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Identifying arrhythmias in electrocardiogram (ECG) data is critical for diagnosing and 

managing heart disorders. However, various types of noise in ECG data frequently pose a 

challenge to proper arrhythmia classification. To overcome this challenge, this study 

suggests a three-step process to make it more accurate to classify arrhythmias as normal (N), 

supraventricular (S), ventricular (V), fusion (F), or unknown (Q). In the first step of the 

three-step process, we add Gaussian noise to the MIT-BIH ECG data to make the 

classification model more reliable. Second, ECG signals are notch-filtered to eliminate noise 

artifacts and preserve cardiac information after Gaussian noise injection. Retaining 

important cardiac information while reducing noise distortion. Third, the 1D CNN receives 

denoised ECG data for arrhythmia classification. Five-class arrhythmias can be used to 

examine the ECG signals, according to the results of the suggested modeling. With a 1% 

error rate, the 1D-CNN-based classification system can identify N, S, V, F, and Q with 99%, 

86%, 96%, 80%, and 99% accuracy. The results suggest that the three-step ECG arrhythmia 

categorization method improves diagnostic accuracy, enabling early treatment by healthcare 

experts. Its real-world applications improve cardiovascular diagnosis and patient outcomes. 
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1. INTRODUCTION

Cardiovascular disease (CVD) is the world's leading cause 

of death, killing 17.9 million people annually. Modern 

methods for finding and analyzing heart problems are needed 

right away to make sure that people with these heart problems 

can get the right medical care at the right time [1]. The 

proliferation of ubiquitous electronics and data transmission 

infrastructure advancements in recent years has facilitated the 

accessibility of devices integrated with wire- less sensors [2]. 

This has essentially enabled the continuous monitoring of 

human health. Arrhythmias affecting the heart are of 

significant importance due to the critical function the heart 

assumes in blood circulation and its contribution to the 

progression of CVDs. 

Arrhythmia, which is defined by irregular heartbeats, dis 

turbs the cardiac rhythm by producing symptoms that are 

excessively rapid, decelerating, or occurring in an erratic 

pattern. The severity of this disruption in the heart’s regular 

rhythm can range from minor to potentially critical [3]. 

Employing the ECG as a diagnostic instrument is of immense 

value when it comes to recording and analyzing the electrical 

activity of the heart. Arrhythmia is frequently detected and 

managed with this non-invasive procedure in routine cardiac 

monitoring [4]. The ECG has become a conventional medical 

instrument for accurately monitoring heart rates [5] by 

capturing the electrical impulses of the heart during blood 

circulation. Decoding ECG data, on the other hand, requires 

specialized expertise and manual interpretation is laborious, 

time-consuming, and susceptible to human error. It is believed 

that an automated computational approach is crucial in order 

to tackle these challenges. 

Based on the patterns found in ECG recordings, cardiac 

arrhythmias are classified in various ways. most instances 

include morphological and rhythmic arrhythmias. Rhythmic 

arrhythmia is represented by a sequence of irregular heart- 

beats that follow a regular pattern, whereas morphological 

arrhythmia is marked by a single abnormal heartbeat. 

Arrhythmias may also be classified according to the chamber 

of the heart that is affected, resulting in subtypes including 

tachycardia or supraventricular arrhythmia (SVA), premature 

or additional pulse, bradyarrhythmia (BA), and ventricular 

arrhythmia (VA) [6]. 

There are two main groups of researchers who can classify 

cardiac rhythm abnormalities. The first uses conventional 

machine learning, which entails three stages: (1) preprocessing 

the ECG signal, (2) feature extraction and selection, and (3) 

ECG classification. The second uses deep learning techniques 

to train classifiers from scratch using only the data they were 

given to work with. Because of this, we may forego the 

subjective and limiting custom features [7]. 

The surface electrical potentials of the heart are recorded 

during an electrocardiogram (ECG), reflecting the organ’s 

stimulation rather than its contraction. A One-lead ECG wave 

for a typical cardiac cycle [8] is shown in Figure 1.  

Horaceket al. [9] and Malmivuo and Plonsey [10] provided 

a more in-depth analysis of the physiological principles behind 

cardiac electrophysiology. Kligfield et al. [11] describes the 

one-lead waves of a normal heart cycle: 
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Figure 1. A typical cardiac cycle in one-lead ECG [8] 

 

I. Atrial Systole: The heart’s lowest point of length occurs 

during this relaxation phase, called atrial diastole. 

II. P wave: During weak atrial systole, the P wave is brief 

(with an amplitude of 0.4 mV or less), and its duration is 

between 60 and 120ms, indicating atrial activity. The accurate 

identification of atrial flutter in the heart can be aided by 

measuring this interval. 

III. PQ stretch: An unbroken stretch of time between the 

heart’s atrial and ventricular beats. Between 12 and 20 

milliseconds is the average PQ interval. 

IV. QRS complex: The three pulses (Q, R, and S) of the left 

ventricle reflect the depolarization of different regions. 

Varying times of the QRS complex have been associated with 

the occurrence of arrhythmia, fibrillation, and myocardial 

infarction. The typical range is between 60 and 90 

milliseconds. 

