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Alzheimer’s disease (AD) is a big issue within a population of aged people. AD starts with 

cognitive decline initially and creates miserable conditions for patients with time. One of 

the best preventive measures to control AD is its early detection at the Mild Cognitive 

Impairment (MiCI) stage. The MiCI is a transition stage between normal ageing and AD. 

The MiCI stage refers to the noticeable decline in cognitive abilities of a patient, that is more 

pronounced than would be expected for his age but not severe enough to substantially affect 

his daily life. Early detection at MiCI stage allows for prompt intervention and medication, 

which can help manage symptoms more effectively. This paper proposed a new feature 

extraction technique namely, Wavelet-based Shifted Circular-Elliptical Local Descriptors 

(WSCELD) for early AD detection. The proposed WSCELD combines the Double-Density 

Dual-Tree Complex Wavelet Transform (DD-DTCWT) with the shifted elliptical and 

circular local binary patterns for extracting directional and structural features in terms of 

multiple micro and macro patterns. The histogram features are obtained from transform 

domain images using the proposed WSCELD and have been used for classification. 

Different variants of WSCELD viz. Mean WSCELD, Median WSCELD, Energy WSCELD 

and Variance WSCELD have been investigated and Energy WSCELD has been proposed. 

Experimental results show the Energy WSCELD as the best performer with classification 

accuracy, sensitivity, and specificity of 97.3±1.6%, 97.1±1.2% and 97.2±1.1% for 

AD/Normal Controls (NoC) classification, 94.6±1.1%, 96.1±1.2% and 93.1±1.1% for 

AD/MiCI classification and 93.8±1.4%, 92.4±1.5% and 96.2±1.2% for MiCI/NoC 

classification respectively. The proposed approach is the automated approach for AD 

detection and is suitable for clinical implementation for early AD detection. 
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1. INTRODUCTION

Alzheimer’s disease (AD) is a neurological syndrome 

affecting a large population of early-aged people worldwide. 

AD results in a continual decline in cognitive and 

communication skills which makes an individual unable to 

work without assistance [1]. More than 5 million people in the 

United States alone, were suffering from AD in 2018, and it is 

expected that this figure will be 15 million by 2050. The AD 

is not limited to the US people only, but it is spreading on a 

large scale across the world. The main reason behind the 

progression of AD is the accumulation of amyloid and tau 

proteins in brain regions. This accumulation causes synaptic 

loss in the brain and results in structural changes in the brain 

such as ventricular enlargement, hippocampal volume and size 

variations, cerebral cortex surface contraction, and grey matter 

density fluctuations [2, 3]. Magnetic Resonance Imaging 

(MRI) is one of the best neuroimaging tests that captures these 

structural changes with good tissue contrast and high 

resolution [4]. This paper presents a new feature extraction 

technique that extracts directional local descriptors which 

depict the structural and grey matter density variations at 

different stages and are helpful in early AD detection. 

In literature, most of the studies include AD detection 

methods based on Voxel-based morphometry (VBM) [5], 

Surface-Based Morphometry (SBM) [6], Region of Interest 

(ROI) [7], Transform-based methods [8] and Texture-based 

methods [9]. VBM technique provides grey matter density 

details and compares the anatomy of different brains with a 

template. This technique suffers from the problem of imperfect 

image registration and misalignment issues of template and 

image [10]. The SBM provides cortical features but requires 

skills in the Freesurfer tool. This technique faces challenges in 

perfect spatial registration and surface reconstruction which 

affect the reliability of morphometric measurements [11]. 

ROI-based methods require segmentation to extract the 

affected part of the brain, and this needs expertise with prior 

knowledge. Transform-based methods generally suffer from 

high dimensionality and are less directionally sensitive to 3-D 

images [11]. Texture-based methods face challenges in clinics 

due to the lack of standardized approaches for acquiring MR 

images, performing intensity discretization on MR images, 

and selecting MRTA software [11]. Liu et al. [12] used the 

VBM technique to obtain voxel-wise grey matter density maps 

from different local patches for AD classification. The authors 

used a single atlas for obtaining patches which is mostly 
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inclined for a particular class. In ROI-based studies [13, 14] 

hippocampal visual features [13] and tissue-segmented 

features [14] have been used for AD classification. These 

techniques provide spatial domain features which are not 

directional. The recent studies [15-17] are transform domain 

studies. These studies [15-17] used shearlet transform [15] and 

contourlet transform [16, 17] to obtain features from different 

ROIs and density maps for AD classification. These studies 

[15-17] included the limitations of VBM and ROI-based 

methods. However, these studies [15-17] provided frequency 

domain features which show multiscale and directional 

information. Most of the texture-based studies used local 

descriptors as features for AD classification. Bhasin et al. [18] 

applied 3-DWT to obtain Local Binary Pattern-20 (LBP-20) 

features for AD classification. This technique used DWT 

which has low directional selectivity in comparison to 

complex wavelet. Francis and Pandian [19] proposed a feature 

extraction technique which enhances the effectiveness of a fast 

Hessian detector by combining it with the local binary pattern. 

Sarwinda and Bustamam [20] combined 2D and 3D advanced 

LBP for multi-class classification of Alzheimer’s disease. This 

method suffered from high dimensionality and large 

computational time. Oppedal et al. [21] combined the LBP 

texture features with the contrast measures extracted from MR 

scans and obtained 98% accuracy. Koh et al. [22] applied 

bidirectional empirical mode decomposition on MR images 

and obtained four IMFS. The authors computed LBP 

histograms from these IMFS and further used these histograms 

for AD classification. Kaplan et al. [23] obtained Histogram-

oriented gradients (HOG), local binary pattern (LBP) and local 

phase quantization (LPQ) from brain images. The authors 

merged all features and selected optimum features by using 

Neighbourhood Component Analysis for AD classification. 

