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During the coronavirus disease-19 (COVID-19) epidemic, there has been a growing need 

for rapid diagnostic tools, with Computed Tomography (CT) scans emerging as essential 

diagnostic resources. Nevertheless, the process of manually interpreting their findings, 

although informative, is nevertheless characterized by a significant amount of work and 

variability. In the current study, we intend to construct a machine learning-based model to 

automate the evaluation of CT images for COVID-19 diagnosis and to differentiate it from 

pneumonia and other non-COVID diseases. The model we propose employs a Tolerant 

Local Median Fuzzy C-means (TLMFCM) segmentation strategy in conjunction with the 

Stacked Sparse Autoencoder (SSAE) for robust feature extraction. The classification task 

employs a Locally Controlled Seagull Kernel Extreme Machine Learning (LCS-KELM) 

whose parameters are optimized with the Seagull Optimization algorithm (SOA). Our model 

performed better than other models in preliminary comparisons against traditional 

benchmarks, with an accuracy of 96.3% and a faster processing time. 
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1. INTRODUCTION

The emergence of a novel coronavirus in December 2019, 

subsequently named COVID-19, triggered a global health 

crisis, leading the World Health Organization (WHO) to 

declare it a public health emergency. COVID-19 primarily 

affects the respiratory system, encompassing a spectrum from 

mild to severe respiratory distress [1]. As of January 2021, this 

disease has afflicted over 90 million individuals across more 

than 200 countries, resulting in over 2 million fatalities as per 

the WHO. Early diagnosis is pivotal in mitigating the spread 

of COVID-19 and ensuring timely treatment. While reverse-

transcription polymerase chain reaction (RT-PCR) is 

considered the gold standard for diagnosis, it possesses 

limitations, including time consumption, sample dependence, 

and operator variability [2]. As an alternative, chest X-rays 

(CXRs) and CT scans have been employed for initial detection, 

offering increased precision in identifying COVID-19-related 

abnormalities, especially in CT images [3, 4]. However, the 

ever-increasing volume of CT scan images poses a significant 

challenge to radiologists and physicians, leading to substantial 

delays in diagnosis [5]. 

The integration of biomedical image analysis with deep 

learning techniques (DLT) has emerged as a promising 

solution to expedite the interpretation of complex medical 

images [6, 7]. Radiographs reveal chest abnormalities in 

COVID-19 patients, but the manual process of diagnosis can 

be time-intensive, particularly when dealing with a large 

patient population. Artificial Intelligence (AI), in particular, 

deep learning (DL) methods like Convolutional Neural 

Networks (CNNs), has the potential to accelerate the diagnosis 

of COVID-19 by swiftly identifying abnormalities in medical 

images [8-10]. Numerous studies have explored machine 

learning (ML) techniques for diagnosing COVID-19, 

achieving enhanced accuracy [11]. Nevertheless, this 

endeavor is not without its challenges. Data availability, 

especially datasets comprising both X-ray and CT images, 

remains a constraint. Furthermore, the limited pool of patient 

data poses difficulties. Pre-trained networks, initially designed 

for non-medical purposes, encounter challenges when applied 

to medical images. The absence of crucial patient information 

such as age and gender further complicate the diagnostic 

process. Implementing complex deep learning architectures 

demands substantial hardware resources, presenting another 

challenge in ML-based diagnosis [12, 13]. 

Previous research has predominantly employed transfer 

learning and pre-trained models for predictive purposes. 

However, the variability in COVID-19 patterns, influenced by 

factors like geography, age, and co-morbidities, complicates 

the application of general object recognition knowledge 

gained from other domains. Consequently, transfer learning 

may not be the suitable approach for COVID-19 diagnosis. 

Addressing the nuanced patterns associated with COVID-19 

stages requires independent models for accurate detection [14-

16]. In light of these challenges, this work presents a ML-

based approach for COVID-19 diagnosis, with a focus on 

improving accuracy. The proposed model operates 

independently in its training and testing phases, eliminating 
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dependencies on generic knowledge from other domains. 

Furthermore, our approach considers the diversity of patterns 

within COVID-19 CT scans, an aspect often underrepresented 

in existing literature. This paper aims to contribute to the field 

of COVID-19 diagnosis by offering an independent and robust 

machine-learning model capable of accurately discerning 

COVID-19 from non-COVID-19 cases. The proposed 

methodology for COVID-19 detection using deep learning 

techniques represents a significant step forward in harnessing 

the power of AI for medical diagnostics. Here are the key 

contributions and objectives of the approach: 

• Advanced Segmentation: Traditional methods often 

struggle with accurate segmentation, especially in the 

presence of noise or when lesions exhibit subtle 

contrasts. The introduction of the TLMFCM 

segmentation technique presents a novel solution to 

isolate the region of interest (ROI) with higher 

accuracy, ensuring that subsequent processes operate 

on the most relevant data. 