V. ST stretch: This segment extension occurs approximately 

at the baseline of the electrocardiogram signal, following the 

S wave and preceding the T wave. It occurs between 230 and 

460 milliseconds and is characterized by the contraction and 

subsequent relaxation of the ventricles. By analyzing ST 

duration, ischemia complications can be identified more 

precisely. 

VI. T wave: The T wave represents the ventricles’ activation 

period, during which they become prepared to contract again. 

The T wave’s prolonged duration (100 to 250 milliseconds) 

makes it easier to detect cardiac hypertrophy, heart failure, and 

ischemic heart disease. 

 

1.1 Key challenges in existing ECG arrhythmia 

classification systems 

 

Aljuaid et al. [12] highlighted that monitoring devices' 

manual static screening in homes is limited. ECG Check, 

Kardia, and cardiac monitoring smartphone apps may be 

challenging for elderly or illiterate patients to use. To improve 

frequent monitoring compliance, home manual monitoring 

systems should include alerts and reminders. 

Real-time monitoring installations suffer signal quality 

challenges [13]. To eliminate motion artifacts during physical 

activity, they stressed the importance of filtering. Their noise 

reduction method uses an accelerometer. 

Bianchi et al. [14] addressed real-time remote monitoring of 

ECG signal data size challenges. They noted the necessity of 

clever feature extraction techniques to choose informative 

signal time periods. This step is essential before sending 

condensed data to a distant station for interpretation. 

Gusev et al. [15] described continuous ECG monitoring and 

visualization challenges. Managing refreshing rate needs 

across many platforms on lower-processing devices was the 

main difficulty. 

Baig et al. [16] discovered clinical decision support model 

system integration challenges. They focused on scalability and 

dependability, suggesting further study. The authors suggested 

real-time processing on the cloud to solve integration issues. 

In addition to the challenges, ECG monitoring systems face 

complicated computing demands, energy harvesting, and 

patient opposition to using monitoring devices. The use of 

mobile devices in continuous ECG monitoring raises concerns 

such as limited computing capability for data-intensive 

processing and battery depletion. While mobile devices 

improve monitoring flexibility, overcoming these limitations 

is a continuing problem. 

In conclusion, this work introduces a cutting-edge deep-

learning model for arrhythmia classification from ECG data. 

We want to improve the model's performance by methodically 

preprocessing the signals, which will include advanced 

filtering techniques and dataset augmentation. We will further 

explore our novel technique in the following sections, 

emphasizing the use of a flexible deep convolutional neural 

network architecture for feature extraction. Finally, our study 

will clarify the aims and offer a clear summary of the next parts, 

demonstrating the model's usefulness in tackling issues 

connected with ECG arrhythmia categorization. 

The rest of this paper will be structured as follows: Section 

1 covers the fundamentals of cardiovascular disease, 

arrhythmia, and the categorization of arrhythmias. In Section 

2, we give a comprehensive literature review centered on 

earlier research into ECG-based arrhythmia detection. Section 

3 provides background for the suggested method. In Section 4, 

we detail the method we recommend in detail. Section 5 

contains the presentation and interpretation of the researchers’ 

experimental findings. In Section 6, we can provide a 

conclusion and talk about how people might improve objects 

in the future. 

 

 

2. RELATED WORK 

 

Here, we have a look at the various initiatives taken by 

researchers to enhance ECG arrhythmia classification. Due to 

background noise, ECG readings might be difficult to interpret 

correctly. Furthermore, a high level of competence is 

necessary to understand the ECG findings. Therefore, several 

accurate and automated approaches for ECG signal processing 

have been proposed by researchers over the years [17]. Most 

of the work done in the past to better interpret arrhythmias 

from ECGs has focused on signal processing. In this follow, 

this article will take a closer look at the studies that have been 

undertaken in this section. 

 

2.1 Categorizing approaches by signal processing 

 

Sodmann et al. [18] have investigated various approaches to 

arrhythmia identification, exhibiting a variety of deep learning 

and signal processing methods. An anonymous writer used a 

neural network design with Fourier and dynamic wavelet 

transforms, and the result was an excellent 82% F-score. Zairi 

et al. [19] achieved an impressive classification accuracy of 

98.3% by combining the use of a discrete wavelet transform 

(DWT) with a multilayer perceptron (MLP). A deep 

deterministic learning (DDL) approach using synthetic neural 

network frameworks was presented by Iqbal et al. [20], who 
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achieved an exceptional 98% total accuracy. Using deep 

learning on highly linked one-dimensional neural networks, 

Cai et al. [21] produced an amazing 99.35% classification 

accuracy with a focus on atrial fibrillation (AF). In their 

investigation of rhythmic fluctuations, Maglaversa et al. [22] 

used a radial-based function network (RBFN) for efficient 

classification and improved QRS complex detection. 

