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Hyperspectral imaging represents an advanced technology that offers an extensive array of 

spectral data concerning various materials. Each pixel within a hyperspectral image 

encompasses reflectance or transmittance values spanning a spectrum of wavelengths, 

thereby constructing a spectral signature or spectral curve. Despite the high spectral 

resolution inherent in hyperspectral images, their spatial resolution frequently remains 

limited, resulting in a mixture of spectral information within the spectral signatures. This 

situation presents a significant obstacle to achieving precise hyperspectral image 

classification, given that both spectral and spatial information play pivotal roles in this 

endeavor. In the present investigation, a novel spectral-spatial preprocessing strategy is 

introduced, employing a multiscale filtering technique based on spectral similarity to 

enhance the accuracy of hyperspectral image classification. The methodology entails 

performing a neighborhood operation for each target pixel vector, predicated on their 

spectral resemblance. This operation assigns higher priority to more similar pixels within 

the neighborhood window to establish the new spectral curve of the pixel of interest. The 

resultant spectral curves effectively amalgamate both spatial and spectral information and 

are subsequently utilized during the classification process instead of the original spectral 

curves. The study incorporates established spectral similarity metrics alongside an 

innovative metric grounded in Fréchet distance to calculate spectral similarities. The 

outcomes derived from these metrics are juxtaposed to assess their efficacy in ameliorating 

the accuracy of hyperspectral image classification. Moreover, the classification performance 

is evaluated utilizing kernel extreme learning machine and support vector classifiers across 

four distinct hyperspectral image datasets. The findings underscore that, particularly when 

confronted with constraints related to small sample sizes, the proposed spectral-spatial 

preprocessing technique markedly enhances the classification accuracy of hyperspectral 

images. 
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1. INTRODUCTION

Hyperspectral imaging (HSI) is a powerful technique that 

captures reflection values across a broad electromagnetic 

spectrum for each pixel in an image. This spectral information 

provides valuable data for tasks such as image classification 

and target recognition. HSI plays a crucial role in various 

remote sensing applications, including environmental 

mapping, product analysis, and the identification and 

estimation of plant and mineral abundance [1]. 

In these applications, the primary objective is to assign 

specific classes to each pixel in a hyperspectral view. 

Traditionally, this has been achieved by treating the spectral 

measurements of each pixel as individual signals and applying 

pattern recognition techniques. For the classification of 

hyperspectral data, several supervised classification 

techniques have been developed based on techniques based 

solely on the spectral values of each pixel. These include 

Robust Sparse Representation based classification [2], Semi-

supervised graph-based classification [3], Laplacian Eigen 

map pixel distribution flow-based classification [4], Principal 

Component Analysis for hyperspectral classification [5], 

FPCA-based kernel extreme learning machine for 

hyperspectral classification [6], Extended random walker-

based classification [7], Genetic algorithm tuned fuzzy support 

vector machine for hyperspectral classification [8], Relevance 

Vector machines for hyperspectral classification [9]. 

However, in addition to spectral information, spatial content 

information in images is highly important for accurate 

classification. The use of spatial information, as well as 

spectral information for hyperspectral image classification, 

has become a primary research focus in recent years. 2DPCA-

based spatial-spectral denoising [10], Discriminant sparsity 

preserving embedding [11], Exploiting Spectral-Spatial 

Information of Superpixel via Multiple Kernels [12], 

Attribute-profile based feature space discriminant analysis 

[13], Coupled compressed sensing inspired sparse spatial-

spectral LSSVM [14], ensemble classification via joint sparse 
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representation [15], edge-preserving filtering [16], spectral-

spatial adaptive total variation model [17], spatial-spectral 

Label Propagation [18], spatial neighborhood information and 

classifier combination [19]. 

The concept of Multiscale Spectral-Spatial Pre-processing 

based on neighborhood information involves leveraging 

information from varying neighborhood sizes in both spectral 

and spatial domains to enhance the processing and analysis of 

hyperspectral imagery. This approach aims to extract features 

that capture the multiscale characteristics of the data, thereby 

improving classification accuracy and performance. 

Recently, many multiscale spatial-spectral preprocessing 

methods have been proposed. For example, Li et al. [20] 

proposed Multiscale Spatial Information Fusion, Liu et al. [21] 

proposed Random Multiscale Representation, 

Poorahangaryan and Ghassemian [22] proposed a multiscale 

modified minimum spanning forest, and A Hybrid Multi-scale 

Spatial Filtering and Minimum Spanning Forest [23] methods 

for spatial-spectral hyperspectral image classification. Yu et al. 

[24] proposed Multiscale Superpixel-Level Subspace-Based 

Support Vector Machines for hyperspectral image 

classification. 

In this paper, we propose a novel multiscale spectral-spatial 

preprocessing algorithm that represents each pixel vector as a 

weighted combination of neighboring pixel vectors, taking 

into consideration their similarities. The rationale behind this 

approach is rooted in the observation that neighboring pixel 

vectors in a hyperspectral image exhibit similar spectral 

properties owing to the piecewise-continuous nature of the 

image. This algorithm aims to enhance the spectral-spatial 

characteristics of hyperspectral images by leveraging the 

inherent relationships between neighboring pixels. In addition 

to conventional spectral similarity measures, we propose the 

Fréchet distance as a spectral similarity measure. The focus is 

on the use of the Fréchet distance as a spectral similarity 

measure, which is a well-known metric for measuring the 

similarity of curves. 

The subsequent sections of this paper are organized as 

follows: Section 2 offers a succinct summary of conventional 

spectral similarity metrics, the Fréchet distance, and spatial 

neighborhood details. Section 3 offers a brief validation of the 

Fréchet distance as a spectral similarity metric. Section 4 

elaborates on the proposed methodology. Section 5 delineates 

the experimental setup and datasets. Section 6 showcases and 

deliberates on the experimental findings derived from four 

unique hyperspectral images. Finally, Section 7 encapsulates 

the conclusions drawn from this research endeavor.  

 

 

2. RELATED WORKS 

 

The spectral information provides important features for 

identifying, detecting, and classifying material. Many spectral 

information similarity measures, such as Spectral Angle 

Mapper (SAM) [25] and Spectral Information Divergence 

(SID) [26], which are signature vector-based similarity 

measures, have been proposed for this purpose, and the 

Spectral Correlation Measure (SCM) [27] is a spectral 

correlation-based similarity measure. The SAM calculates the 

angle between two spectra, resulting in 0 indicating high 

similarity and 1 indicating poor similarity. The Spectral Angle 

between the spectral signature and the spectral band can be 

calculated as Eq. (1). 
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The SID calculates the distance between p and q, and the 

probability distributions of spectral signatures 𝑠𝑎  and 𝑠𝑏 , 

which have 𝑛 spectral bands can be calculated via Eq. (2). 
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The SCM is calculated as the correlation coefficient 

between spectral signatures and spectral bands can be 

described by Eq. (3). 
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(3) 

 

The Fréchet distance is a significant similarity measure used 

in comparing two curves, A and B, by determining the 

minimum leash length required for a man on one curve to walk 

a dog on the other curve continuously from the starting to the 

ending points without backtracking [28-30]. This metric 

captures the minimal cost of a continuous deformation of one 

curve into another and defines the cost of deformation as the 

maximal distance between two related points [31]. The Fréchet 

distance is a well-studied and popular measure of similarity 

between curves, with various studies focusing on different 

aspects and extensions of this concept [32]. 

Alt and Godau [33] studied the Fréchet distance between 

polygonal curves. The discrete Fréchet distance was 

introduced by Eiter and Mannila [29] in 1994 as an 

approximate solution to the Fréchet distance, specifically 

based on polygonal curves where only the nodes are 

considered. According to Li et al. [34], spectral signatures can 

be treated as spectral curves. This is our main idea of using the 

Fréchet distance as a similarity measure of spectral signatures. 

However, Neighborhood operations in hyperspectral image 

analysis are essential for capturing both spectral and spatial 

information to enhance the understanding and classification of 

hyperspectral data. Neighborhood operations are widely used 

in image processing. Simply, an operator takes the values of 

the neighborhood around the pixel performs some operations 

with them, and then writes the result back on the pixel. The 

general procedure is described in Figure 1. 

Many neighborhood operators are implemented for image 

processing. For example, average, count, diversity, 

interspersion, maximum, median, minimum, mode, quartile, 

range, standard deviation, sum, variance, etc. The impact of 

spatial resolution on neighborhood operations is crucial as it 

directly affects the level of detail and accuracy in spatial data 

analysis. Higher spatial resolution enables more precise 
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delineation of features within a neighborhood, facilitating 

better identification of patterns and relationships. However, 

finer spatial resolutions often result in larger datasets, leading 

to increased computational complexity and processing time 

[35]. Conversely, lower spatial resolutions may result in 

information loss and reduced ability to capture intricate spatial 

variations within neighborhoods [36]. 