All the discussed techniques [18-23] are texture-based and 

extract features based on textures only. 

This paper instigates an approach that combines the 

characteristics of transform-domain and texture-domain 

techniques for extracting features. These features have the 

characteristics of both spatial domain and frequency domain 

and thus are more informative. The contribution of the paper 

can be listed as follows. (1) The proposed method utilizes DD-

DTCWT for extracting features in sixteen directions. Thus, the 

proposed technique provides directional features. (2) This 

paper proposed a method which utilizes the local descriptors 

having the properties of both circular and elliptical LBP’s. 

Circular LBP provides isotropic information and Elliptical 

LBP provides anisotropic information. In tradition, the 

histograms of CLBP and ELBP need to be concatenated to 

capture both isotropic and anisotropic details in the image. 

This increases the feature vector size. In the proposed 

technique, CELD is used which provides circular and elliptical 

LBP properties with just half of the feature vector size [24]. (3) 

The proposed method can be applied for the detection of 

different stages of AD as it captures both grey matter density 

fluctuation and multi-structural variations in the brain with the 

advancement of the disease. Imaginary coefficients capture 

structural information and detail sub-bands provide 

information regarding grey matter density fluctuation. (4) This 

paper uses the shifted version of WSCELD. This contributes 

to providing several adaptable micro and macro patterns. (5) 

This paper compares the performance of different versions of 

WSCELD like Median WSCELD, Mean WSCELD, Energy 

WSCELD and Variance WSCELD using different wavelets 

like DD-DWT [25], DTCWT [26] and DD-DTCWT [27]. 

The remaining paper is divided into three sections as 

follows. The second section includes the proposed approach 

with background material. The third section includes the 

details of the database, performance metrics and performance 

discussion of the proposed work and existing methods. The 

fourth section throws light on the conclusion with future 

directions. 

2. PROPOSED METHOD

In the proposed method DD-DTCWT is applied on 2-D MR 

scans and sixteen high-frequency subbands are obtained at the 

first level of decomposition. Now Shifted Circular Elliptical 

Local Descriptors are used to obtain the local micro and macro 

patterns from the 16 sub-images. Different versions like 

Median WSCELD, Mean WSCELD, Energy WSCELD and 

Variance WSCELD have been tested and Energy WSCELD 

has been proposed for detection of AD at different stages on 

account of its performance. Figure 1 indicates the block 

diagram of the proposed methodology. 

The LBP [28] detects the geometric features like edges, hard 

lines, and corners in the images and provides the local spatial 

structural patterns. These patterns are obtained by generating 

a binary code for a centre pixel by comparing the neighbouring 

pixels with the centre pixel value. In CLBP all neighbouring 

pixels are present on a circle of radius R from the centre pixel. 

Figure 2 shows the CLBP with a 3x3 neighbourhood. The 

CLBP value of a pixel Pc (Xce, Yce) with its N neighbours can 

be calculated as in Eq. (1). 

LBPN, R (Xce, Yce)=∑ Sign(Y)2n−1N
n=1 (1) 

Y=Pn(R)-Pc where Pn represents the neighbour pixel at R 

distance from centre pixel Pc and the value of Y can be 

assigned 0 and 1 based on Eq. (2). 

Sign={
1, 𝑌 ≥ 0
0, 𝑌 < 0

(2) 

Figure 1. The flow of process in the proposed methodology 
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Figure 2. (a) CLBP (b) H-ELBP (c) Right-oriented Diagonal 

ELBP (d) Left-oriented Diagonal ELBP (e) V-ELBP 

The coordinates of N number of neighbours Pn (Xne, Yne) 

around the centre pixel are obtained by using Eq. (3) and Eq. 

(4). 

Xne=Xce+R cos(2π/N) (3) 

Yne=Yce+R sin(2π/N) (4) 

ELBP [29] considers that neighbouring pixels are in an 

elliptical pattern around the centre pixel. The ellipse 

orientation can be diagonal, horizontal, and vertical. The 

ELBP value of a pixel Pc (Xce, Yce) with its N neighbours lying 

on the ellipse of radius R1 horizontally and R2 vertically 

around it, can be calculated by using Eq. (5). 

ELBPN, R1, R2 (Xce, Yce) = ∑ Sign(Y)2n−1N
n=1 (5) 

Y=Pn (R1, R2)-Pc where Pn represents the neighbour pixel 

at R1 and R2 horizontal and vertical distance respectively from 

centre pixel Pc and the value of Y can be assigned 0 and 1 

based on Eq. (6). 

Sign={
1, 𝑌 ≥ 0
0, 𝑌 < 0

(6) 

The coordinates of N number of neighbours Pn (Xne, Yne) 

around the centre pixel are obtained through Eq. (7) and Eq. 

(8). 

Xne=Xce+R1 cos(2π/N) (7) 

Yne=Yce+R2 sin(2π/N) (8) 

Figure 2 shows the different patterns of Circular LBP and 

Elliptical LBP. 

2.1 Circular elliptical local descriptor (CELD) 

In the proposed method, CELD extracts isotropic and 

anisotropic structural details with a small-size feature vector. 

CELD generates a unique code by thresholding the eight 

neighbouring points that are needed for circular LBP, 

horizontal, vertical and diagonal ELBPs around a centre pixel 

Pc(Xce,Yce). The eight neighbouring points in CELD are taken 

by combining the two pixels (P2 and P21) at top, two pixels 

(P6 and P61) at bottom, two pixels (P8 and P81) at left, two 

pixels (P4 and P41) at right, and four pair of two diagonal 

pixels (P1 and P11, P5 and P51, P3 and P31, P7 and P71) as 

shown in Figure 3. 

(a) Neighbouring points

(b) Formulation of neighbouring points in CELD

Figure 3. Eight neighbouring points in CELD 

Formulas used in the formulation of 3X3 neighbourhood in 

eight neighbouring points CELD are mentioned in Eq. (9) to 

Eq. (12). 