With an SVM architecture and growing neural networks, 

Pławiak [23] presented a method that achieved outstanding 

accuracy of 98.85% and specificity of 99.39%. By using 

preprocessing methods and a modified deep learning 

architecture, Kanani and Padole [24] effectively implemented 

deep learning tactics, improving the classification accuracy of 

cardiac arrhythmias. Çınar and Tuncer [25] used LSTM with 

hybrid CNN-SVM deep neural networks, contributing to 

continuous monitoring of cardiac abnormalities. Sharma and 

Dinkar [26] presented the LA-SCA approach, using a deep 

neural network with discrete wavelet preprocessing for 

accurate arrhythmia classification. Sharma et al. [27] classified 

arrhythmias using a feedforward back-propagation neural 

network and the cuckoo search approach.  

An actor-critic (AC) neural network trained in the Taylor-

Sine-Cosine algorithm was utilised by Vylala et al. [28]. With 

an astounding accuracy rate of 97.7%, Yang and Wei [29] 

proposed a classification technique for electrocardiograms 

(ECGs) utilising SVM, KNN, and ANN. Asgharzadeh-Bonab 

et al. [30] extracted features using a convolutional neural 

network (CNN) and spectral entropy, obtaining 98.33% total 

reliability. A wavelet decomposition-based approach for 

feature extraction and classification utilising the hidden 

Markov model (HMM) was presented by Sangaiah et al. [31]. 

This method achieved a 99% success rate, despite a short 

sample size problem. 

Huang et al. [32] demonstrated the effectiveness of a short-

time Fourier transform for ECG data, which was followed by 

2D-CNN classification. Oh et al. [33] successfully divided the 

ECG signal into sub-bands using a convolutional neural 

network (CNN) and a long short-term memory network 

(LSTM). Wavelet-based decomposition for ECG data was 

investigated by Yildirim et al. [34], who used unidirectional 

(ULSTM) and bidirectional (Bi-LSTM) neural network 

architectures for classification. Li et al. [35] demonstrated the 

possibility for classification improvement by training a 

generalised CNN neural network (GCNN) with multiple 

heartbeats and a specialised CNN (TD-CNN) approach. 

Together, these studies highlight the wide range of deep 

learning and signal processing methods that are advancing the 

field of arrhythmia identification. 

In Table 1, a comprehensive summary of studies on ECG 

arrhythmia classification using signal processing approaches 

is provided. 

 

2.2 Limitations in existing studies 

 

Many studies have limitations that should be considered 

despite advances in arrhythmia detection. Sodmann et al. [18-

21] found that complicated neural network designs are 

difficult to understand. These models' interpretability limits 

their use in clinical situations where decision-making is 

critical. 

Studies like Iqbal et al. [20] and Sharma et al. [27] use 

publicly available datasets or personal samples, which 

presents data availability and quality issues. The use of finite 

datasets raises generalizability difficulties, and data quality 

may affect model predictions. According to Yang and Wei 

[29] and Sangaiah et al. [31], small sample numbers 

complicate the issue and may reduce the robustness of 

proposed techniques. 

Preprocessing sensitivity is another drawback of LA-SCA 

[25]. These methods use discrete wavelet preprocessing, 

which raises questions about their applicability across datasets 

and cardiac circumstances. Vylala et al. [28] found that 

sophisticated approaches' computational complexity may 

hinder their adoption in resource-constrained contexts. 

Maglaversa et al. [22] and Çınar and Tuncer [25], which 

study specific arrhythmias, worry about generalisation. 

Models may not be applicable to a wider range of cardiac 

disorders, and Sharma et al. [27] demonstrate the difficulty of 

optimising neural network weight variables. 

Method efficacy concerns, especially in small sample sizes 

like Sangaiah et al. [31], cast doubt on generalizability to 

bigger and more diversified datasets. CNNs lack inherent 

explainability, which is critical in medical contexts, making 

their interpretation in Huang et al. [32] difficult. 

Finally, Li et al. [35] balance model complexity and 

interpretability by using a generalised CNN neural network 

(GCNN) with a specialised CNN. Achieving a harmonious 

equilibrium in arrhythmia categorization remains difficult. 

These limitations demonstrate the complexity of arrhythmia 

detection studies and the necessity for continued research to 

overcome them and develop the field. 

In conclusion, our three-step ECG arrhythmia 

categorization method is distinctive. The technology uses 

cutting-edge signal processing to improve cardiovascular 

diagnosis accuracy and overcome major research difficulties. 

The novel methods increase classification accuracy and 

cardiovascular diagnostic knowledge. According to the 

literature, the proposed method has evolved extensively, 

demonstrating its ability to overcome restrictions and progress 

in ECG arrhythmia categorization. 

 

Table 1. Arrhythmia classification studies: signal processing 

approach 

 
Reference Signal Processing Method ML/DL Model 

[18] FTWT CNN 

[19] DWT MLP 

[20] SNN DDL 

[21] 1D-NN 1D-NN 

[22] RBFN RBFN 

[23] NN, SVM NN, SVM 

[24] DL DL 

[25] DWT FFBPNN 

[26] CNN-SVM CNN-SVM 

[27] FFBPNN FFBPNN 

[28] AC-NN AC-NN 

[29] SVM, KNN, ANN SVM, KNN, ANN 

[30] CNN, 2D-PCA CNN, 2D-PCA 

[31] HMM HMM 

[32] STFT 2D-CNN 

[33] LSTM ULSTM 

[34] WLSTM ULSTM 

[35] GCNN GCNN, TDNN 

 

 

3. BACKGROUND 

 

It is essential that we understand the reasoning behind the 

choice of Gaussian noise and Notch filtering as essential 

preprocessing steps before looking into the details of our 
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approach. We specifically selected these methods to improve 

the realism and quality of the ECG signals being studied in 

different areas. 
 