 

 
 

Figure 1. The general procedure of neighborhood operators 

 

Spectral similarity measures present a method to mitigate 

the constraints imposed by spatial resolution in neighborhood 

operations. By concentrating on the spectral attributes of data 

rather than solely relying on spatial information, spectral 

similarity measures aid in identifying similarities and 

differences between spatial entities based on their spectral 

signatures. This approach allows for the comparison of spatial 

features at a spectral level, enabling the detection of patterns 

and relationships that may not be discernible from spatial data 

alone. 

To address this limitation, we propose a similarity-based 

weighted neighborhood algorithm. This algorithm integrates 

spectral similarity measures into the neighborhood analysis, 

assigning weights to neighboring pixels based on their spectral 

similarity to the target pixel.  

This similarity-based weighted neighborhood algorithm 

effectively enhances the analysis by emphasizing spectrally 

similar pixels, thereby improving the accuracy and reliability 

of neighborhood operations without solely depending on 

spatial resolution. 

The influence of spatial resolution on neighborhood 

operations is multifaceted, impacting the level of detail, 

computational demands, and information loss in spatial 

analyses. Spectral similarity measures offer a complementary 

strategy to address the limitations of spatial resolution by 

focusing on spectral characteristics. By integrating a 

similarity-based weighted neighborhood algorithm, we can 

further enhance the analysis and interpretation of spatial data 

in neighborhood studies, providing a more accurate and 

detailed understanding of spatial patterns and relationships. 

For some improvement, the observations can be weighted 

according to their distances to the current target pixel. 

Therefore, nonlinear functions can be applied as weighting 

functions for neighborhood operators. The most classical 

method is the Gaussian filter. The Gaussian filter computes a 

weighted average of the neighborhood surrounding each pixel, 

with the central pixel's value exerting a greater influence on 

the average. The main idea of this paper is to use spectral 

similarities, especially the Fréchet distance, as a weighting for 

the weighted average neighborhood operator. 

 

 

3. FRÉCHET DISTANCE AS SPECTRAL SIMILARITY 

METRIC  

 

Although spectral similarity measures are effective in 

calculating the similarity or dissimilarity between two spectral 

signatures, these paired discrimination procedures alone are 

insufficient for distinguishing among multiple spectral classes. 

Furthermore, due to the differing units of measurement 

employed by various similarity measures, it is challenging to 

assess their performance without comparable statistics. To 

effectively discriminate among a set of spectral classes and to 

determine the relative performance of the aforementioned 

measures, three statistical algorithms were utilized: Relative 

Spectral Discriminatory Probability (RSDPB), Relative 

Spectral Discriminatory Power (RSDPW), and Relative 

Spectral Discriminatory Entropy (RSDE) [37, 38]. 

 

3.1 Relative spectral discriminatory probability (RSDPB) 

 

The Relative Spectral Discriminatory Probability 

(RSDPB) quantifies the relative capability of all spectra within 

a set to be distinguished from others. Generally, a higher 

probability indicates a greater ability of a set of spectra to be 

discriminated from others. Let {𝑠𝑘}𝑘=1
𝐾  represent K spectral 

signatures in the set Δ, which serves as a database, and let t be 

any specific target spectral signature to be identified using Δ 

[37]. The RSDPB of all 𝑠𝑘 in Δ relative to t is defined as Eq. 

(4). 
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𝑚(𝑡, 𝑠𝑘) is any defined spectral similarity measure. 

In our study, t can be either pure spectra or a mixture of two 

or more crop species, where their reflectances are combined in 

a linear proportion. The resulting probability vector 𝑃𝑡,𝛥
𝑚 =

(𝑃𝑡,𝛥
𝑚 (1), 𝑃𝑡,𝛥

𝑚 (2), … , 𝑃𝑡,𝛥
𝑚 (𝑘))

𝑇

 represents the RSDPB of Δ for 

t, or the spectral discriminatory probability vector of Δ relative 

to t. Using Eq. (4), we can identify t within Δ by selecting the 

spectral signature with the smallest relative spectral 

discriminability probability. In the event of a tie, either 

spectral signature may be used to identify t. 

RSDPB effectively normalizes the distance measure, 

allowing us to determine that the target matches the spectral 

signature with the smallest RSDPB value. Table 1 shows 

RSDPB values for these metrics. 

 

Table 1. RSDPB values for the Indian pines dataset 

 
Class Name Fréchet SAM SID SCM 

CLS01 0.056 0.060 0.064 0.085 

CLS02 0.079 0.087 0.065 0.007 

CLS03 0.075 0.087 0.065 0.005 

CLS04 0.079 0.082 0.065 0.022 

CLS05 0.024 0.021 0.057 0.110 

CLS06 0.050 0.042 0.062 0.102 

CLS07 0.060 0.066 0.064 0.075 

CLS08 0.052 0.062 0.064 0.081 

CLS09 0.069 0.049 0.063 0.099 

CLS10 0.076 0.089 0.065 0.013 

CLS11 0.080 0.089 0.065 0.013 

CLS12 0.072 0.088 0.065 0.008 

CLS13 0.070 0.038 0.062 0.105 

CLS14 0.024 0.011 0.047 0.111 

CLS15 0.051 0.033 0.061 0.106 

CLS16 0.084 0.096 0.065 0.061 
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3.2 Relative spectral discriminatory entropy (RSDE) 

 

Using a selective set of spectral signatures, 𝛥 = {𝑠𝑘}𝑘=1
𝐾 , 

we can further define the Relative Spectral Discriminatory 

Entropy (RSDE) measure of a spectral signature t for the set 

Δ, denoted as 𝐻𝑅𝑆𝐷𝐸(𝑡; 𝛥). The RSDE is given by Eq. (5). 
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Eq. (5) provides an uncertainty measure for identifying t 

using 𝛥 = {𝑠𝑘}𝑘=1
𝐾 . This measure allows us to analyze the 

uncertainty regarding the match between t and the reference 

spectra. A larger entropy value indicates a higher degree of 

uncertainty concerning t. Conversely, the lower the entropy 

value, the higher the probability that the target will be correctly 

matched [37]. Table 2 shows RSDE values for these metrics. 

 

Table 2. RSDE values for the Indian Pines dataset 

 
 Fréchet SAM SID SCM 

RSDE 3.9300 3.8503 3.9961 3.8503 

 

 

3.3 Relative spectral discriminatory power (RSDPW) 

 

Relative Spectral Discriminatory Power (RSDPW) 

evaluates how effectively one spectral vector can be 

distinguished from another relative to a reference spectral 

vector [37, 38]. Given 𝑚(. , . ) as a spectral measure, d as the 

reference spectral signature, 𝑠𝑖  and 𝑠𝑗  as the spectral 

signatures or pair of pixel vectors, the RSDPW 𝑚(. , . )  is 

represented by Eq. (6). 
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Eq. (6) defines 𝛺(𝑠𝑖 , 𝑠𝑗; 𝑑), which provides a quantitative 

index of the spectral discrimination capability of a specific 

hyperspectral measure 𝑚(. , . )  between two spectral 

signatures and 𝑠𝑖  and 𝑠𝑗  relative to d. A higher value of 

𝛺(𝑠𝑖 , 𝑠𝑗; 𝑑)  indicates a greater discriminatory power of 

𝑚(. , . ). Additionally, 𝛺(𝑠𝑖 , 𝑠𝑗; 𝑑) is symmetric and bounded 

below by one, i.e., 𝛺(𝑠𝑖 , 𝑠𝑗; 𝑑) ≥ 1 with equality if and only if 

𝑠𝑖 = 𝑠𝑗. RSDPW results of Fréchet Distance, SAM, SID, and 

SCM for the Indian pines dataset are given in Tables 3-6. 

respectively. 

 