P1=int(P1+P11)/2   P2=int(P2+P21)/2 (9) 

P3=int(P3+P31)/2   P4=int(P4+P41)/2 (10) 

P5=int(P5+P51)/2   P6=int(P6+P61)/2 (11) 

P7=int(P7+P71)/2   P8=int(P8+P81)/2 (12) 

Based on the above details the CELD can be formulated as 

in Eq. (13): 

CELD N, R1, R2 (Xce, Yce)=∑ Sign(Y)2n−1N
n=1 (13) 
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where, Y=Pn(R1, R2)–Pc and Pn represents the neighbour 

pixel and Pc represents the centre pixel and the value of Y can 

be assigned as 0 and 1 based on the Eq. (14). 

Sign={
1, 𝑌 ≥ 0
0, 𝑌 < 0

(14) 

Here R1 is the radius of circular LBP, the vertical radius of 

Horizontal ELBP and the horizontal radius of Vertical ELBP; 

The R2 is the horizontal radius of Horizontal ELBP and the 

vertical radius of Vertical ELBP. 

2.2 Shifted circular elliptical local descriptor (SCELD) 

A shifted version of CELD helps in capturing all possible 

micro and macro patterns which is essential for AD detection. 

These micropatterns include fine-grained textures and minute 

differences in local regions of brain images. This can help in 

detecting atrophies at a cellular or subcellular level, such as 

changes in neuronal structures and synapse density, or the 

existence of microscopic lesions. Macro patterns include 

larger-scale features in brain images which can be obtained by 

evaluating overall brain structure, locating atrophied regions, 

and detecting macroscopic atrophies like enlarged ventricles 

or cortical thinning. The histogram features obtained through 

shifted CELD provide high structural information and can lead 

to good classification results. 

Figure 4. Sample of eight neighbouring points in CELD with 

centre pixel 

Shifted CELD can be obtained by obtaining 8 patterns by 

using the shifted version shown in Figure 4 and Figure 5. In 

the proposed work the average CELD value of all patterns has 

been taken to reduce the computation burden. Eq. (15) to Eq. 

(24) represent the SCELD.

SCELD ⋅ 𝑁, 𝑅1, 𝑅2 ⋅ Pc(𝑋ce, 𝑌ce)
= [CELDPattern1 + CELDPattern2

+ CELDPattern3 +CELDPattern4

+ CELDPattern5

+ CELDPattern6+CELDPattern7

+ CELD𝑃attern8
]/8

(15) 

where, 

CELDPattern1=∑ Sign(Y1)2n−1N
n=1 (16) 

CELDPattern2=∑ Sign(Y2)2n−1N
n=1 (17) 

CELDPattern3=∑ Sign(Y3)2n−1N
n=1 (18) 

CELDPattern4=∑ Sign(Y4)2n−1N
n=1 (19) 

CELDPattern5=∑ Sign(Y5)2n−1N
n=1 (20) 

CELDPattern6=∑ Sign(Y6)2n−1N
n=1 (21) 

CELDPattern7=∑ Sign(Y7)2n−1N
n=1 (22) 

CELDPattern8=∑ Sign(Y8)2n−1N
n=1 (23) 

where, 

Y1=Pn(R1,R2)-Pc Y2=Pn+1(R1,R2)-Pc 

Y3=Pn+2(R1,R2)-Pc Y4=Pn+3(R1,R2)-Pc 

Y5=Pn+4(R1,R2)-Pc Y6=Pn+5(R1,R2)-Pc 

Y7=Pn+6 (R1,R2)-Pc Y8=Pn+7(R1,R2)-Pc 

Figure 5. Shifted eight patterns 
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Sign={
1, 𝑌 ≥ 0
0, 𝑌 < 0

(24) 

SCELD provides 256 histogram bins which represent the 

average value of histogram bins of 8 shifted patterns. 

2.3 Wavelet-based shifted circular elliptical local 

descriptor (WSCELD) 

The combination of SCELD with wavelet results in 

WSCELD which provides the directional multiple patterns 

and enhances the classification accuracy. The wavelet 

transform captures directional information through the 

decomposition into different subbands, each related to a 

particular orientation and scale. SCELD applied to each 

subband independently, captures local texture patterns within 

each frequency band. The combination of wavelet subbands 

and SCELD provides a multi-scale representation, allowing 

the algorithm to analyze structural changes, grey matter 

density fluctuations and textures at different levels of detail. 

Eq. (25) to Eq. (29) indicate how the real coefficients of 

complex wavelets extract average information and imaginary 

coefficients extract structural information. 

Let complex wavelet have χ
s
(t)=xs(t)+y

s
(t)  as scaling

function and 𝜑w(t)=uw(t)+ivw(t)  as wavelet function. For

scaling function, ratio between xs(w) and y
s
(w) is

ƛs(w)=-
y

s
(w)

xs(w)
(25) 

where, xs(w) and y
s
(w) are Fourier Transform (FT) of xs(t)

and y
s
(t) respectively. ƛs(w) is surely real-valued and acts as

w2  for |w| < 𝜋  [30]. 𝑦𝑠(𝑡)  is approximately equal to the

second derivative of 𝑥𝑠(𝑡) multiple by some constant factor.

For wavelet function 𝜑w(t) also, the ratio between uw(w)
and vw(w) is

ϖw(w)=-
vw(w)

uw(w)
(26) 

where, uw(w) and vw(w)  are FT of uw(t)  and vw(t)
respectively. ϖw(w)  is also real valued and vw(t)  is

approximately equal to the second derivative of uw(t) multiple

by some constant factor. 