3.1 Optimizing ECG signal quality: Gaussian noise 

simulation and targeted notch filtering 
 

Real-world recordings of ECG signals are subject to noise 

from a variety of sources, including physiological and 

environmental factors [36]. We introduced Gaussian noise to 

the ECG data to strengthen our model's robustness and 

simulate the challenges encountered in real-world applications. 

We include Gaussian noise in the ECG data to provide a more 

realistic representation of the noise patterns found in real-

world recording scenarios. To ensure that the model can 

generalize effectively, we train and assess it using data 

augmented with Gaussian noise in less-than-ideal conditions. 

After that, we employed notch filtering to eliminate 

interference at certain frequencies while maintaining signal 

integrity overall. We chose notch filtering because it precisely 

targets and minimizes noise at specific frequencies, saving 

essential sections of the ECG signal. Our technique ensures 

that the ECG data used in the classification model is of higher 

quality by rapidly removing unwanted artifacts. 
 

3.1.1 Benefits of gaussian noise addition 

We intentionally added Gaussian noise to the ECG data, as 

it serves two benefits.  This addition accomplishes two goals. 

First of all, it simulates the inherent noise present in real-world 

ECG recording settings [37], guaranteeing that our model is 

capable of managing difficulties faced in practice. Second, by 

exposing our model to different noise levels, the addition of 

Gaussian noise improves its generalization skills and lets us 

evaluate how resilient our model is. 
 

3.1.2 Advantages of notch filtering for targeted noise 

reduction 

Times Notch filtering reduces certain sources of disturbance 

in the ECG signals. Notch filtering preserves important signal 

characteristics by focusing on and removing undesirable 

frequencies [38]. The integrity of the ECG data depends on 

this accuracy in noise reduction because general filtering 

techniques may unintentionally smooth out important 

information. As a result, the fundamental cardiac activity is 

more accurately and cleanly represented, providing a strong 

basis for further investigation. 

 

3.2 MIT-BIH database 

 

The cardiac impulses utilized in this research were taken 

from the arrhythmia database at the MIT-BIH [39]. There is a 

wide variety of heartbeats represented in the database, which 

was built from 48 recordings submitted by 47 different people. 

which was built from 48 recordings submitted by 47 different 

people. Bandpass filtering between 1 and 100 Hz and 360 Hz 

sampling gives each file a duration of 30 minutes. The dataset 

includes a modified limb II channel and a modified lead 

channel (V1, V2, V4, or V5). In this investigation, studies used 

a specialized form of the limb II channel [40]. Each heartbeat 

was analyzed by a different team of specialists, who labeled it 

with an arrhythmia classification. Normal ectopic (N), 

ventricular ectopic (V), fusion (F), supraventricular ectopic (S), 

and unclassifiable (Q) are the five types of abnormal heart 

rhythms defined by the Association for the Advancement of 

Medical Instrumentation (AAMI) [41]. Thus, five different 

arrhythmias were detected by segmenting according to the 

AAMI recommendations. For each category of arrhythmia, the 

total number of heartbeats is detailed in Table 2. Each ECG 

performed further processing to identify the individual 

heartbeat [42]. 

 

Table 2. Number of ECG beats based on AAMI 

 
Arrhythmia Type 

AAMI 
MIT-BIH Heartbeat Classes 

Beat 

Count 

Normal (N) 

Beats of normal, right, left 

bundle block, atrial, nodal 

escape 

8965 

Supraventricular 

(S) 

Ectopic supraventricular, nodal, 

atrial aberrated atrial premature 

beats contraction 

2779 

Ventricular (V) 
Ventricular contraction, flutter, 

beats of premature 
7236 

Fusion (F) 
Fusion of ventricular and beat 

of normal 
803 

Unknown (Q) 
Unclassifiable fusion of paced 

and normal, beats of paced 
8006 

 
 

Figure 2. Original ECG into segmented ECG signals 
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The Python Workbench was utilized to segment heartbeats 

by identifying the QRS structure of the signal’s pulses in order 

to extract annotated beats. A demonstration of an annotated 

rhythm is presented in Figure 2. 

 

3.3 Simulating ECG signals with Gaussian noise 

 

Adding Gaussian noise to images during training is a smart 

strategy to enhance the robustness of image classification 

models. This approach compels the model to develop features 

that can withstand minor variations in the input. This be- 

comes particularly beneficial when dealing with training data 

that is either lacking or highly diverse [43]. It’s like giving the 

model a set of challenges during training, preparing it for real-

world scenarios where input conditions may not always be 

perfect. The ECG signal x(t) is amplified through the 

introduction of Gaussian noise N(t). This could be formulated 

as: 
 

𝑃(𝑥) = 1/(𝑠𝑞𝑟𝑡(2𝜋σ2))*e^(-((x-v)2) / (2σ2)) 

 

In this case, "Sigma" represents the standard deviation of 

our improvements, and "Mu" denotes the zero-mean value. By 

supplementing the ECG with the noise signal, it is possible to 

obtain the augmented ECG signal, represented as x(t)+N(t). 