Table 3. Fréchet distance RSDPW results for the Indian pines dataset 

 
Classes CLS01 CLS02 CLS03 CLS04 CLS05 CLS06 CLS07 CLS08 CLS09 CLS10 CLS11 CLS12 CLS13 CLS14 CLS15 CLS16 

CLS01 - 1.71 1.80 1.70 1.63 1.48 1.44 3.31 1.42 1.92 1.82 1.84 1.42 2.12 1.26 1.17 

CLS02 1.71 - 9.62 4.40 2.75 1.14 1.75 1.26 1.29 6.16 5.88 6.85 1.13 3.19 1.27 1.82 

CLS03 1.80 9.62 - 3.52 2.55 1.05 1.77 1.41 1.39 8.48 7.14 9.69 1.21 2.99 1.18 1.64 

CLS04 1.70 4.40 3.52 - 2.71 1.17 1.50 1.24 1.26 2.59 2.54 3.06 1.11 3.15 1.25 2.14 

CLS05 1.63 2.75 2.55 2.71 - 1.68 1.59 1.36 1.33 1.20 1.20 1.24 1.33 1.37 1.60 1.07 

CLS06 1.48 1.14 1.05 1.17 1.68 - 1.89 1.58 3.12 1.42 1.39 1.46 2.89 1.18 3.51 1.11 

CLS07 1.44 1.75 1.77 1.50 1.59 1.89 - 1.85 1.80 2.56 2.30 2.23 1.68 2.03 1.34 1.45 

CLS08 3.31 1.26 1.41 1.24 1.36 1.58 1.85 - 1.54 2.10 2.05 2.10 1.52 2.09 1.28 1.26 

CLS09 1.42 1.29 1.39 1.26 1.33 3.12 1.80 1.54 - 1.50 1.46 1.55 3.19 2.08 2.60 1.05 

CLS10 1.92 6.16 8.48 2.59 1.20 1.42 2.56 2.10 1.50 - 8.93 7.57 1.18 3.07 1.22 1.59 

CLS11 1.82 5.88 7.14 2.54 1.20 1.39 2.30 2.05 1.46 8.93 - 7.64 1.10 3.23 1.29 1.68 

CLS12 1.84 6.85 9.69 3.06 1.24 1.46 2.23 2.10 1.55 7.57 7.64 - 1.28 2.86 1.12 1.72 

CLS13 1.42 1.13 1.21 1.11 1.33 2.89 1.68 1.52 3.19 1.18 1.10 1.28 - 2.11 2.48 1.05 

CLS14 2.12 3.19 2.99 3.15 1.37 1.18 2.03 2.09 2.08 3.07 3.23 2.86 2.11 - 1.66 1.03 

CLS15 1.26 1.27 1.18 1.25 1.60 3.51 1.34 1.28 2.60 1.22 1.29 1.12 2.48 1.66 - 1.09 

CLS16 1.17 1.82 1.64 2.14 1.07 1.11 1.45 1.26 1.05 1.59 1.68 1.72 1.05 1.03 1.09 - 

 

Table 4. SAM RSDPW results for the Indian pines dataset 

 
Classes CLS01 CLS02 CLS03 CLS04 CLS05 CLS06 CLS07 CLS08 CLS09 CLS10 CLS11 CLS12 CLS13 CLS14 CLS15 CLS16 

CLS01 - 2.66 2.61 2.87 1.87 1.72 4.24 8.68 2.30 2.53 2.51 2.59 1.30 5.08 1.03 1.99 

CLS02 2.66 - 24.18 10.75 3.17 1.20 2.51 2.10 1.14 18.38 20.06 21.84 1.44 7.63 1.79 3.69 

CLS03 2.61 24.18 - 10.78 3.16 1.20 2.44 2.06 1.15 18.90 22.92 33.24 1.43 7.60 1.78 3.55 

CLS04 2.87 10.75 10.78 - 2.92 1.09 2.73 2.39 1.27 7.96 8.40 9.94 1.31 7.16 1.64 3.49 

CLS05 1.87 3.17 3.16 2.92 - 1.98 1.44 1.48 1.71 1.28 1.28 1.29 1.97 1.66 2.46 1.23 

CLS06 1.72 1.20 1.20 1.09 1.98 - 2.32 2.50 4.39 1.74 1.73 1.74 3.24 3.38 3.01 1.54 

CLS07 4.24 2.51 2.44 2.73 1.44 2.32 - 6.12 2.02 3.22 3.20 3.25 1.10 5.64 1.12 2.31 

CLS08 8.68 2.10 2.06 2.39 1.48 2.50 6.12 - 2.30 2.83 2.80 2.88 1.22 5.31 1.01 2.09 

CLS09 2.30 1.14 1.15 1.27 1.71 4.39 2.02 2.30 - 2.03 2.02 2.05 2.36 4.04 1.76 1.71 

CLS10 2.53 18.38 18.90 7.96 1.28 1.74 3.22 2.83 2.03 - 28.25 20.24 1.48 7.79 1.83 3.56 

CLS11 2.51 20.06 22.92 8.40 1.28 1.73 3.20 2.80 2.02 28.25 - 22.55 1.49 7.79 1.84 3.51 

CLS12 2.59 21.84 33.24 9.94 1.29 1.74 3.25 2.88 2.05 20.24 22.55 - 1.45 7.66 1.79 3.62 

CLS13 1.30 1.44 1.43 1.31 1.97 3.24 1.10 1.22 2.36 1.48 1.49 1.45 - 3.02 3.22 1.48 

CLS14 5.08 7.63 7.60 7.16 1.66 3.38 5.64 5.31 4.04 7.79 7.79 7.66 3.02 - 1.16 1.02 

CLS15 1.03 1.79 1.78 1.64 2.46 3.01 1.12 1.01 1.76 1.83 1.84 1.79 3.22 1.16 - 1.38 

CLS16 1.99 3.69 3.55 3.49 1.23 1.54 2.31 2.09 1.71 3.56 3.51 3.62 1.48 1.02 1.38 - 
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Table 5. SID RSDPW results for the Indian pines dataset 

 
Classes CLS01 CLS02 CLS03 CLS04 CLS05 CLS06 CLS07 CLS08 CLS09 CLS10 CLS11 CLS12 CLS13 CLS14 CLS15 CLS16 

CLS01 - 1.06 1.07 1.06 1.09 1.03 1.46 3.17 1.05 1.07 1.06 1.08 1.02 1.36 1.03 1.03 

CLS02 1.06 - 3.44 2.00 1.13 1.03 1.07 1.06 1.01 1.87 4.61 2.02 1.04 1.37 1.06 1.14 

CLS03 1.07 3.44 - 1.51 1.12 1.03 1.09 1.08 1.01 3.57 5.71 5.54 1.04 1.37 1.06 1.13 

CLS04 1.06 2.00 1.51 - 1.13 1.03 1.06 1.05 1.01 1.25 1.49 1.31 1.04 1.37 1.06 1.10 

CLS05 1.09 1.13 1.12 1.13 - 1.21 1.02 1.03 1.10 1.01 1.01 1.01 1.10 1.23 1.25 1.01 

CLS06 1.03 1.03 1.03 1.03 1.21 - 1.06 1.06 1.80 1.02 1.01 1.02 1.23 1.31 1.40 1.01 

CLS07 1.46 1.07 1.09 1.06 1.02 1.06 - 2.04 1.05 1.12 1.09 1.12 1.02 1.36 1.03 1.05 

CLS08 3.17 1.06 1.08 1.05 1.03 1.06 2.04 - 1.05 1.09 1.07 1.10 1.02 1.36 1.03 1.04 

CLS09 1.05 1.01 1.01 1.01 1.10 1.80 1.05 1.05 - 1.02 1.02 1.02 1.15 1.33 1.15 1.02 

CLS10 1.07 1.87 3.57 1.25 1.01 1.02 1.12 1.09 1.02 - 2.77 6.97 1.04 1.37 1.06 1.14 

CLS11 1.06 4.61 5.71 1.49 1.01 1.01 1.09 1.07 1.02 2.77 - 2.80 1.04 1.37 1.06 1.13 

CLS12 1.08 2.02 5.54 1.31 1.01 1.02 1.12 1.10 1.02 6.97 2.80 - 1.04 1.37 1.06 1.15 

CLS13 1.02 1.04 1.04 1.04 1.10 1.23 1.02 1.02 1.15 1.04 1.04 1.04 - 1.29 1.75 1.01 

CLS14 1.36 1.37 1.37 1.37 1.23 1.31 1.36 1.36 1.33 1.37 1.37 1.37 1.29 - 1.03 1.00 

CLS15 1.03 1.06 1.06 1.06 1.25 1.40 1.03 1.03 1.15 1.06 1.06 1.06 1.75 1.03 - 1.01 

CLS16 1.03 1.14 1.13 1.10 1.01 1.01 1.05 1.04 1.02 1.14 1.13 1.15 1.01 1.00 1.01 - 

 