There exists a relationship between the real component of 

wavelet function and scaling function as: 

ζ(w)=-i
uw(w)

xs(w)
(27) 

where, ζ(w) is surely real-valued and acts as wm+1 for |w| <
𝜋 [30]. 

Eq. (25) and Eq. (26) indicate y
s
(t)≈ƛs∆xs(t)  and

vw(t)≈ϖw∆uw(t). This gives multi-scale projections as:

(ssi(t),χ
m,k

(t))=(ssi(t),xm,k(t)) + i (ssi(t),y
m,k

(t))

≈ (ssi(t),xm,k(t)) + iƛs (ssi(t),∆xm,k(t)) 
(28) 

(ssi(t),𝜑m,k(t))=(ssi(t),um,k(t)) + i (ssi(t),vm,k(t)) 

≈ (ssi(t),um,k(t)) + iϖw (ssi(t),∆um,k(t)) 
(29) 

where, ‘m’ and ‘k’ denote the level of decomposition and 

orientation respectively. ssi  is the signal to be decomposed 

From Eq. (28) and Eq. (29), it can be concluded that the real 

components of scaling function and wavelet function of 

complex wavelets sustain averaging information, and the 

imaginary components of scaling and wavelet function sustain 

edge information. This average information and edge 

information play an important role for Alzheimer’s disease 

detection [31]. The high frequency coefficient in detail 

subbands provide the grey matter density fluctuations which is 

also essential for AD detection [32]. 

In the proposed work SCELD has been applied on the 

sixteen sub-bands obtained by first-level DD-DTCWT 

decomposition. WSCELD with DD-DTCWT provides 

directional features from sixteen directions with complete 

isotropic and anisotropic structural and micro pattern details. 

The WSCELD with eight neighbours provides histogram bins 

equal to 256 X number of sub-bands. WSCELD histograms 

are obtained and have been used for classification. The total 

number of histogram features with DD-DTCWT is 256 X 

16=4096 which is further reduced by using Principal 

Component Analysis. The different versions of WSCELD like 

Mean WSCELD, Median WSCELD, Variance WSCELD and 

Energy WSCELD have been investigated. In Mean WSCELD, 

Median WSCELD, Variance WSCELD and Energy WSCELD, 

the centre pixel value is replaced with the mean, median, 

variance and energy values of the neighbourhood pixels 

respectively and thresholding of neighbouring pixels is done 

corresponding to that modified centre pixel. The different 

versions of WSCELD are shown in Figure 6. 

Figure 6. Different versions of WSCELD 
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3. RESULTS AND DISCUSSION

3.1 Dataset 

This study used Open Access Series of Imaging Studies 

(OASIS) dataset for executing the proposed algorithm [33]. 

OASIS consists of 3-D MR scans of three categories AD, MiCI 

and NoC having Clinical Dementia Rating (CDR) value of 

1,0.5 and 0 respectively. Total 84 3-D MR scans with 28 scans 

belonging to each category have been obtained for 

implementation work. Subsequently, 336 MR slices with 112 

slices per category are taken out from all 3-D MR scans. These 

336 MR slices are the centre slices. The sample images of the 

centre slices are shown in Figure 7. 

Figure 7. Sample from OASIS dataset (a) Alzheimer’s 

Disease (AD) (b) Mild Cognitive Impairment (MiCI) (c) 

Normal Control (NoC) 

3.2 Performance test criteria 

The performance of the proposed work is evaluated using 

three metrics namely, accuracy [34], sensitivity and specificity. 

These metrics are elaborated in Table 1. In Table 1 

TePs denotes true positive, TeNg  denotes true negative, FsPs 

denotes false positive and FsNg denotes false negative. TePs 

are the total AD individuals precisely detected into AD 

category, TeNg are the total normal subjects precisely detected 

into normal category, FsPs  are the total normal subjects 

wrongly classified into AD category and FsNg are the total AD 

subjects wrongly classified into normal category. 

Table 1. Performance criteria 

Metrics Description Formula 

Accuracy(Acc) 

effectuality of 

classifiers to 

provide right 

detections out 

of total 

outcomes. 

(T𝑒Ps + T𝑒Ng)

(T𝑒Ps + F𝑠Ng + T𝑒Ng + F𝑠Ps)

Sensitivity(Sen) 

effectuality of 

classifiers to 

provide right 

detections for 

true positives. 

(T𝑒Ps)

(T𝑒Ps + F𝑠Ng)

Specificity(Spec) 

effectuality of 

classifiers to 

provide right 

detections for 

true 

negatives. 

(T𝑒Ng)

(T𝑒Ng + F𝑠Ps)

3.3 Performance comparison of different versions of 

SCELD with different wavelets for AD/NoC, MiCI/NoC 

and AD/MiCI classifications 

Different versions of WSCELD have been tested in this 

work to evaluate the efficacy of the proposed method. The 

version DD-DTCWT+Energy-SCELD+PCA gives the best 

results among different versions. The reason is that DD-

DTCWT shows higher directional selectivity than DD-DWT 

and DTCWT. The DD-DTCWT extracts features in sixteen 

directions while DD-DWT in eight directions and DTCWT in 

six directions. DD-DTCWT provides more efficient and 

directional features than DTCWT and DD-DWT. 

The energy version of WSCELD outperforms other 

versions as it captures the energy contribution of the 

neighbouring pixels. Energy is the most promising parameter 

for finding structural changes in an image. The structural 

changes can be monitored through edge detection. Edges show 

the transformation between textured or smoothed regions and 

provide significant details about the position and 

morphological structure of pictured objects [35]. At edges, 

energy becomes maximum due to the rapid change in pixel 

values at its orthogonal direction. The ability of energy to 

capture edges lies in its emphasis on regions with high gradient 

magnitude or sharp transition in pixel values, indicating the 

presence of an edge. The squared gradient or energy of an 

image is an effective way to identify regions with abrupt 

changes in intensity, making it a key idea for edge detection 

[36, 37]. The other version like variance captures the local 

contrast information, the median captures the middle value of 

neighbouring pixels, and the mean captures the average value 

of neighbouring pixels. All these versions do not capture fine 

structural details thus leading to low performance. Table 2 

indicates the performance of different versions of SCELD 

using a decision tree classifier with different wavelets. Table 

3 indicates the p-value for the student t-test performed for the 

accuracy of different groups implemented in Table 2. The 

groups having p value greater than 0.05 are marked by *. 