Algorithm: Simulating ECG Signal with Gaussian Noise 

(Conditional) 

1. Set sampling frequency (fs) = 1000 

2. Set sampling period (Ts) = 1/fs 

3. Generate time vector: t = 1: Ts:10-Ts 

4. Set signal frequency (f) = 1 (Frequency in Hz) 

5. Set signal amplitude (a) = 1 

6. Generate sinusoidal signal: signal = a * sin (2π * f * t) 

If adding Gaussian noise: 

7. Set noise frequency (f Noise) = 50 (Frequency in Hz) 

8. Set noise amplitude (a Noise) = 0.25 

9. Generate noise: noise = a Noise * sin(2π *f noise * t) 

10. Combine signal and noise: signal Noise = signal + noise 

Else: 

11. Use original signal: signal Noise = signal 

Probability Density Function (PDF) of Gaussian 

Distribution: 

If computing PDF: 

12. Set mean (μ) = mean of signal Noise 

13. Set standard deviation (σ) = standard deviation of signal 

Noise 

14. Compute P(x) = 1/(√(2π)σ) *e^(-((x-μ)2) / (2σ2)) 

The algorithm utilized to simulate an electrocardiogram 

(ECG) signal provides the capability to employ Gaussian noise 

selectively. As critical sampling parameters, a sampling 

frequency (fs = 1000 Hz) and period (Ts = 1/fs) are specified. 

An ECG sinusoidal signal with frequency (f = 1 Hz) and 

amplitude (a = 1) is generated over a duration of 10 seconds. 

A noisy ECG signal (signal noise) is produced when the noise 

condition is triggered and frequency (f noise=50 Hz) and 

amplitude (a noise=0.25) Gaussian noise are added to the 

original signal. The initial signal remains unaltered when the 

noise condition is absent. For noisy ECG data, the algorithm 

also provides the option to compute the probability density 

function (PDF) of a Gaussian distribution. The mean and 

standard deviation are derived from the signal statistics, and 

the P(x) value is computed utilizing the formula for the 

Gaussian distribution. For the modeling of ECG signals, this 

algorithm offers a straightforward and adaptable solution, 

which consists of dynamic noise management and, if desired, 

statistical analysis. As a visual representation, the resulting 

chaotic ECG signal (signal noise) is then illustrated in the 

Figure 3. 

 

 
 

Figure 3. ECG signals with gaussian noise 
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Figure 4. Output of the notch filter with ECG signals 

 

3.4 Notch filter for noise elimination 

 

When compared to band-stop filters, notch filters perform 

identically. These filters reduce or block signals just in the stop 

band, allowing those outside it to pass through un- changed. A 

notch filter with a stop band frequency of 1500 MHz to 1550 

MHz will block signals over 1550 MHz while letting 

frequencies between DC and 1500 MHz through. Only those 

transmissions between 1500 and 1550 MHz will be blocked 

[44]. A dedicated Notch filter is quickly integrated into the 

signal processing pipeline to further enhance the algorithm’s 

capabilities. This unique filter is specifically developed to 

remove Gaussian noise from high-resolution ECG signals, 

with an emphasis on frequencies between 50 and 60 Hz. The 

Notch Filter, which is handcrafted, assures a spike-free ECG 

signal with minimal interruption to the original signal’s 

frequency distribution. 

The Notch Filter’s efficiency comes from its quick 

calculation process and simple programming, which takes 

advantage of an integer coefficient filter technique. The ECG 

signals undergo a modification that makes them particularly 

beneficial for categorization after being filtered with Gaussian 

noise using the Notch Filter. Figure 4 depicts this procedure, 

demonstrating the Notch Filter’s effectiveness in maintaining 

critical diagnostic information while quickly reducing 

undesirable noise components. The obtained ECG signals 

provide a solid foundation for further analysis and 

categorization. 

The Notch Filter algorithm is designed to eliminate 

Gaussian noise from ECG signals. It employs a second-order 

IIR filter with a user-defined center frequency (f center) and 

bandwidth (BW). Coefficients a, b, and c are computed for the 

filter. The filtering process is executed on the noisy ECG 

signal (signal noise), resulting in a spike-free and enhanced 

ECG signal (filtered Signal). Adjustments can be made to the 

parameters for specific noise removal requirements. 