• Effective Feature Extraction: Leveraging the 

capabilities of the SSAE, the approach efficiently 

condenses high-dimensional data from CT scans into 

meaningful, lower-dimensional representations. This 

not only enhances the model's efficiency but also 

improves its ability to capture essential characteristics 

required for accurate diagnosis. 

• Classification: The LCS-KELM used as a classifier in 

the proposed model. By optimizing its parameters 

through the SOA, the methodology ensures that CT 

scans are classified with high precision into categories 

of COVID-19, pneumonia, or non-COVID. 

• Mitigation of Class Imbalance: Recognizing the 

inherent challenge of class imbalances in medical 

datasets, the approach incorporates data augmentation 

techniques. This ensures that minority classes (like 

COVID-19 positive cases) are adequately represented, 

leading to a more balanced and generalized model. 

• Efficient Parameter Optimization: The SOA, 

inspired by the behavioral patterns of seagulls, is 

introduced to fine-tune crucial parameters, ensuring 

the best predictive outcomes and circumventing issues 

of local minima. 

The primary research objectives of the proposed 

methodology revolve around elevating the accuracy and 

efficiency of COVID-19 diagnosis using deep learning 

techniques on CT scans. Firstly, the research aims to enhance 

the segmentation precision, especially when faced with noise 

or subtle lesion contrasts, thus ensuring a more reliable 

foundation for subsequent analyses. Additionally, by 

employing the SSAE, the objective is to adeptly transform 

high-dimensional CT scan data into a meaningful, compact 

representation, capturing the salient diagnostic features. 

Another significant objective is to ensure top-tier classification 

accuracy with the LCS-KELM, especially by optimizing its 

parameters to cater to the unique challenges posed by medical 

imaging data. Recognizing the pervasive issue of class 

imbalance in medical datasets, the research also seeks to 

bolster the representation of minority classes, thereby 

enhancing the model's generalization and reliability. Lastly, by 

seamlessly integrating advanced AI techniques with real-

world clinical needs, this research intends to bridge the gap 

between technological innovation and practical application, 

paving the way for a collaborative, interdisciplinary approach 

to improved patient outcomes. 

The paper is organized as follows: Section 2 presents work 

related to the detection of COVID-19. Then, in Section 3, our 

proposed classification methodology is discussed. Section 4 

contains experimental analysis of real COVID-19 data, and the 

outcomes are discussed. Section 5 contains concluding 

observations and future directions. 

 

 

2. RELATED WORKS 

 

COVID-19 pandemic forced researcher from all domain to 

propose solution for the same. In the following section, we 

have discussed some prominent domains of work and Table 1 

provides a summary of these studies, including their respective 

advantages and limitations. 

 

2.1 Deep learning approaches for COVID-19 detection in 

medical images 

 

Minaee et al. [3] presented a diagnostic technique to detect 

COVID-19 patients from chest radiography images using deep 

learning models. To address the constraint of limited dataset 

size, transfer learning was employed to fine-tune four widely 

recognized pre-trained deep neural networks (ResNet18, 

ResNet50, SqueezeNet, DenseNet-121) using the training 

images from the COVID-Xray-5k dataset. Models were 

evaluated on the remaining 3000 images, assessing sensitivity, 

specificity, Receiver operating characteristic (ROC) curves, 

precision-recall curves, average predictions, and confusion 

matrices. Heat maps highlighting potentially infected lung 

regions were generated. This study requires further analysis of 

a larger set of COVID-19 images for more reliable accuracy 

estimation. 

Rasheed et al. [13] proposed a COVID-19 diagnosis 

technique with ML approaches. The model used a chest X-ray 

(CXR) image as the input. Two classifiers, logistic regression 

(LR) and CNN were chosen for their speed and efficiency. 

PCA was employed to reduce dimensionality. Due to the 

limited availability of labelled training samples, a data 

augmentation technique using generative adversarial networks 

(GAN) was used to increase the training dataset size. The 

study's use of a small dataset hinders broader result 

generalization, and further validation on larger, diverse 

datasets is warranted. 

Jain et al. [17] proposed a four-phase approach to address 

the pressing need for rapid and accurate COVID-19 detection. 

It begins with data augmentation to expand the available 

dataset and enhance model generalization. Subsequently, 

preprocessing techniques are applied to prepare CXR images. 

The core of the methodology lies in the design of two-stage 

deep neural network models, which aim to distinguish 

COVID-19-induced pneumonia from healthy cases, bacterial, 

and other viral pneumonia cases using X-ray images. The 

proposed method's effectiveness is rigorously evaluated 

through both training-validation-testing and 5-fold cross-

validation procedures. 

Karatzoglou et al. [18] reviewed a Support Vector Machines 

(SVMs) gained popularity due to their simple yet effective 

approach, leveraging high-dimensional feature spaces while 

maintaining computational efficiency. This combination of 

theoretical elegance and practical performance contributed to 

their widespread adoption across diverse learning tasks. 