These groups are H-V-ELBP/SCLD, H-V-ELBP/S-H-V-

ELBP and SCELD/Mean-SCELD. They do not show 

significant improvement. However, the proposed version DD-

DTCWT+Energy-SCELD+PCA gives outstanding results. 

The p-value obtained for the proposed version with other 

implemented versions is less than 0.05 in each case for AD 

classification. Energy SCELD is the best performer among 

variance, mean and median, whatever may be the wavelet and 

the best results are with DD-DTCWT. This shows the efficacy 

of the proposed method for early AD detection. 

It can be observed from Table 2 that Circular Local Binary 

Pattern (CLBP) provides 84.2±1.4%, 83.2±1.4% and 

81.5±1.2% classification accuracy for AD/NoC, AD/MiCI, and 

MiCI/NoC classifications respectively. These figures get 

improved by using Horizontal and Vertical Elliptical Local 

Binary Patterns (H-V-ELBP) because ELBP captures 

directional information also. The p-value obtained for group 

CLBP/H-V-ELBP is 2.60E-04 in Table 3 which is less than 

0.05 and shows significant improvement for AD/NoC 

classification. Shifted Circular Local Descriptors (SCLD) 

adds the shifted version in CLBP performance, so results get 

enhanced due to the contribution of different patterns. The p-

value for the group CLBP/SCLD is 0.012 which shows 

significant improvement in SCLD. Shifted Circular Elliptical 

Local Descriptors (SCELD) further add the directional 

patterns thus improving the classification accuracy. Mean-

SCELD, Median-SCELD, Energy-SCELD and Variance 

SCELD are the different versions of SCELD. The performance 

of Energy -SCELD is outstanding. The p-value for all groups 

from 7 to 10 in Table 3 is less than 0.05, which shows the 

significant improvement by Energy SCELD. 
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Table 2. Performance of different SCELD versions with different wavelets 

Methods AD/NoC AD/MiCI MiCI/NoC 

Acc Sen Spec Acc Sen Spec Acc Sen Spec 

CLBP 84.2±1.4 85.6±1.2 83.1±1.1 83.2±1.4 84.1±1.2 82.9±1.1 81.5±1.2 80.1±1.1 82.1±0.9 

H-V-ELBP 87.1±1.3 88.1±1.1 86.5±1.2 85.2±0.8 87.0±1.1 83.0±1.1 83.1±1.2 81.5±1.3 85.5±1.5 

SCLD 86.3±1.8 87.3±1.4 85.5±1.1 84.7±1.4 82.1±1.2 86.2±1.6 83.5±1.5 84.0±1.3 82.2±1.3 

S-H-V-ELBP 87.4±1.5 88.9±1.2 86.5±1.1 85.1±1.2 85.1±1.4 85.5±1.2 83.3±1.3 85.1±1.2 81.9±1.1 

SCELD 89.7±1.6 88.1±1.2 90.7±1.2 86.7±1.3 84.1±0.9 88.0±1.2 84.5±1.7 88.3±1.5 80.0±1.4 

Mean-SCELD 89.3±1.7 88.5±1.3 91.1±1.1 86.3±1.2 86.2±1.2 85.0±1.3 84.8±1.7 85.5±1.4 83.5±1.5 

Median-SCELD 86.4±1.1 86.1±1.1 87.7±1.2 82.6±1.1 81.2±0.8 83.9±1.3 81.3±1.1 79.4±1.2 83.5±1.2 

Energy-SCELD 91.6±1.7 92.2±1.4 89.9±1.2 88.0±1.2 91.1±1.1 85.2±0.9 86.3±1.4 88.1±1.1 84.3±0.9 

Variance-SCELD 85.4±1.1 87.5±1.2 83.2±1.5 80.5±1.2 80.0±1.4 80.1±1.3 79.2±1.1 78.2±1.2 80.3±1.3 

DD-DWT+SCELD+PCA 91.2±1.2 92.5±1.3 90.5±1.1 88.3±1.3 85.1±1.2 91.2±0.8 86.1±1.7 88.5±1.2 84.6±1.1 

DD-DWT+Mean-SCELD+PCA 91.9±1.7 92.1±1.1 90.1±1.2 87.6±1.3 87.1±1.1 88.1±1.2 85.1±1.3 88.2±1.1 82.2±1.2 

DD-DWT+Median-SCELD+PCA 90.5±0.8 92.5±1.1 88.5±1.2 85.1±1.3 87.1±1.2 83.2±0.9 84.0±1.4 85.1±1.3 83.2±1.3 

DD-DWT+Energy-SCELD+PCA 93.5±1.5 90.1±1.2 96.5±1.5 90.0±1.3 89.1±0.9 90.1±1.1 87.6±0.9 84.2±1.1 91.1±1.2 

DD-DWT+Variance-SCELD+PCA 89.1±1.2 88.2±0.9 91.2±1.1 85.2±0.8 81.1±1.1 89.2±1.2 83.9±1.3 82.1±1.1 84.2±1.2 