Algorithm: Notch Filter for ECG Signals 

1. Set Sampling Frequency: 

- Sampling Frequency (fs): [50-60 Hz] 

2. Design Notch Filter: 

- Power Line Frequency (f Powerline): [60 Hz] 

- Calculate Angular Frequency (w Notch): 

2π * f Powerline / fs 

- Design Notch Filter Coefficients: 

- b = [1, -2 * cos (w Notch), 1] 

- a = [1, -2 * cos (w Notch), 1] 

3. Apply Notch Filter to ECG Signal: 

- Input ECG Signal: ECG Signal 

- Output Filtered Signal: ECG Filtered = filter (b, a, ECG 

Signal) 

4. Visualization: 

- Plot Original ECG Signal and Filtered Signal for 

comparison 

 

 

4. METHODOLOGY 

 

This section presents the classification of the Arrhythmias 

using One-Dimensional CNN (1DCNN). Figure 5 shows the 

pipeline of the classification process of Arrhythmias using 
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1DCNN with the help of extracted, handcrafted features. This 

section provides an overview of the categorization of 

Arrhythmias using One-Dimensional Convolutional Neural 

Networks (1DCNN). 

 

 
 

Figure 5. Classification of arrhythmias using 1DCNN 

 

4.1 Rationale for choosing 1DCNN in ECG classification 

 

One of the reasons a 1D Convolutional Neural Network (1D 

CNN) was used for ECG classification is that it can effectively 

capture localised temporal patterns that are important for 

identifying cardiac problems. ECG signals are known to 

display subtle fluctuations, and the translation invariance of 

the 1D CNN helps identify these patterns even when there are 

temporal shifts. Furthermore, the network is well-suited for the 

complex and changeable nature of ECG data because of its 

hierarchical feature learning, computational efficiency, and 

flexibility for variable-length sequences. Less reliance on 

parameters means faster training and less chance of overfitting, 

while convolutional filters' interpretability makes it easier to 

comprehend how the model makes decisions. All things 

considered, the 1D CNN's proficiency with time-series data 

and its ability to extract both local and global characteristics 

make it an attractive option for ECG classification applications. 

 

4.2 Training procedures for ECG classification 

 

The architectural design used 1D CNNs for ECG 

categorization. The input (187, 1) underwent ReLU activation 

after applying three one-dimensional convolutional (1DCav) 

layers with filter dimensions of 32, 64, and 128. The network's 

feature capture and generalisation were improved by adding 

max-pooling, dropout, and flattening layers. The last 

classification stages used dense layers-a thick layer with three 

levels of 512, 1024, and 5 units. The output layer provided five 

classification reports reflecting the multi-class job, with a 

structure of (5, 1). 

Multi-class classification was optimised using categorical 

cross-entropy as the loss function during training. To 

maximise convergence and performance, the Adam optimizer 

was used to adjust the learning rate. Strategic dropout in deep 

layers reduced overfitting and improved generalisation to 

unseen data. Monitoring validation performance prevented 

overtraining and improved model generalisation to fresh ECG 

signals by using early stopping. 

These training approaches make the 1D CNN model robust 

and successful, allowing it to learn discriminative ECG 

characteristics and make accurate predictions across several 

classes. Architectural design and optimised training prepare 

the model for ECG signal categorization. The whole procedure 

is shown in the Figure 6. 

 
 

Figure 6. Proposed architecture of 1DCNN 

 

Classification of Arrhythmias using IDCNN involves four 

stages: Dataset Splitting, Adding Gaussian Noise, removing 

noise using a Notch filter, and classification of new test ECG 

signals. We have discussed datasets and their processing in the 

section 3. 

Data Segmentation: Here, we are classifying 27,789 ECG 

Beats into five classes: Normal Beats (8965), Supraventricular 

Beats (2779), Ventricular Beats (7236), Fusion Beats (803), 

and Unknown Beats (8006). We have considered all these 

classes for the classification. The necessary details have been 

included in Section 3.2. 

Adding Gaussian Noise: Gaussian noise has the first benefit 

of having a well-behaved distribution.  Noise has a sharpening 

effect on signals. This occurs because noise creates a different 

kind of shape. It’s an optical illusion whereby the contrast 

between neighboring pixels gives the impression of more 

resolution than is there. Section 3.3 contains all of the relevant 

information. 

Filter the noise using Notch filter: Electrocardiogram 

(ECG) detection is frequently challenged by 50-Hz 

interference from power lines and other devices. The 50 Hz 

disturbance in the ECG signal may be reduced by developing 

a notch filter. "To significantly speed up the process of 

rhythmic categorization with high accuracy, this study 

incorporates Gaussian noise as a preprocessing step and then 

applies a notch filter". Section 3.4 contains all the necessary 

details. 

 

4.3 Improving classification with noise addition and 

filtering 

 

The Gaussian noise addition phase used the wfdb package 

to load MIT-BIH Arrhythmia Database entries. With this 

library, we retrieved ECG signals from the specified record. 

We used Gaussian noise parameters like mean and standard 

deviation to regulate noise. The NumPy library's random. 

Normal function generated Gaussian noise with an ECG signal 

length. This noise was then added to the original ECG data to 
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create controlled noise. This crucial phase uses wfdb for data 

retrieval and NumPy for noise production to establish the basis 

for detailed studies of how controlled noise affects ECG 

signals. These procedures improve ECG classification model 

resilience and generalisation as well as signal analysis. This 

Gaussian Noise addition procedure is practically shown in 

Figure 7 with an Abnormal Beat. 