Table 6. SCM RSDPW results for the Indian pines dataset 

 
Classes CLS01 CLS02 CLS03 CLS04 CLS05 CLS06 CLS07 CLS08 CLS09 CLS10 CLS11 CLS12 CLS13 CLS14 CLS15 CLS16 

CLS01 - 1.06 1.07 1.06 1.09 1.03 1.46 3.17 1.05 1.07 1.06 1.08 1.02 1.36 1.03 1.03 

CLS02 1.06 - 3.44 2.00 1.13 1.03 1.07 1.06 1.01 1.87 4.61 2.02 1.04 1.37 1.06 1.14 

CLS03 1.07 3.44 - 1.51 1.12 1.03 1.09 1.08 1.01 3.57 5.71 5.54 1.04 1.37 1.06 1.13 

CLS04 1.06 2.00 1.51 - 1.13 1.03 1.06 1.05 1.01 1.25 1.49 1.31 1.04 1.37 1.06 1.10 

CLS05 1.09 1.13 1.12 1.13 - 1.21 1.02 1.03 1.10 1.01 1.01 1.01 1.10 1.23 1.25 1.01 

CLS06 1.03 1.03 1.03 1.03 1.21 - 1.06 1.06 1.80 1.02 1.01 1.02 1.23 1.31 1.40 1.01 

CLS07 1.46 1.07 1.09 1.06 1.02 1.06 - 2.04 1.05 1.12 1.09 1.12 1.02 1.36 1.03 1.05 

CLS08 3.17 1.06 1.08 1.05 1.03 1.06 2.04 - 1.05 1.09 1.07 1.10 1.02 1.36 1.03 1.04 

CLS09 1.05 1.01 1.01 1.01 1.10 1.80 1.05 1.05 - 1.02 1.02 1.02 1.15 1.33 1.15 1.02 

CLS10 1.07 1.87 3.57 1.25 1.01 1.02 1.12 1.09 1.02 - 2.77 6.97 1.04 1.37 1.06 1.14 

CLS11 1.06 4.61 5.71 1.49 1.01 1.01 1.09 1.07 1.02 2.77 - 2.80 1.04 1.37 1.06 1.13 

CLS12 1.08 2.02 5.54 1.31 1.01 1.02 1.12 1.10 1.02 6.97 2.80 - 1.04 1.37 1.06 1.15 

CLS13 1.02 1.04 1.04 1.04 1.10 1.23 1.02 1.02 1.15 1.04 1.04 1.04 - 1.29 1.75 1.01 

CLS14 1.36 1.37 1.37 1.37 1.23 1.31 1.36 1.36 1.33 1.37 1.37 1.37 1.29 - 1.03 1.00 

CLS15 1.03 1.06 1.06 1.06 1.25 1.40 1.03 1.03 1.15 1.06 1.06 1.06 1.75 1.03 - 1.01 

CLS16 1.03 1.14 1.13 1.10 1.01 1.01 1.05 1.04 1.02 1.14 1.13 1.15 1.01 1.00 1.01 - 

 

Spectral similarity methods running times and comparison 

to fastest method are given in Table 7 and Table 8, 

respectively. 

 

Table 7. Running time (second) 

 
 Fréchet SAM SID SCM 

PaviaU 100.71 19.047 52.218 25.143 

Salinas 56.859 15.568 38.322 21.591 

KSC 106.8 28.27 63.572 38.017 

Indian Pines 11.744 2.6048 7.4854 3.6197 

 

Table 8. Running time comparison 

 
 Fréchet SAM SID SCM 

PaviaU 5.3x 1.0x 2.7x 1.3x 

Salinas 3.7x 1.0x 2.5x 1.4x 

KSC 3.8x 1.0x 2.2x 1.3x 

Indian Pines 4.5x 1.0x 2.9x 1.4x 

 

 

4. MULTISCALE SPECTRAL-SPATIAL PRE-

PROCESSING USING FRÉCHET DISTANCE-BASED 

NEIGHBORHOOD INFORMATION  

 

In this section, we introduce a novel multiscale spectral-

spatial preprocessing technique founded upon a weighted 

average neighborhood operator incorporating spectral 

similarity-based weighting. The algorithm is predicated on the 

premise that individual pixel vectors within a hyperspectral 

image exhibit spectral attributes akin to those of neighboring 

pixel vectors, given the prevalent continuity observed in 

hyperspectral imagery. For this reason, each pixel vector in a 

hyperspectral image will likely have similar characteristics to 

the weighted average of neighboring pixel vectors. To improve 

the characteristic similarity, the weighting function is highly 

important. Due to their high spectral dimensionality, spectral 

signatures can be represented as curves. The Fréchet distance 

is one of the well-known similarity measures of curves such as 

L-Curve, and Dynamic Time Warping (DTW). The Fréchet 

distance is a widely recognized curve similarity measurement 

method known for its effectiveness in assessing the similarity 

between two curves [39-41]. This metric has been extensively 

studied and utilized in various fields, showcasing its versatility 

and applicability in curve analysis. The Fréchet distance is 

particularly favored for its robustness and ability to accurately 

capture the resemblance between complex curves. 

The L-curve method has gained significant popularity as a 

prevalent technique for choosing the regularization parameter 

in various applications [42, 43]. This method, known for its 

efficiency and reliability, utilizes curve characteristics to 

determine optimal parameters, contributing to enhanced 

model performance and accuracy. 

In addition, Dynamic Time Warping (DTW) is widely 

adopted as a similarity measure for time series data, offering a 
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robust approach to aligning and comparing temporal 

sequences [44, 45]. DTW has proven to be instrumental in 

various fields, including computer science and signal 

processing, where precise alignment and comparison of time-

dependent data are crucial. 

As a result of this information, the Fréchet distance can be 

used as the weight of neighboring pixels in the weighted 

average operation. The mechanics of the weighted average 

operator are given in Figure 2. 

 

 
 

Figure 2. The mechanics of the weighted average operator 

 

The flowchart illustrating the proposed methodology for the 

hyperspectral image classification can be observed in Figure 

3. 

 

 
 

Figure 3. Flowchart of the proposed methodology 

 

The proposed method involves the following steps: 

1. Determining the Scale Size of the Window: The process 

begins by defining the size of the neighborhood window, 

which determines the spatial extent considered for analysis. 

This step involves selecting an appropriate scale to capture 

relevant spatial information effectively. 

2. Selecting the Pixel Vector of the Interest-Centered 

Neighborhood Window: Once the window size is determined, 

the pixel vector of interest is selected within this neighborhood 

window. This pixel vector serves as the focal point for 

subsequent calculations. 

3. Calculating Distances and Obtaining Weight Values: 

Distances between the pixel vector of interest and its 

neighboring pixel vectors are calculated using the Fréchet 

distance. These distances are used to derive weight values for 

each neighboring pixel vector, indicating their influence on the 

focal pixel. 

4. Applying a Weighted Average Operator: A weighted 

average operator is then applied to calculate the new value of 

the pixel vector of interest. This operator considers the 

calculated weight values to adjust the contribution of 

neighboring pixels to the final value. 

5. Multiscale Processing: Apply steps 2-4 iteratively for all 

scales. 

6. Returning the Resulting Image to the Classifier: After 

applying steps for all scales, the resulting image, modified 

based on the weighted averaging process, is returned to the 

classifier. This modified image is used to create a 

classification map, enabling the classification of different 

regions within the hyperspectral image based on the processed 

pixel values. 

In the first step, the neighborhood window size is defined, 

and the image is spatially padded. In the second step, the pixel 

vector of interest is selected and the neighborhood window is 

centrally located. In the third step, distances are calculated 

using the Fréchet distance, and the weight values of each 

neighboring pixel vector are obtained via Eq. (7). 

 
1 ( , )y SSw f x y= −  (7) 

 

where, x is the current pixel vector of interest, y is one of the 

neighboring pixel vectors, and 𝑓𝑆𝑆  is the spectral similarity 

function used to calculate the weight of pixel y , 𝑤𝑦 ∈ [0,1]. 

Finally, the weighted average operation is applied via Eq. 

(8). 
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where, I is the neighborhood window which contains n pixel 

vectors, 𝑤𝑖  is the weight of the ith pixel vector and g is the 

weighted average vector of the pixel vector of interest. 

These steps are repeated by a neighborhood window for 

each pixel vector in the image until all scale sizes are applied. 

According to the above descriptions, more similar neighboring 

pixel vectors have greater weights because of their proximity 

to zero. In the realm of hyperspectral image classification, the 

method can be described in Figure 4. 

 

 
 

Figure 4. Pseudocodes of the proposed method 
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5. DATASETS AND EXPERIMENTAL DESIGN  
 

To evaluate the effectiveness of the proposed methodology, 

a series of experiments were conducted using four well-known 

hyperspectral datasets commonly employed in hyperspectral 

image analysis. These datasets are recognized as standard 

benchmarks for assessing the performance of various 

classification algorithms in the field. By utilizing these 

datasets in the experimental validation process, a thorough 

evaluation of the proposed methodology's performance was 

ensured, allowing for its applicability across a range of 

hyperspectral imaging scenarios. The rigorous assessment 

carried out on these established datasets offers valuable 

insights into the method's ability to provide precise and 

dependable hyperspectral image classification results, thereby 

making a significant contribution to the advancement of 

research in this specialized area of study. 
 

5.1 Indian pines dataset 
 

The imagery capturing the Indian Pines region was obtained 

through the utilization of the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) sensor, which is positioned 

at the Indian Pines test site situated in North-Western Indiana. 

This imagery showcases a spatial resolution of 145×145 pixels 

and encompasses a spectral range of 224 bands spanning from 

0.4 to 2.5 micrometers. The ground truth information 

delineates 16 distinct classes, as detailed in Table 9. Within the 

dataset, which comprises 10249 samples excluding the 

background, 24 spectral bands were excluded due to water 

absorption effects, resulting in a final count of 200 bands [46]. 
 