DTCWT+SCELD+PCA 94.0±1.3 93.1±1.1 95.5±1.2 89.5±1.1 88.5±1.2 91.5±1.1 88.7±1.3 89.5±1.1 87.1±1.2 

DTCWT+Mean-SCELD+PCA 94.2±1.4 95.9±1.2 93.1±1.1 89.2±1.1 90.1±1.1 88.9±0.9 88.3±1.2 87.1±1.1 89.5±1.2 

DTCWT+Median-SCELD+PCA 92.7±1.7 94.2±1.5 91.0±1.2 89.1±1.7 90.1±1.2 89.9±1.1 87.7±1.3 89.5±1.4 85.1±1.1 

DTCWT+Energy-SCELD+PCA 95.4±0.8 92.2±1.2 98.5±1.1 91.6±1.3 92.5±1.1 90.5±0.9 90.6±1.3 91.9±1.1 89.5±1.2 

DTCWT+Variance-SCELD+PCA 91.1±1.3 90.1±1.1 89.5±1.2 88.7±1.8 89.5±1.2 87.5±1.1 86.2±1.3 85.5±1.4 87.5±1.1 

DD-DTCWT+SCELD+PCA 95.2±1.3 96.2±1.4 94.3±1.5 92.1±0.9 93.1±1.3 91.5±1.2 92.0±1.3 91.1±1.2 93.5±1.4 

DD-DTCWT+Mean-SCELD+PCA 95.0±1.2 94.4±1.2 96.2±1.1 92.6±0.9 91.6±1.1 90.4±1.1 92.5±1.2 94.2±1.1 90.1±1.2 
DD-DTCWT+Median-SCELD+PCA 94.3±1.2 94.1±1.1 93.9±1.1 92.1±0.9 94.2±1.1 90.1±1.1 92.0±1.1 96.5±1.4 88.5±1.2 

DD-DTCWT+Energy-SCELD+PCA 

[PROPOSED] 
97.3±1.6 97.1±1.2 97.2±1.1 94.6±1.1 96.1±1.2 93.1±1.1 93.8±1.4 92.4±1.5 96.2±1.2 

DD-DTCWT+Variance-SCELD+PCA 93.4±1.2 94.1±1.1 92.2±1.2 91.1±0.9 90.2±1.1 92.1±1.5 89.7±1.3 90.5±1.2 88.5±1.2 

Table 3. p-value for the t-test performed for the accuracy of different implemented versions in the paper 

S.N. GROUPS AD/NoC AD/MiCI MiCI/NoC 

1 CLBP/H-V-ELBP 2.60E-04 2.22E-04 0.015 

2 CLBP/SCLD 0.012 0.024 0.005 

3 H-V-ELBP/SCLD* 0.340* 0.075* 0.465* 

4 H-V-ELBP/S-H-V-ELBP* 0.608* 0.330* 0.919* 

5 S-H-V-ELBP/SCELD 0.004 0.025 0.048 

6 SCELD/Mean-SCELD* 0.599* 0.848* 0.705* 

7 SCELD/Energy-SCELD 0.017 0.042 0.022 

8 Mean-SCELD/Energy-SCELD 0.007 0.024 0.049 

9 Median-SCELD/Energy-SCELD 7.25E-07 2.37E-08 1.89E-07 

10 Variance-SCELD/Energy-SCELD 7.63E-08 1.96E-10 1.22E-09 

11 SCELD/DD-DWT-SCELD+PCA 2.74E-02 0.014 0.030 

12 DD-DWT-SCELD+PCA/DD-DWT+Energy-SCELD+PCA 2.00E-03 0.014 0.007 

13 Energy-SCELD/DD-DWT+ Energy- SCELD+PCA 2.03E-02 0.008 0.035 

14 DD-DWT+Mean-SCELD+PCA/DD-DWT+ Energy-SCELD+PCA 4.52E-02 0.008 2.15E-04 

15 DD-DWT+Median-SCELD/DD-DWT+Energy-SCELD+PCA 1.29E-04 0.008 7.04E-06 

16 DD-DWT+Variance-SCELD/DD-DWT+Energy-SCELD+PCA 2.50E-06 8.61E-07 1.78E-06 

17 DD-DWT-SCELD+PCA/DTCWT-SCELD+PCA 1.36E-04 0.041 3.49E-04 

18 DTCWT-SCELD+PCA/DTCWT+Energy-SCELD+PCA 0.014 0.002 0.003 

19 DD-DWT+Energy-SCELD+PCA/DTCWT+Energy-SCELD+PCA 0.005 0.027 2.12E-05 

20 DTCWT+Mean-SCELD+PCA/DTCWT+Energy-SCELD+PCA 0.039 0.041 8.08E-04 

21 DTCWT+ Median-SCELD+PCA/DTCWT+Energy-SCELD+PCA 0.0006 0.002 1.04E-04 

22 DTCWT+ Variance-SCELD+PCA/DTCWT+Energy-SCELD+PCA 4.21E-07 8.92E-04 7.86E-07 

23 DTCWT-SCELD+PCA/DD-DTCWT-SCELD+PCA 3.94E-02 3.46E-05 1.69E-05 

24 DTCWT+Energy-SCELD+PCA/DD-DTCWT+Energy-SCELD+PCA 0.007 7.06E-05 5.82E-05 

25 DD-DTCWT+Variance-SCELD+PCA/DD-DTCWT+Energy-SCELD+PCA 1.75E-05 2.01E-06 3.42E-06 

26 DD-DTCWT+Mean-SCELD+PCA/DD-DTCWT+Energy-SCELD+PCA 0.003 0.004 0.050 

27 DD-DTCWT+Median-SCELD+PCA/DD-DTCWT+Energy-SCELD+PCA 3.20E-04 2.28E-04 0.007 

In all these models, histograms are used as features, so the 
number of textural features is 256 in each version. The model 
DD-DWT+SCELD+PCA combines SCELD with DD-DWT
which gives 8 detail sub-bands on wavelet decomposition.
SCELD is applied on each detail sub-band and subsequently
each sub-band provides 256 textural features. This results in a
total number of features of 256X8=2048. In the next step,
Principal Component Analysis (PCA) is used to minimize the
dimensionality problem. This model gives 91.2±1.2%,