The Scipy package applies a notch filter to synthetic ECG 

signals after adding Gussian noise. The create_ecg_signal 

function generates a synthetic ECG signal first. With Gaussian 

noise and the sine function, this programme simulates ECG 

waveforms. The apply_notch_filter function addresses power 

line interference at 50 Hz in the produced ECG signal and is 

the code's main feature. The code sets a second-order bandstop 

filter with a notch frequency and Q using the butter function 

from scipy.signal. Applying the filter function to the original 

ECG signal using this filter creates the filtered_ecg signal. The 

1DCNN model classifies arrhythmia using the filtered signals. 

This filtered method is practically shown in Figure 8 with an 

Abnormal beat. 

 

 
 

Figure 7. Normal signal to noised signal 

 

 
 

Figure 8. Noised signal to filtered signal 

 

We have presented practically why we added Gaussian 

noise to the ECG data and why we used a notch filter to filter 

out the noise data, using the help of an abnormal signal from 

MITBIH. Figure 7 shows how a normal signal can be turned 

into noise, and Figure 8 shows how a noise signal may be 

turned into a filtered signal. Now that the signal has been 

filtered, it may be classified. When it comes to ECG signals in 

particular, the DCNN is ideal for categorising arrhythmias. In 

order to classify arrhythmias, the filtered data is fed into a 

1DCNN in this manner. 

 

 

5. DISCUSSION AND FINDINGS 

 

5.1 Key performance metrics 

 

This section gives the classification results of the 

Arrhythmias using IDCNN. Before examining the results, it is 

crucial to take into account key performance metrics, 

including precision, recall, F1 score, and specificity. These 

metrics offer a thorough assessment of the model's ability to 

make accurate predictions. While addressing metrics, we must 

understand a few crucial words connected to our model's 

predictions. True Positive (TP): The model accurately predicts 

something positive. True Negative (TN): The model 

appropriately predicts a negative. False Positive (FP): The 

model predicts a positive yet negative outcome. False 

Negative (FN): The model calls something negative, but it's 

positive. These are presented in Eqs. (1)-(4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑃
 (3) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

 

The model achieved an average 99% of AC and the 

precision, recall, f1-score, specificity and support values are 

represented in the given performance matrix Table 3. In which 

N is Normal, S is Supraventricular, V is Ventricular, F is 

Fusion and Q is Unknown. Figure 9 shows a visual comparison 

of the important classification metrics for each class in our 

model. 

 

Table 3. Performance of the proposed model 

 
Class Precision Recall F1 Score Specificity 

N 0.99 1.00 0.99 0.706 

S 0.92 0.80 0.86 0.910 

V 0.97 0.96 0.96 0.932 

F 0.95 0.68 0.80 0.926 

Q 0.99 0.99 0.99 0.408 

 

 
 

Figure 9. Comparison of metrics for each class 

 

 
 

Figure 10. Accuracy curve with 1DCNN 

 

We have simulated this classification model in 64GB RAM, 

1TB SSD with 16 GB NVIDIA GTXFORCE GPU computer. 

In this paper, we have used 27789 ECG Beats to classify into 

five classifications. After classification, performance metrics: 

accuracy (AC), specificity (SPFTY), sensitivity (SENSTY), 

precision (PREN), and f1-score (F1-S) values using confusion 

matrices (CM) of the classification scenario. Figure10 shows 

the Accuracy curves for Arrhythmia classification. In this, the 

training accuracy is 99, and the validation accuracy is 98.6. 

Figure 11 shows the Loss curves for Arrhythmia classification 

training loss is 0.03 and validation loss is 0.05. Figure 12 

shows the CM for Arrhythmia classification. In this the 

Normal Beat got 100%, Supraventricular Beat got 80%, 

Ventricular Beat got 96%, Fusion Beat got 68% and Unknown 

Beat got 99% classification results. 

 

 
 

Figure 11. Loss curve with 1DCNN 

 

 
 

Figure 12. Confusion matrix with 1DCNN 

 

5.2 Comparison of proposed model with previous state-of-

the-art method 

 

Arrhythmias can lead to sudden death, heart failure, or 

fainting, making classification difficult. Many approaches are 

used, including SVM, Naive Bayes, 1D-CNN, and 2D-CNN. 

These evaluations take time, which might lead to bad decisions. 

Arrhythmias are differentiated using ECG readings. 

Arrhythmia electrocardiograms show similar heart 

abnormalities due to similar symptoms. Patients receive 

misdiagnoses. Therefore, we proposed the 1DCNN arrhythmia 

classification model. Table 4 compares the proposed model to 

state-of-the-art models. Our model performed better in five-

class classifications, according to the comparison table. 

Xu et al. [45] suggested a granular sampling method and 

adaptive speculative mechanism (ASM) that classified three 

pulse types with 88.06% accuracy. Mahwish Naz et al. [46] 

used cubic support vector machines for deep learning to 

convert ECG signals into pictures with 97.6% accuracy. 

Bayasi's low-power ECG-based processor predicted 

ventricular arrhythmia with 86% accuracy [47]. In arrhythmia 

classification, Kumar et al. [48] used IoT-based ECG 
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monitoring with CNN classifiers with Coyote Grey Wolf 

Optimisation and achieved 95% accuracy. Loh et al. [49] 

created a 1D-DNN Low-Cost DNN Hardware Accelerator for 

wearable arrhythmia detection with 78.01% accuracy. Gu et al. 