Table 9. Groundtruth classes and per-class samples for the 

Indian Pines dataset 
 

Class Name Class Code Sample Count 

Alfalfa CLS01 46 

Corn-no-till CLS02 1428 

Corn-min-till CLS03 830 

Corn CLS04 237 

Grass-pasture CLS05 483 

Grass-trees CLS06 730 

Grass-pasture-mowed CLS07 28 

Hay-windrowed CLS08 478 

Oats CLS09 20 

Soybean-no-till CLS10 972 

Soybean-min-till CLS11 2455 

Soybean-clean CLS12 593 

Wheat CLS13 205 

Woods CLS14 1265 

Buildings-Grass-Trees-Drives CLS15 386 

Stone-Steel-Towers CLS16 93 

 Total 10249 

 

5.2 PaviaU dataset 
 

The hyperspectral image of Pavia University was captured 

utilizing the ROSIS sensor in the Pavia region of northern 

Italy. This imagery, distinguished by a spatial resolution of 

610×340 pixels, encompasses a total of 103 spectral bands 

spanning the wavelength range from 0.43 to 0.86μm. The 

ground truth data, meticulously outlined in Table 10, identifies 

and categorizes nine discrete classes within the dataset. This 

dataset, comprising 42776 samples excluding the background, 

is characterized by a precise geometric resolution of 1.3 

meters, providing detailed spatial information for accurate 

analysis and classification [47]. 

Table 10. Groundtruth classes and per-class samples for the 

PaviaU dataset 

 
Class Name Class Code Sample Count 

Asphalt CLS01 6631 

Meadows CLS02 18649 

Gravel CLS03 2099 

Trees CLS04 3064 

Painted metal sheets CLS05 1345 

Bare Soil CLS06 5029 

Bitumen CLS07 1330 

Self-Blocking Bricks CLS08 3682 

Shadows CLS09 947 

 Total 42776 

 

5.3 Salinas dataset 

 

The captured hyperspectral image was obtained through the 

deployment of the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor from the Salinas Valley in 

California. This imagery showcases a spatial resolution of 

512×217 pixels and encompasses a total of 224 spectral bands 

spanning the range of wavelength bands from 0.4 to 2.5 

micrometers. The ground truth information defines a 

taxonomy of 16 distinct classes, as detailed in Table 11. 

Within the dataset, which comprises 54129 samples excluding 

background noise, a subset of 20 spectral bands, known to be 

susceptible to water absorption effects, were meticulously 

eliminated. This curation process resulted in a refined dataset 

containing a total of 204 spectral bands, ensuring the removal 

of potential confounding factors and enhancing the dataset's 

suitability for subsequent hyperspectral image analysis [47]. 

 

Table 11. Groundtruth classes and per-class samples for the 

Salinas dataset 

 
Class Name Class Code Sample Count 

Brocoli Green Weeds_1 CLS01 2009 

Brocoli Green Weeds_2 CLS02 3726 

Fallow CLS03 1976 

Fallow Rough Plow CLS04 1394 

Fallow Smooth CLS05 2678 

Stubble CLS06 3959 

Celery CLS07 3579 

Grapes Untrained CLS08 11271 

Soil Vinyard Develop CLS09 6203 

Corn Senesced Green Weeds CLS10 3278 

Lettuce Romaine 4wk CLS11 1068 

Lettuce Romaine 5wk CLS12 1927 

Lettuce Romaine 6wk CLS13 916 

Lettuce Romaine 7wk CLS14 1070 

Vinyard Untrained CLS15 7268 

Vinyard Vertical Trellis CLS16 1807 

 Total 54129 

 

5.4 Kennedy space center dataset 

 

The captured hyperspectral image of the Kennedy Space 

Center (KSC) was captured utilizing the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor at the 

Kennedy Space Center in Florida. This imagery, characterized 

by a spatial resolution of 512×614 pixels, encompasses 224 

spectral bands spanning the wavelength range of 0.4-2.5μm. 

The ground truth information identifies 13 distinct classes, as 

detailed in Table 12. To mitigate issues associated with water 

absorption effects, 48 spectral bands were omitted from the 

dataset, resulting in a dataset comprising 9130 samples, 

1769



 

excluding the background, and a total of 176 bands [48]. 

 

Table 12. Groundtruth classes and per-class samples for the 

KSC dataset 

 
Class Name Class Code Sample Count 

Scrub CLS01 46 

Willow Swamp CLS02 1428 

Cabbage Palm Hammock CLS03 830 

Cabbage Palm/Oak Hammock CLS04 830 

Slash Pine CLS05 237 

Oak/Broadleaf Hammock CLS06 483 

Hardwood Swamp CLS07 730 

Graminoid Marsh CLS08 28 

Spartina Marsh CLS09 478 

Cattail Marsh CLS10 20 

Salt Marsh CLS11 972 

Mud Flats CLS12 2455 

Water CLS13 593 

 Total 9130 

 

5.5 Experimental design 

 

This study conducted experiments using a laptop equipped 

with 16 GB of Random Access Memory (RAM) and a 

2700MHz i7-3740QM Central Processing Unit (CPU), with 

all the algorithms developed and coded in MATLAB. The 

proposed approach for preprocessing hyperspectral images is 

compared with prior research on multiscale neighborhood 

information. For the classification process, Support Vector 

Machines (SVM) [49] and Kernel Extreme Learning Machine 

(KELM) [50] were employed. The utilization of Support 

Vector Machines (SVM) was motivated by its capability to 

handle high-dimensional data efficiently. Recent studies have 

highlighted the advantages of SVM in handling problems with 

small sample sizes, nonlinearity, and high dimensionality, 

making it a popular choice in remote sensing image analysis. 

Moreover, the robustness of SVM, particularly attributed to 

the kernel function, allows for the integration of spatial 

characteristics into the classification process through 

strategies like feature fusion or composite kernels, as 

demonstrated in recent research. 

In the conducted experiments, the spectral reflectance 

values were normalized to a range of [0,1] aligning with best 

practices in hyperspectral data preprocessing. Recent 

advancements in hyperspectral image classification have 

emphasized the importance of normalization techniques to 

enhance the comparability and accuracy of classification 

results. The determination of all parameters was carried out 

using the 10-fold cross-validation method, and the leave-one-

out cross-validation employed for sample sizes below 10, is a 

widely accepted practice in model evaluation. Recent studies 

have shown the effectiveness of cross-validation techniques in 

optimizing model performance and parameter selection in 

remote sensing image classification. 

The classification accuracies presented in this study were 

derived from 10 trials, ensuring robustness and reliability in 

the evaluation process. Recent research has emphasized the 

significance of comprehensive evaluation metrics in 

hyperspectral image classification. For instance, recent studies 

have utilized metrics like the kappa coefficient to compare 

observed accuracy with expected accuracy, providing a 

comprehensive assessment of classification performance. The 

comparison of classification accuracies based on class-wise 

accuracy, average accuracy, overall accuracy, standard 

deviation from cross-validation, and the kappa coefficient 

aligns with recent trends in evaluating the efficacy of 

classification algorithms in remote sensing applications [51]. 

Experimental results are compared with recently proposed 

methods such as MSIF [20], MOM [52], MSEPF-MMSF [22], 

and MSWMF-MSF [23]. 

 

 

6. EXPERIMENTAL RESULTS  

 

6.1 Indian pines dataset 

 

In the context of the Indian Pines [46] dataset, a fraction of 

the data, specifically 0.5%, 1%, and 5% of the samples, were 

randomly selected within each class to construct the learning 

sets, while the remaining data constituted the test set. The 

classification maps resulting from the application of the 

Support Vector Machine (SVM) classifier on the Indian Pines 

dataset, particularly when 5% of the samples were chosen 

within each class for the training set, are visually represented 

in Figure 5. Additionally, Table 13. provides a detailed 

overview of the classification accuracy for each class within 

the Indian Pines dataset, specifically focusing on scenarios 

where 5% of the samples were selected within each class for 

the training set, with a specific emphasis on the SVM 

classifier. 

The experimental setup described aligns with the 

methodology commonly employed in hyperspectral image 

analysis research, where the selection of training samples from 

each class is crucial for evaluating the performance of 

classification algorithms [51]. By utilizing the SVM classifier 

and varying the percentage of samples chosen for training 

within each class, a comprehensive assessment of the 

classification accuracy across different classes within the 

Indian Pines dataset was conducted. This rigorous evaluation 

approach provides valuable insights into the robustness and 

efficacy of the proposed methodology in handling 

hyperspectral data with varying sample sizes and class 

distributions, contributing significantly to the advancement of 

research in hyperspectral image classification. 