88.3±1.3% and 86.1±1.7% for AD/NoC, AD/MiCI, and 
MiCI/NoC classifications respectively. Different versions of 
DD-DWT+SCELD like mean, median, variance and energy
have been tested and the maximum results are obtained with
the energy version. The p-value for all groups from 12 to 16 in
Table 3 is less than 0.05 which shows the significant
improvement by DD-DWT+Energy SCELD. The proposed
methodology has been evaluated with three wavelets namely
DD-DWT, DTCWT and DD-DTCWT. DTCWT gives 6 high-

1905



frequency sub-bands and DD-DTCWT gives 16 high-
frequency sub-bands on wavelet decomposition. Thus, the 
number of histogram features with DTCWT and DD-DTCWT 
will be 256×6=1536 and 256×16=4096 respectively. Further 
PCA has been used to reduce dimensionality. Among all three 
wavelets, the best results are with DD-DTCWT and version 
DD-DTCWT+Energy-SCELD+PCA giving maximum results
of 97.3±1.6%, 94.6±1.1% and 93.8±1.4% with AD/NoC,
AD/MiCI, and MiCI/NoC classifications respectively. The p-
value from groups 24 to 27 in Table 3 is less than 0.05 which
shows the significance of improvement by DD-
DTCWT+Energy-SCELD+PCA for AD classification at all
stages. The Receiver Operating Characteristic (ROC) curve of
different versions implemented in the paper is shown in Figure
8.

Figure 8. ROC plot for different implemented versions 

Table 4. Performance of different classifiers 

Classifiers Acc Sen Spec 

DT 97.3 97 97 

KNN 94.1 96 92 

NB 87.1 88 87 

LSVM 95.1 92 98 

Results have been also checked with other classifiers like 

K-Nearest Neighbour (K-NN), Naive-Bayes (NB) and Linear

Support Vector Machine (LSVM). The result of different

classifiers with the proposed version is listed in Table 4 and in

Figure 9.

Figure 9. Bar Plot of performance of different classifiers for 

the proposed version 

3.4 Proposed and existing algorithms: Comparative 

analysis 

The proposed method provides outstanding results in terms 

of accuracy, sensitivity, and specificity. These figures are 

97.3±1.6%, 97.1±1.2% and 97.2±1.1%, 94.6±1.1%, 

96.1±1.2% and 93.1±1.1% and 93.8±1.4%, 92.4±1.5% and 

96.2±1.2% for AD/NoC, AD/MiCI, and MiCI/NoC 

classifications respectively. The proposed method has been 

compared with nine existing methods. The existing methods 

belong to the different types of AD detection techniques 

available in literature like wavelet transform-based techniques 

[38, 39], VBM techniques [12], ROI-based techniques [13, 14] 

and Texture-based techniques [19]. The proposed and existing 

methods have been executed ten times on MATLAB-19 using 

a 10-fold cross-validation technique and their average results 

are mentioned in Table 5. 

The study [38] used DTCWT coefficients as features. This 

method of execution provides classification accuracy of 

88.2±1.1%, 80.2±1.4% 82.0±1.6% for AD/NoC, AD/MiCI, 

and MiCI/NoC classifications respectively. The study [39] 

extracted statistical features by using the combination of 

DTCWT and its rotated version. This method of execution 

provides classification accuracy of 90.4±1.1%, 89.7±0.9% and 

85.3±1.1% for AD/NoC, AD/MiCI, and MiCI/NoC 

classifications respectively. High dimensionality is the main 

limitation of studies [38, 39]. The study [12] used the VBM 

technique to select the appropriate grey density maps. A single 

atlas has been used in the study [12] which is mostly biased. 

This method of execution provides classification accuracy of 

89.3±1.3%, 81.7±1.0% and 83.5±1.2% for AD/NoC, AD/MiCI, 

and MiCI/NoC classifications respectively. The studies [13] 

and [14] belong to ROI based technique as features are 

extracted from segmented hippocampus [13] and grey matter 
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tissues [14] for AD classification. The study [13] on execution 

provides 85.3±1.3%, 74.2±1.8%, and 78.1±1.0% and the study 

[14] provides 88.5±1.2%, 86.2±1.6%, and 85.3±1.3% for

AD/NoC, AD/MiCI, and MiCI/NoC classifications respectively.

These studies [13, 14] need a high level of accuracy in

segmentation. The recent study [40] is based on a deep

learning approach and provides 86.7±1.2%, 83.5±1.6%, and

82.4±1.0% accuracy for AD/NoC, AD/MiCI, and MiCI/NoC

classifications respectively. The p values obtained after

performing t-tests on different groups of existing and proposed

methods are illustrated in Table 6. Figure 10 indicates the ROC

plot of proposed and existing algorithms for AD/NoC,

AD/MiCI and MiCI/NoC classifications.

Table 5 states that the proposed method is 4.8% higher in 

accuracy for AD/NoC classification, 3.3% for AD/MiCI 

classification and 5.0% for MiCI/NoC classification compared 

to the best-performing existing method. The t-test has also 

been performed to check the significance of improvement. The 

p-value for all nine groups mentioned in Table 6 is less than

0.05 which shows the significance of improvement in the

proposed technique in comparison to existing techniques.

The proposed technique extracts more informative features 

which can reflect both structural changes and grey matter 

density fluctuations. The combined strength of complex 

wavelet with SCELD helps in extracting structural details and 

grey matter density variations at a very minute level and thus, 

improves the classification accuracy. The proposed technique 

provides outstanding results for classifications at different 

stages of AD and gives more efficient results for early AD 

detection. The proposed technique is an automated technique 

for AD detection with more reliable results. Moreover, the 

proposed technique has been applied to the whole brain to 

capture the overall changes in the brain at different stages. 

