higher mean values for MSE, MedAE, and MAE 

compared to XGBoost. However, the Voting Regressor has the 

highest mean values for these variables among the models, 

indicating that it performs slightly worse on average than the 

others. Random Forest performs well across different outputs, 

with R2 values ranging from 0.829 to 0.922. XGBoost 

consistently exhibits strong performance across various 

outputs, as evidenced by its R-squared values, which range 

from 0.885 to 0.962. In addition, LightGBM consistently 

displays impressive performance, as indicated by its R-

squared values, which span from 0.883 to 0.966. The Voting 

Regressor, which amalgamates predictions from three models, 

exhibits strong performance, as reflected in its R-squared 

values, which range from 0.887 to 0.962. In general, XGBoost 

and LightGBM outperform Random Forest on MSE, MedAE, 

MAE, and R2 across the entire range of outputs. The choice 

between XGBoost and LightGBM for each output depends on 

the specific metric. However, overall, XGBoost and Voting 

Regressor tend to have higher R2 values. 
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Figure 12. Correlation graphs at best results of models 

 

In conclusion, both the individual models (Random Forest, 

XGBoost, LightGBM) and the ensemble model (Voting 

Regressor) showcase commendable predictive performance. 

While output 5 (mean value of TFEQ) has the lowest R2 

values, output 2 (restrain eating of DEBQ) reaches the best R2 

for each model. The best output correlation graphs are shown 

in Figure 12. 

 
 

 
 

 
 

 
 

Figure 13. Learning curves for regression models at best 

results of models 
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Figure 14. Friedman test result of algorithms 

 

When the learning curve of each model is analyzed for 

output 2 which gives the best performance, all the algorithms 

show strong performance. Random Forest is the least 

successful model, just under 0.925, whereas voting regressor 

has the best learning curve by reaching above 0.950. Figure 13 

illustrates the learning curves of each model for output 2. 

Statistical hypothesis testing with experimental results on a 

number of datasets is commonly used to prove that a particular 

algorithm is superior to the others. In the literature, there are 

several tests frequently used. In this study, the Friedman Test 

[51] was used to illustrate the performance of used algorithms 

for different outputs. Results of the test can be seen in Figure 

14. 

Looking at the test results, it can be seen that the most 

successful result was obtained with LightGBM at output 5. On 

the contrary, the random forest algorithm appears as the least 

successful algorithm at output 3. However, as a result, all the 

algorithms used give an acceptable success rate for all outputs. 

 

 

4. DISCUSSION 

 

Using CNNs, this paper attempts to examine the variations 

in how people in various weight groups react to food imagery. 

During the data preprocessing, tabular data augmentation 

techniques are applied in order to eliminate overfitting and 

imbalance, and the data is also converted to images to show 

the applicability of the SuperTML method on EEG signals. At 

this stage, it is seen that this method gives effective results and 

can be used for EEG data. The regression analysis is also 

undergone in this study in order to show the correlation 

between questionnaires and EEG records, three different 

algorithms and the ensemble model. 

In the study, each session lasts 134 seconds, and the 

sampling frequency is determined as 4096Hz. This actually 

shows that the data received from a person is at a quite 

acceptable level. In addition, the received data is subjected to 

a second process, the data augmentation technique. For this 

reason, it is thought that the sample size of the data obtained 

is sufficient. In addition, it has been observed that the number 

of participants used in numerous studies on EEG in the 

literature is similar to or less than this study. 

Since it is believed that different responses may occur in 

various brain regions, each of the 19 channels has its own data 

analysis. Examining the channel findings reveals that channels 

F4 and T4 perform better in terms of classification than other 

channels that are comparable to the study [52], channel Cz, in 

comparison, receives the lowest accuracy ratings. In addition, 

5 different brain regions are examined to seek out regional 

differences. It is seen that temporal lobe results give more 

successful average accuracy rates of around 0.90 compared to 

other regions. Similar results were observed in the study [53] 

whereas the central region seems to be the least successful part. 

In terms of CNN algorithms, the best results are obtained by 

using DenseNet-121 with a rate of 0.97. Looking at the 

differences in the right and left hemispheres of the brain, it is 

seen that the classification result is higher on the right side. 

This can be shown as a sign of increased activation in this 

region, as a matter of fact, similar results were obtained in 

another study. In addition, in the same study, it was 

emphasized that the differences in the frontal region were 

more pronounced, which is parallel to our study [54]. 

In terms of regression analysis, it can be said that the used 

models show excellent performance. It is evident that EEG 

data and questionnaires have a strong correlation. When the 

subsection of questionnaires is considered, the restrain eating 

section of DEBQ has the best correlation among the others, 

while the mean result of TFEQ is the least successful section. 

Additionally, classification results show that brain signals 

fluctuate when a person's weight status varies. This indicates 

that the human brain is significantly impacted by body weight, 

as given in the researches [5, 55]. Being overweight can have 

negative psychological impacts in addition to physical ones 

because it alters brain messages. On the other side, people 

might be more prone to putting on too much weight as a result 

of these variations in brain impulses. 

Considering the limitations of the study, the first thing that 

can be said that there is no strict control over whether 

participants received food on the day of the trial. In addition, 

there is no information about any emotional state changes 

experienced by the participants that day, which could change 

the data structure. Another issue is that data is collected only 

from male individuals, which may be one of the limitations of 

the study because women's and men's reactions to stimuli may 

be different. Additionally, the lack of a regression study 

between eating behavior questionnaires and EEG prevented us 

from performing a comparative analysis. However, presenting 

this first also shows the novelty of our work. 

 

 

5. CONCLUSIONS 

 

In this research, participants from diverse weight categories 

are exposed to visual food stimuli, during which EEG 

recordings are conducted. Additionally, two distinct eating 
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behavior questionnaires are administered to gather relevant 

data. Firstly, CNN based classification is applied using EEG 

signals of overweight/obese and normal individuals. Then, 

regression analysis is done using EEG signals and 

questionnaire results. At the classification stage, by using 

tabular data augmentation, overfitting and imbalance 

problems were eliminated. Additionally, the SuperTML 

method was used to embed the features into images, which has 

not been used for EEG data before, and it’s observed that this 

method can be used for EEG signals. Even in the face of the 

limited quantities, poor qualities, and fluctuating qualities of 

medical data, training procedures with CNNs were made 

viable by employing transfer learning approaches by 

converting the tabular data set into new image representations. 

The trials show that the suggested method performed better 

than results from previous work in the literature in most cases. 

At the regression stage, the SMOGN data augmentation 

technique, which is more suitable for regression analysis, was 

applied to eliminate overfitting and imbalance problems. Then, 

different regression models were applied to see the correlation 

between questionnaires and EEG data. As a result, it is 

observed that there is a strong correlation between EEG data 

and questionnaires. 

To conclude, overweight/obese and normal participants are 

shown to have different brain connectivity patterns. These 

distinct brain connections can be used to inform the 

development of neuromodulation therapies to enhance 

behaviors associated with obesity. 
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