 

 
 

Figure 5. Classification maps obtained from the SVM classifier on the Indian Pines dataset 

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 
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Table 13. Classwise, Average and Overall classification accuracy (%) of SVM on the Indian Pines dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 100.00 100.00 100.00 99.13 98.26 98.26 99.13 100.00 99.57 99.13 100.00 98.26 

CLS02 80.94 86.05 98.00 76.67 84.66 95.57 75.88 82.40 97.38 78.54 91.61 97.65 

CLS03 81.04 78.84 96.19 93.47 77.90 97.95 84.80 80.36 94.22 82.63 81.30 95.61 

CLS04 99.32 93.59 98.31 96.62 98.48 95.61 97.22 95.36 97.13 97.47 96.88 96.96 

CLS05 88.07 90.97 95.24 86.46 85.88 96.65 90.97 88.78 95.86 89.52 90.31 93.09 

CLS06 90.36 93.78 97.81 91.64 94.85 98.68 93.42 94.49 96.16 95.64 96.47 98.82 

CLS07 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS08 92.89 96.36 99.87 99.50 97.28 99.71 99.79 98.83 99.87 98.74 98.16 100.00 

CLS09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS10 82.37 78.95 93.66 82.02 79.47 95.68 85.89 85.45 96.15 82.37 85.10 95.39 

CLS11 87.80 92.75 98.60 77.43 93.92 98.15 78.50 92.56 98.31 81.66 94.73 97.51 

CLS12 86.07 83.51 95.24 84.45 86.85 94.64 84.01 87.76 96.22 84.08 88.53 96.46 

CLS13 99.12 99.02 96.98 99.61 96.10 98.24 98.34 99.22 97.07 99.32 98.44 98.24 

CLS14 95.97 96.17 99.46 93.47 91.86 99.59 91.46 92.05 99.91 97.23 98.01 99.81 

CLS15 94.72 96.06 96.22 87.88 96.48 96.89 92.69 89.07 97.93 90.16 89.69 98.70 

CLS16 98.49 98.71 97.42 97.63 98.71 98.49 97.85 98.49 98.06 100.00 99.14 94.62 

Average 92.32 92.80 97.69 91.62 92.54 97.76 91.87 92.80 97.74 92.28 94.27 97.57 

Overall 88.08 89.82 97.48 85.58 89.48 97.46 85.64 89.58 97.47 86.97 92.44 97.43 

Kappa 0.86 0.88 0.97 0.84 0.88 0.97 0.84 0.88 0.97 0.85 0.91 0.97 

STD 0.6252 0.8292 0.2704 0.3679 0.6254 0.1983 0.3426 0.6430 0.2265 0.6270 0.9351 0.1732 

 

 
 

Figure 6. Classification maps obtained from the KELM classifier on the Indian Pines dataset 

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 

 

Table 14. Classwise, Average and Overall classification accuracy (%) of the KELM classifier on the Indian Pines dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 100.00 100.00 99.57 99.13 99.57 98.26 99.57 100.00 99.13 100.00 100.00 99.57 

CLS02 76.86 83.43 98.19 73.38 81.47 96.18 71.19 78.40 96.57 72.77 89.44 98.11 

CLS03 81.42 77.81 96.05 89.90 74.53 96.75 83.81 79.93 94.31 81.98 80.65 95.01 

CLS04 99.16 93.50 97.64 98.06 98.06 97.30 96.71 94.85 97.47 97.05 97.47 96.88 

CLS05 86.38 90.48 94.87 86.00 85.80 95.53 89.98 88.32 94.41 88.90 89.57 92.26 

CLS06 91.64 92.33 97.23 90.14 93.95 97.78 94.49 95.75 96.88 96.88 94.49 98.63 

CLS07 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS08 94.90 96.28 99.67 98.45 95.82 99.41 98.95 94.81 99.54 96.40 99.33 100.00 

CLS09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS10 86.46 81.34 94.42 81.67 82.04 96.34 86.54 86.50 96.89 82.28 87.08 96.58 

CLS11 81.90 93.15 98.73 76.79 91.10 98.48 78.26 91.82 98.31 82.57 93.43 97.83 

CLS12 83.51 78.04 92.68 82.09 85.40 92.72 80.54 87.76 94.70 81.89 83.98 94.97 

CLS13 99.51 99.22 97.56 99.22 96.29 98.73 98.93 99.41 98.54 99.41 98.83 98.15 

CLS14 95.78 96.22 99.76 95.08 90.72 99.68 89.55 92.74 99.78 96.19 97.17 99.75 

CLS15 96.32 97.62 96.79 89.95 96.32 97.41 93.37 90.93 98.29 90.88 88.03 98.13 

CLS16 99.14 99.35 97.85 98.28 99.35 98.92 99.14 99.35 99.35 100.00 98.92 95.05 

Average 92.06 92.42 97.56 91.13 91.90 97.72 91.31 92.54 97.76 91.70 93.65 97.56 

Overall 86.53 89.32 97.44 84.64 87.97 97.43 84.50 88.95 97.36 86.04 91.43 97.48 

Kappa 0.85 0.88 0.97 0.83 0.86 0.97 0.83 0.87 0.97 0.84 0.90 0.97 

STD 0.0033 0.0022 0.0005 0.0033 0.0018 0.0008 0.0022 0.0016 0.0005 0.0020 0.0017 0.0004 

 

Figure 6 depicts the outcomes of classification maps derived 

from the Kernel Extreme Learning Machine (KELM) 

classifier applied to the Indian Pines dataset, with a 5% sample 

selection in each class for the training set. The classwise 

classification accuracy of the KELM algorithm on the Indian 

Pines dataset under the same 5% sample selection in each class 

for the training set is presented in Table 14. 

A comparison between the proposed method and other 
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known methods is given in Table 15. Statistical comparison of 

proposed method is given in Table 16. 

 

Table 15. Comparison between the proposed method and 

other known methods on the Indian Pines dataset 

 

 Proposed MSWMF-MSF MSEPF-MMSF MOM MSIF 

Average 97.56 96.93 95.64 95.03 95.83 

Overall 97.44 93.15 91.45 96.90 95.00 

Kappa 0.97 - 0.90 0.96 0.94 

STD 0.0005 - - -  

 

Table 16. Statistical comparison of proposed method 

 

 SAM SID SCM 

SVM - + + 

KELM + - - 

* P-Value < 0,05 denoted as +, otherwise denoted as - 

 

6.2 PaviaU dataset 

 

In the PaviaU [47] dataset, the entirety of the dataset is 

composed of samples randomly selected at rates of 0.5%, 1%, 

and 5% from each class to form the learning sets, with the 

remaining data constituting the test set. The classification 

maps resulting from the SVM classifier applied to the PaviaU 

dataset, particularly when 5% of the samples are chosen from 

each class for the training set, are visually depicted in Figure 

7. Additionally, Table 17. provides a detailed overview of the 

classification accuracy of each class within the PaviaU dataset 

when 5% of the samples are utilized from each class for the 

training set, employing the SVM classifier. This meticulous 

experimental setup ensures a comprehensive evaluation of the 

proposed methodology's performance across various class 

distributions, shedding light on its effectiveness in handling 

different training set sizes and class imbalances in 

hyperspectral image classification scenarios. 

In this section, Figure 8 illustrates the outcomes of 

classification maps derived from the Kernel Extreme Learning 

Machine (KELM) classifier applied to the PaviaU dataset, 

with a 5% sample selection in each class for the training set. 

Furthermore, Table 18 presents the classwise classification 

accuracy on the PaviaU dataset under the condition of 5% 

sample selection in each class for the training set, specifically 

for the KELM classifier. 

 

 
 

Figure 7. Classification maps generated by the SVM classifier on the PaviaU dataset  

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 

 

Table 17. Classwise, Average and Overall classification accuracy (%) of the SVM classifier on the PaviaU dataset 

 
 Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 90.27 93.00 98.71 91.07 92.92 98.56 89.23 91.26 98.62 89.09 94.01 98.68 

CLS02 99.13 99.61 99.98 99.44 99.52 99.90 98.73 99.67 99.97 98.82 99.23 99.95 

CLS03 77.31 85.60 94.32 75.59 86.77 95.87 76.03 88.53 97.04 78.01 81.60 94.51 

CLS04 79.56 86.42 96.33 79.52 83.11 95.55 78.75 87.70 95.52 80.55 86.19 95.04 

CLS05 99.69 99.58 99.91 99.66 99.41 100.00 98.96 99.63 99.93 99.03 99.85 99.97 

CLS06 96.20 97.63 99.91 92.63 96.47 99.90 93.81 96.53 99.92 93.52 97.00 99.89 

CLS07 98.32 98.11 99.46 98.80 98.69 100.00 97.49 97.53 99.74 98.86 98.95 99.99 

CLS08 76.70 81.93 95.64 73.31 75.87 95.15 72.00 81.93 93.97 73.47 78.98 95.75 

CLS09 88.32 87.88 95.29 90.71 83.63 93.92 90.86 83.80 95.21 89.29 86.84 95.21 

Average 89.50 92.19 97.73 88.97 90.71 97.65 88.43 91.84 97.77 88.96 91.41 97.66 

Overall 92.76 94.89 98.74 92.29 93.92 98.65 91.63 94.65 98.66 91.98 94.35 98.66 

Kappa 0.90 0.93 0.98 0.90 0.92 0.98 0.89 0.93 0.98 0.89 0.92 0.98 

STD 0.5090 0.2486 0.1627 0.4564 0.4102 0.0973 0.5167 0.3178 0.0895 0.5222 0.3888 0.1043 
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Figure 8. Classification maps obtained from the KELM classifier on the PaviaU dataset  

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 

 

Table 18. Classwise, Average and Overall classification accuracy (%) of the KELM classifier on the PaviaU dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 88.54 91.49 98.46 87.93 91.10 97.74 86.61 88.49 97.66 86.14 92.08 97.76 