Table 5. Performance comparison of proposed and existing algorithms 

AD/NoC AD/MiCI MiCI/NoC 

Methods Classifier Acc Sen Spec Acc Sen Spec Acc Sen Spec 

Proposed KNN 97.3±1.6 97.1±1.2 97.2±1.1 94.6±1.1 96.1±1.2 93.1±1.1 93.8±1.4 92.4±1.5 96.2±1.2 

DTCWT+PCA+LDA [38] [2018] ELM 88.2±1.1 86.5±1.1 84.4±1.2 80.2±1.4 78.4±1.2 82.3±1.1 82.0±1.6 79.3±1.5 85.1±1.1 

LBP-Hessian detector [19] [2021] CNN 87.5±1.3 89.0±1.0 86.0±1.1 86.3±1.7 83.1±1.5 89.5±1.5 71.5±1.8 72.2±1.4 71.0±1.5 

VBM-CT [16] [2021] SVM 81.3±1.1 83.3±0.9 79.2±1.2 78.8±1.4 83.0±1.5 73.0±1.4 80.4±1.2 82.1±1.1 79.1±1.1 

Hippocampus-Visual Features [13] 

[2015] 
SVM 85.3±1.3 77.1±1.3 94.1±1.4 74.2±1.8 75.1±1.5 73.0±1.5 78.1±1.0 77.2±1.2 79.5±1.2 

VBM-GM [12] [2012] SVM 89.3±1.3 87.0±1.2 91.2±1.1 81.7±1.0 84.0±1.1 78.1±1.2 83.5±1.2 88.2±1.1 79.2±1.1 

Tissue-Segmentation-based method 

[14] [2015]
SVM 88.5±1.2 89.5±1.1 87.0±1.2 86.2±1.6 87.1±1.1 86.0±0.9 85.3±1.3 86.2±1.2 85.2±1.1 

Deep Learning-VGG16 Feature 

Extractor [40] [2022] 
NN 86.7±1.2 85.2±1.1 87.3±1.0 83.5±1.6 83.0±1.1 84.1±1.2 82.4±1.0  84.1±1.2 80.4±1.0 

DTCWT+DTRCWT [39] [2021] FNN 90.4±1.1 91.2±1.1 89.4±1.0 89.7±0.9 88.2±1.2 91.0±1.1 85.3±1.1 86.1±0.9 84.0±1.1 

3D-DWT+LBP-TOP [18] [2020] SVM 92.8±1.7 94.0±1.0 90.0±1.1 91.5±1.3 92.1±0.9 91.1±1.5 89.3±1.3 84.2±1.2 95.1±1.0 

Table 6. p-values for the t-test performed for the accuracy of the proposed method and existing methods 

Group Existing Methods/Proposed AD/NoC AD/MiCI MiCI/NoC 

1 DTCWT+PCA+LDA [38]/Proposed 1.07E-10 1.12E-14 1.52E-12 

2 LBP-Hessian detector [19]/Proposed 3.61E-11 1.48E-09 6.20E-16 

3 VBM-CT [16]//Proposed 1.28E-14 8.90E-16 2.25E-14 

4 Hippocampus-Visual Features [13]/Proposed 1.39E-12 3.64E-15 2.48E-15 

5 VBM-GM [12]/Proposed 8.14E-10 3.70E-15 1.88E-12 

6 Tissue-Segmentation-based method [14]/Proposed 1.53E-10 3.82E-10 4.88E-11 

7 Deep Learning-VGG16 Feature Extractor [40]/Proposed 8.22E-12 5.37E-12 3.54E-13 

8 DTCWT+DTRCWT [39]/Proposed 6.46E-09 2.22E-08 3.56E-11 

9 3D-DWT+LBP-TOP [18]/Proposed 1.73E-05 4.95E-05 9.58E-07 
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Figure 10. ROC plot of proposed and existing methods 

4. CONCLUSION

The proposed technique significantly adds the strength of 

complex wavelets with SCELD and performs remarkably for 

early AD detection. The proposed Energy WSCELD provides 

the highest classification accuracy of 97.3±1.6% for AD/NoC 

classification,94.6±1.1% for AD/MiCI classification and 

93.8±1.4% for MiCI/NoC classification. The proposed method 

contributes more in comparison to existing methods as it 

extracts both structural and grey matter density fluctuations 

while existing techniques focus on capturing a single 

biomarker for AD detection. Moreover, it does not require 

segmentation and image registration processes as required in 

ROI-based and VBM-based techniques. In ROI-based 

methods, it is difficult to perform accurate segmentation due 

to the complex structure of the brain and in VBM-based 

techniques, it is difficult to perform the perfect alignment of 

images on templates due to the different anatomy of an 

individual’s brain. The proposed method provides frequency 

domain and spatial domain features while existing techniques 

provide either frequency domain or spatial domain features. 

Alzheimer’s classification system helps in drug 

development, clinical trials and understanding the 

heterogeneity of Alzheimer's and its underlying mechanism. 

The impact of the Alzheimer’s classification system extends 

beyond the clinic, influencing public health strategies, 

research endeavours, and societal support systems. The 

proposed method is an automated method for Alzheimer's 

classification and can be used for clinical trials. The proposed 

technique used histogram features which are high in 

dimensionality. In future statistical features can be used for 

AD classification as they provide ease of interpretation, 

robustness to outliers and memory and computational 

efficiency. The 2-D wavelet analysis treats each slice of a 3D 

volume independently, ignoring the potential inter-slice 

correlations in volumetric data. This may result in the loss of 

information regarding structures in MR images that span 

multiple slices. Future work can be focussed on 3-D MR 

images using 3-D wavelets. In addition, a feature selection 

stage may be introduced to improve the classification 

performance. 
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