[50] developed a lightweight CNN hardware implementation 

for wearable heart rate anomaly detection with 97.69% 

accuracy using a 1D-CNN. Avanzato and Beritelli [51] used a 

1D-CNN to diagnose ECGs with 98.33% accuracy. Acharya 

et al. [52] created a 9-layer deep CNN that autonomously 

classified five heartbeat categories with 93.47% accuracy. Yan 

et al. [53] used CNNs and SNNs to classify inter-patient ECGs 

with 90% accuracy. Eman et al. [54] compressed signals with 

BERT, reducing storage by 83% and maintaining 92.41% 

accuracy. Yin et al. [55] used 1D-CNN and DGCCA to 

diagnose tool wear with 95.6% accuracy. Deep learning was 

used to detect deadly arrhythmia in FECG signals by Nakatani 

et al. [56] with 96.2% accuracy. Ting et al. [57] used CNN to 

detect fatal ECGs from abdomen recordings with 95.2% 

accuracy. Wang et al. [58] developed a CNN with NCBAM 

for automated ECG heartbeat categorization with 68.76% 

accuracy. Wu et al. [59] used 2D-CNNs to classify ECG 

signals with 98% accuracy. 

 

Table 4. An evaluation of the suggested model against state-of-the-art approaches 

 

Reference Year Classes Approaches Dataset Performance 

[45] 2018 3 SVM (ASM) MITBIH 88.06% 

[46] 2021 5 Cubic SVM MITBIH 97.6% 

[47] 2015 2 Navie Bayes MITBIH 86% 

[48] 2022 5 Coy-GWO Deep CNN MITBIH 95% 

[49] 2020 5 DNN MITBIH 78.01% 

[50] 2023 5 1D-CNN MITBIH 97.69% 

[51] 2020 3 1D-CNN MITBIH 98.33% 

[52] 2017 5 9 Layer DCNN MITBIH 94.03% 

[53] 2021 5 SNN MITBIH 90% 

[54] 2022 4 BERT MITBIH 92.41% 

[55] 2022 4 1D-CNN+ DGCCA MITBIH 95.6% 

[56] 2021 2 CNN with FECG MITBIH 96.2% 

[57] 2021 2 2D-CNN with FECG MITBIH 95.2% 

[58] 2021 4 2D-CNN + NCBAM MITBIH 68.76% 

[59] 2018 3 2D-CNN MITBIH 98% 

Proposed 2024 5 1D-CNN with Notch MITBIH 99% 
 

5.3 Statistically significant improvements in proposed 

work over previous work 

 

The results of this investigation demonstrate statistically 

significant improvements in the proposed approach when 

compared to earlier approaches. The statistical analysis 

supports these findings by demonstrating a significant 

improvement and substantial variations in important 

performance measures. Within our study, we apply statistical 

significance tests, such as t-tests, to measure the extent of 

enhancements compared to previous research by utilizing error 

rates as a parameter.  

 

 
 

Figure 13. Error rates for different approaches 

 

This method allows a careful examination of the importance 

of observed differences in error rates, giving useful 

information on how well the proposed model works compared 

to earlier methods. Figure 13 visually represents these 

statistical analyses, offering a graphical depiction of the 

observed improvements in error rates.  
 

 

6. CONCLUSIONS 
 

In order to remove noise from ECG signals, the study uses 

a Notch filter and Gaussian noise modeling to present a unique 

diagnostic paradigm for arrhythmia categorization. There are 

five different types of arrhythmias: fusion (F), ventricular (V), 

supraventricular (S), normal (N), and unknown (Q). With the 

use of a modified 1D CNN, the classification system was able 

to obtain impressive accuracy rates: 86% for supraventricular, 

96% for ventricular, 80% for fusion, and 99% for unknown 

arrhythmias. The classification system's overall error rate is 

just 1%. 

This high accuracy points to the system's dependability and 

qualifies it for practical use in the clinical evaluation of 

patients with arrhythmias. The system's ability to provide 

prompt and precise diagnoses helps doctors, hospitals, and 

healthcare facilities make wise decisions. 

The paper looks ahead, outlining planned research to 

expand the network and investigate its capacity to find features 

relevant to various ECG datasets. Adding more physiological 

signals, such as PPG, is believed to enhance the system's 

functionality. To enhance performance even more and address 

potential constraints, it is advisable to test different designs 

and approaches. The study recognizes that validation efforts 

are still necessary to guarantee the suggested diagnostic 

framework's clinical acceptance. 
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NOMENCLATURE 

 

N Normal 

S Supraventricular 

V 

F 

Ventricular  

Fusion 

Q Unknown 

 

Greek symbols 

 

ν Signal frequency (Hz) 

A Signal amplitude 

σ Sinusoidal signal 

π Probability Density Function (PDF) 

µ Mean of signal Noise 

νNoise Noise frequency (Hz) 

ASignaNoise Noise amplitude 

 

Subscripts 

 

Noise Pertaining to noise signals 

signal Noise Combined signal and noise 
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