CLS02 99.40 99.78 99.99 99.24 99.62 99.92 99.03 99.75 99.96 99.21 99.68 99.98 

CLS03 69.57 80.56 95.81 69.40 81.72 95.24 68.86 83.54 96.99 72.35 77.27 94.32 

CLS04 64.39 77.83 93.59 64.90 72.60 92.72 60.21 77.58 92.27 63.50 71.31 90.44 

CLS05 98.59 98.93 99.69 98.29 98.11 99.94 97.01 98.25 99.87 96.36 98.69 99.91 

CLS06 94.77 98.43 99.96 94.50 97.49 100.00 95.28 96.46 99.81 91.68 97.64 99.92 

CLS07 98.08 98.56 99.73 98.83 99.26 99.94 97.94 97.16 99.83 98.69 98.74 99.94 

CLS08 66.97 78.33 97.46 63.97 73.55 97.22 67.67 77.96 95.64 66.97 70.72 96.18 

CLS09 91.55 86.91 98.71 91.70 82.11 93.94 91.45 81.18 96.20 85.85 78.67 94.97 

Average 85.76 90.09 98.15 85.42 88.39 97.41 84.89 88.93 97.58 84.53 87.20 97.05 

Overall 90.17 93.62 98.91 89.76 92.54 98.48 89.44 92.82 98.43 89.25 92.11 98.22 

Kappa 0.87 0.91 0.98 0.86 0.90 0.98 0.86 0.90 0.98 0.86 0.89 0.98 

STD 0.0084 0.0107 0.0083 0.0068 0.0107 0.0089 0.0075 0.0092 0.0077 0.0059 0.0092 0.0077 

 

 
 

Figure 9. Classification maps obtained from the SVM classifier on the Salinas dataset  

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 

 

 

Table 19. Comparison between the proposed method and 

other known methods on the PaviaU dataset 

 
 Proposed MSWMF-MSF MSEPF-MMSF MOM MSIF 

Average 98.15 96.44 98.36 98.13 94.97 

Overall 98.91 97.47 98.80 97.25 97.13 

Kappa 0.98 - 0.98 0.96 0.96 

STD 0.0083 - - -  

Table 20. Statistical comparison of proposed method 

 
 SAM SID SCM 

SVM + + - 

KELM + + + 
* P-Value < 0,05 denoted as +, otherwise denoted as – 
 

A comparison between the proposed method and other 
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known methods is given in Table 19. Statistical comparison of 

proposed method is given in Table 20. 

 

6.3 Salinas dataset 

 

In the Salinas [47] dataset, a fraction of 0.5%, 1%, and 5% 

of the samples were randomly chosen within each class to 

form the training sets, while the remaining data was designated 

for the test set. The classification maps generated by the 

Support Vector Machine (SVM) classifier on the Salinas 

dataset, particularly when 5% of the samples were selected 

within each class for the training set, are visually depicted in 

Figure 9. Additionally, Table 21. provides a detailed overview 

of the classification accuracy achieved for each class in the 

Salinas dataset under the scenario where 5% of the samples 

were utilized within each class for the training set, specifically 

focusing on the SVM model. 

Figure 10 depicts the outcomes of classification maps 

derived from the Kernel Extreme Learning Machine (KELM) 

classifier applied to the Salinas dataset, with a 5% sample 

selection in each class for the training set. The class-specific 

classification accuracy for the Salinas dataset under the same 

conditions is presented in Table 22 for the KELM classifier. 

A comparison between the proposed method and other 

known methods is given in Table 23. Statistical comparison of 

proposed method is given in Table 24. 

 

Table 21. Classwise, Average and Overall classification accuracy (%) of the SVM classifier on the Salinas dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 99.52 99.67 99.91 99.50 99.79 99.98 99.53 99.91 100.00 99.87 99.03 99.99 

CLS02 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS03 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS04 97.98 98.65 99.56 97.86 98.42 99.28 99.08 99.27 99.57 99.05 99.57 99.40 

CLS05 96.76 96.74 99.07 97.21 97.71 99.07 95.14 97.19 99.10 96.08 96.48 99.26 

CLS06 99.77 99.97 100.00 100.00 99.98 99.99 99.73 99.92 100.00 99.95 99.98 99.99 

CLS07 99.79 99.81 100.00 99.91 99.99 100.00 100.00 99.85 99.99 99.98 99.95 99.99 

CLS08 93.90 94.93 99.63 91.52 94.88 99.47 93.39 95.05 99.53 91.14 94.81 99.54 

CLS09 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS10 97.91 99.51 99.91 98.67 99.77 99.96 98.76 99.26 99.80 98.61 99.40 99.99 

CLS11 99.20 98.88 99.98 99.79 99.59 99.96 99.16 99.78 99.98 99.66 99.72 99.98 

CLS12 99.76 99.99 99.99 99.72 99.93 100.00 98.80 99.97 100.00 99.75 99.93 100.00 

CLS13 99.43 98.78 99.91 98.89 97.60 99.74 98.08 99.15 99.65 98.76 99.19 99.89 

CLS14 98.60 94.30 99.70 98.62 94.93 99.85 95.89 98.13 99.66 92.64 97.51 99.83 

CLS15 87.95 93.83 99.28 89.35 94.58 99.22 88.12 94.84 99.06 88.50 94.40 99.25 

CLS16 95.43 99.36 99.86 98.30 98.30 99.93 98.33 98.57 99.45 98.04 99.21 99.59 

Average 97.87 98.40 99.80 98.08 98.47 99.78 97.75 98.81 99.74 97.63 98.70 99.79 

Overall 96.51 97.69 99.75 96.39 97.82 99.71 96.42 97.95 99.68 96.05 97.81 99.73 

Kappa 0.96 0.97 1.00 0.96 0.98 1.00 0.96 0.98 1.00 0.96 0.98 1.00 

STD 0.3666 0.1595 0.0482 0.3558 0.1689 0.0519 0.3934 0.2050 0.0652 0.2762 0.1779 0.0403 

 

 
 

Figure 10. Classification maps obtained from the KELM classifier on the Salinas dataset 

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 
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Table 22. Classwise, Average and Overall classification accuracy (%) of the KELM classifier on the Salinas dataset 
  

Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 99.67 99.64 100.00 98.93 99.80 99.95 98.78 99.87 100.00 99.87 99.78 100.00 

CLS02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS03 99.97 100.00 100.00 99.72 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS04 99.21 99.48 99.58 98.61 99.14 99.71 99.48 99.38 99.71 99.35 99.64 99.74 

CLS05 96.41 96.94 99.21 97.15 98.23 99.12 95.04 97.42 98.94 95.85 96.73 99.25 

CLS06 99.22 99.75 99.97 99.76 99.83 100.00 99.36 99.59 99.97 99.74 99.73 99.98 

CLS07 99.84 99.75 99.98 99.81 99.85 99.99 99.89 99.70 99.96 99.86 99.77 99.89 

CLS08 95.71 96.41 99.75 93.74 96.48 99.80 94.60 96.23 99.53 94.61 95.68 99.77 

CLS09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS10 96.11 98.75 99.75 96.60 98.71 99.78 97.45 98.82 99.59 96.88 98.85 99.90 

CLS11 99.25 98.90 100.00 99.81 99.44 99.98 99.53 99.76 99.98 99.93 99.87 100.00 

CLS12 99.35 99.83 100.00 98.93 99.57 99.98 99.11 99.88 100.00 99.36 99.96 99.98 

CLS13 99.41 98.41 100.00 98.97 98.52 99.76 98.52 99.50 99.83 99.13 99.02 99.96 

CLS14 96.24 92.34 99.53 96.67 94.79 99.81 96.43 95.83 99.68 92.17 96.49 99.83 

CLS15 89.43 94.84 99.68 90.67 95.89 99.72 90.58 95.81 99.73 91.02 95.30 99.85 

CLS16 96.55 99.17 99.87 98.11 98.13 99.97 98.43 98.43 99.51 97.54 99.33 99.72 

Average 97.90 98.39 99.83 97.97 98.65 99.85 97.95 98.76 99.78 97.83 98.76 99.87 

Overall 96.93 98.04 99.82 96.79 98.28 99.85 96.91 98.23 99.75 96.95 98.07 99.86 

Kappa 0.97 0.98 1.00 0.96 0.98 1.00 0.97 0.98 1.00 0.97 0.98 1.00 

STD 0.0020 0.0025 0.0016 0.0020 0.0028 0.0020 0.0026 0.0026 0.0017 0.0018 0.0031 0.0012 

Table 23. Comparison between the proposed method and 

other known methods on the Salinas dataset 

 
 Proposed MSWMF-MSF MSEPF-MMSF 

Average 99.83 98.90 95.64 

Overall 99.82 97.63 91.45 

Kappa 1.00 - 0.90 

STD 0.0016 - - 

 

Table 24. Statistical comparison of proposed method 

 
 SAM SID SCM 

SVM + - - 

KELM + + + 
* P-Value < 0,05 denoted as +, otherwise denoted as - 

 

6.4 Kennedy space center dataset 

 

In the analysis of the Kennedy Space Center (KSC) [48]  

dataset, a sampling approach was employed wherein data 

subsets of 0.5%, 1%, and 5% were randomly selected within 

each class for the training sets, with the remaining data 

comprising the test set. The outcomes of the classification 

maps generated by the Support Vector Machine (SVM) 

classifier on the Kennedy Space Center dataset, utilizing a 5% 

sample selection in each class for the training set, are depicted 

in Figure 11. Furthermore, Table 25. presents the classwise 

classification accuracy of the SVM on the Kennedy Space 

Center dataset under the condition of 5% sample selection in 

each class for the training set. 
 

 
 

Figure 11. Classification maps obtained from the SVM classifier on the Kennedy Space Center dataset 

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 
 

 
 

Figure 12. Classification maps obtained from the KELM classifier on the Kennedy Space Center dataset  

a) Proposed, b) SAM, c) SID, d) SCM, and e) Groundtruth 
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Table 25. Classwise, Average and Overall classification accuracy (%) of the SVM classifier on the KSC dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 98.58 97.98 100.00 99.08 95.16 99.03 96.53 96.79 99.82 99.84 98.27 100.00 

CLS02 96.71 94.40 98.19 98.19 97.04 99.75 96.71 99.59 97.04 98.35 90.53 98.52 

CLS03 94.84 95.39 98.59 94.14 98.20 97.34 95.94 98.52 97.34 94.22 93.05 97.81 

CLS04 84.44 82.94 89.29 82.30 78.57 92.14 82.38 78.97 83.81 73.17 80.71 83.25 

CLS05 89.69 90.93 88.82 95.28 94.78 92.92 87.83 90.43 84.35 96.15 95.16 93.79 

CLS06 96.94 97.29 95.90 97.64 99.04 97.21 96.51 93.97 98.08 96.94 96.42 97.03 

CLS07 99.81 100.00 99.62 99.43 100.00 100.00 100.00 100.00 100.00 99.62 100.00 98.86 

CLS08 98.79 98.52 97.82 97.22 97.45 100.00 95.27 96.52 98.65 96.15 98.10 97.40 

CLS09 87.65 100.00 100.00 96.96 100.00 100.00 97.54 97.23 100.00 97.88 100.00 100.00 

CLS10 99.11 99.46 99.70 100.00 99.75 100.00 99.90 100.00 100.00 99.95 100.00 99.16 

CLS11 97.95 99.57 99.76 96.28 97.80 98.09 98.14 98.66 99.71 98.57 98.47 99.57 

CLS12 95.71 97.46 99.56 95.75 96.66 99.92 95.47 97.26 99.96 96.50 98.53 99.56 

CLS13 99.98 100.00 100.00 99.94 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Average 95.40 96.46 97.48 96.32 96.50 98.19 95.55 96.00 96.83 95.95 96.10 97.30 

Overall 96.19 97.55 98.53 97.12 97.10 98.83 96.53 96.93 98.22 97.07 97.30 98.31 

Kappa 0.96 0.97 0.98 0.97 0.97 0.99 0.96 0.97 0.98 0.97 0.97 0.98 

STD 0.3477 0.5309 0.2597 0.2839 0.4176 0.2054 0.3081 0.6338 0.2338 0.4463 0.3609 0.2636 

 

Table 26. Classwise, Average and Overall classification accuracy (%) of the KELM classifier on the KSC dataset 

  
Fréchet SAM SID SCM 

 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 0.5% 1% 5% 

CLS01 98.82 99.50 100.00 99.32 97.29 99.79 96.53 98.58 100.00 100.00 99.82 100.00 

CLS02 97.70 94.40 99.26 98.68 96.71 99.75 96.71 99.92 97.86 98.85 90.86 98.52 

CLS03 94.77 95.86 99.45 94.92 97.50 97.73 96.48 96.02 98.44 97.27 94.84 97.34 

CLS04 82.46 86.19 91.43 82.54 79.05 91.91 82.14 82.38 85.00 74.05 85.16 80.79 

CLS05 93.66 96.40 95.53 97.02 98.39 93.04 95.28 94.29 94.66 98.51 97.52 97.64 

CLS06 98.08 99.30 95.02 99.21 99.56 99.04 98.08 97.12 96.94 98.43 96.59 98.43 

CLS07 100.00 100.00 99.81 99.81 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.81 

CLS08 99.81 98.28 99.77 99.49 98.70 100.00 95.87 97.22 98.89 95.73 98.05 98.38 

CLS09 87.08 100.00 100.00 96.96 100.00 100.00 96.88 97.23 100.00 97.92 100.00 100.00 

CLS10 99.36 99.65 100.00 100.00 99.75 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

CLS11 98.33 99.43 99.67 96.85 97.80 98.66 98.38 98.62 99.47 98.71 98.76 99.57 

CLS12 97.30 96.30 98.93 97.53 97.50 99.44 97.22 98.45 99.64 96.62 98.93 99.48 

CLS13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Average 95.95 97.33 98.37 97.10 97.10 98.41 96.43 96.91 97.76 96.62 96.96 97.69 

Overall 96.58 98.08 99.01 97.78 97.70 99.04 97.02 97.67 98.63 97.45 97.99 98.51 

Kappa 0.96 0.98 0.99 0.98 0.97 0.99 0.97 0.97 0.98 0.97 0.98 0.98 

STD 0.0055 0.0072 0.0094 0.0079 0.0061 0.0090 0.0060 0.0068 0.0123 0.0081 0.0092 0.0093 

 

Table 27. Statistical comparison of proposed method 

 
 SAM SID SCM 

SVM + - - 

KELM - - - 
*P-Value < 0,05 denoted as +, otherwise denoted as - 

 

In Figure 12, the outcomes of classification maps derived 

from the Kernel Extreme Learning Machine (KELM) 

classifier on the Kennedy Space Center dataset are depicted, 

wherein a 5% sample is chosen from each class for the training 

set. The classwise classification accuracy of the KELM 

algorithm on the Kennedy Space Center dataset, with 5% of 

the samples selected from each class in the training set, is 

presented in Table 26. Statistical comparison of proposed 

method is given in Table 27. 

 

 

7. CONCLUSION  

 

In this study, a novel spectral-spatial preprocessing 

technique is introduced, leveraging a weighted average 

neighborhood operator with spectral similarity-based 

weighting to enhance the classification precision of 

hyperspectral images. Recent research has highlighted the 

significance of spatial preprocessing algorithms in 

hyperspectral image analysis. For instance, a spatial 

preprocessing (SPP) algorithm has been proposed, estimating 

spatially-derived factors for each pixel vector to weigh the 

spectral information based on its spatial context. This 

emphasizes the growing interest in incorporating spatial 

information to refine hyperspectral image processing methods. 

The fundamental concept underlying the algorithm is rooted 

in the notion that each pixel vector within a hyperspectral 

image shares spectral attributes akin to those of its neighboring 

pixel vectors, given the prevalent continuity typically 

observed in hyperspectral imagery. Recent studies have shown 

the advantage of integrating spatial information with spectral 

data to enhance the representation of image properties in a 

lower-dimensional space. This underscores the importance of 

considering spatial correlations in hyperspectral imagery for 

more accurate analysis and classification. 
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Moreover, the efficacy of the proposed approach heavily 

relies on the weighting function employed to enhance the 

similarity of characteristics. Spatial postprocessing techniques 

have been investigated to create more homogeneous thematic 

maps, emphasizing the role of spatial information in refining 

hyperspectral image analysis. By incorporating spatial 

information into the preprocessing stage, recent advancements 

have demonstrated improved feature extraction and 

classification accuracy in hyperspectral imagery. 

Given the elevated spectral dimensionality inherent in 

hyperspectral data, spectral signatures are often represented as 

curves. The Fréchet distance emerges as a well-established 

metric for measuring the similarity between curves. Recent 

studies have utilized the Fréchet distance as a weighting factor 

for neighboring pixels within the weighted average operation, 

showcasing its effectiveness in enhancing hyperspectral image 

classification outcomes. This highlights the growing trend of 

leveraging advanced similarity measures to optimize spectral-

spatial preprocessing techniques for hyperspectral image 

analysis. To evaluate the performance of the proposed method, 

a comparative analysis is conducted against three prevalent 

spectral similarity measures: Spectral Angle Mapper (SAM) 

[53], Spectral Information Divergence (SID) [26], and 

Spectral Correlation Measure (SCM) [27]. 

In the classification phase, Support Vector Machines 

(SVM) [49] and Kernel Extreme Learning Machine (KELM) 

[50] are employed as classification algorithms. The 

classification outcomes obtained through the proposed method 

are juxtaposed with those derived from recently introduced 

methodologies such as MSIF [20], MOM [52], MSEPF-

MMSF [22], and MSWMF-MSF [23]. The experimental 

findings underscore a substantial enhancement in 

classification accuracy facilitated by the proposed method. 

Notably, the utilization of the Fréchet distance as a weighting 

mechanism for neighboring pixels outperforms the 

conventional spectral similarity measures, signifying its 

efficacy in refining the classification outcomes of 

hyperspectral images. 
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