Sundaravadivelu and Santhanakrishnan [19] proposed a 

machine learning based model into medical science led to 
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significant progress, particularly in aiding radiologists with 

tools for medical image processing. Addressing challenges in 

breast cancer detection, innovative methods like the 

Comprising Fuzzy C-Means and Artificial Bee Colony 

optimization (CABC) algorithm, combining Fuzzy C-means 

(FCM) clustering and Artificial Bee Colony (ABC) 

optimization, demonstrated promising results in improving 

accuracy and grading through rigorous comparative analysis, 

alongside techniques like Random Forest, further enhancing 

precision and classification accuracy. 

Mulani et al. [20] proposed a system integrating image 

analysis and machine learning, utilizing CNNs and Decision 

Trees, achieving a result with precision, recall, and F1-score 

values of 74.76%, 74.76%, and 74.54% respectively, offering 

a potential solution to enhance the accuracy and efficiency of 

skin disease diagnosis.  

Zouhal and Denoeux [21] proposed a learning procedure for 

optimizing parameters in the evidence-theoretic k-nearest 

neighbor rule, a classification method rooted in the Dempster-

Shafer theory. It addresses the unresolved issue of parameter 

tuning by minimizing an error function, leading to significant 

enhancements in classification accuracy compared to other 

methods using the same information, as demonstrated 

experimentally. 

Zhang [22] presented a novel explanation for the impressive 

classification performance of Naive Bayes, highlighting the 

role of dependence distribution among attributes. It proposed 

and proved sufficient and necessary conditions for Naive 

Bayes optimality, demonstrating how evenly distributed or 

canceling dependencies contribute to its effectiveness. 

Furthermore, it investigated Naive Bayes' optimality under the 

Gaussian distribution, providing evidence that dependencies 

among attributes may offset each other, shedding light on 

when Naive Bayes performs well. 

Mukherjee et al. [23] proposed a method to address the need 

for AI-driven tools to detect COVID-19 from radiography and 

radiology images, including CT scans and CXRs. A CNN-

tailored Deep Neural Network (DNN) was engineered to 

collectively train and test both CT scans and CXRs. The study 

used both CXR and CT scan images obtained from multiple 

sources to create balanced datasets for COVID-19 and non-

COVID-19 cases. Pre-processing, data augmentation, and 

deep network model development are the four steps of the 

suggested technique. By expanding the total length of the 

dataset, this technique improves model generalization and 

minimizes the overfitting of the model. 

Panwar et al. [24] presented a deep neural network approach 

to detect COVID-19 with clear visualization using CXR and 

CT-scan images. A deep transfer learning (DTL) algorithm is 

introduced to accelerate COVID-19 case detection from 

radiological images. The study explores the relationship 

between Pneumonia and COVID-19 in radiological images 

and uses Grad-CAM for color visualization. Early stopping is 

employed to mitigate overfitting. The combined form of CNN 

and DNN is used to train and test image datasets. The approach 

has been successful in using multiple data in one structure, but, 

the presence of noise in the image affects the classification 

accuracy. 

 

2.2 Hybrid and Quantum Approaches with Segmentation 

 

Houssein et al. [25] presented a Hybrid Quantum-Classical 

Convolutional Neural Network (HQCNN) model for COVID-

19 prediction using chest radiography images. The HQCNN 

model consists of two parts: a quantum part with a quantum 

Conv layer and a classical part with CNNs. The quantum Conv 

layer is based on the quantum circuit. The classical part 

comprises three Conv layers with Rectified Linear Unit 

(ReLU) activation, two max-pooling layers, and two fully 

connected layers. The HQCNN model leverages hybrid 

computation to enhance classical learning but it focuses on 

binary and multi-class datasets, which may not fully represent 

the diversity of clinical cases and real-world scenarios. 

Abbas et al. [26] classified COVID-19 using Decompose, 

Transfer, and Compose (DeTraC), which consists of three 

separate processes: decompose, transfer, and composition. 

The approach uses Principal Component Analysis (PCA) to 

reduce the higher-dimensional feature space into a lower one. 

This helps to reduce memory and improve efficiency. The 

class decomposition partitions each class into sub-classes. The 

class decomposition is carried out with the k-means clustering 

approach. It uses transfer learning to adapt DeTraC for the 

classification of COVID-19 chest X-ray images. The time 

complexity of this approach is high. 

Das et al. [27] presented an ensemble learning-based 

COVID-19 detection with CNN. A deep CNN is used to 

identify the covid-19 patients from the X-ray images. Various 

CNN models like DenseNet201, Resnet50V2, and Inceptionv3 

are trained to observe their predictions. These models are 

combined with the weighted average ensemble approach to 

predict the class. The development of a GUI-based application 

further enhances the practical usability of the model. Also, it 

achieves high accuracy and sensitivity but its time complexity 

is high. 

Gaur et al. [28] presented a Deep CNN to detect COVID-19 

from CXR images. Three pre-trained CNN models were used 

to evaluate the transfer learning. Transfer learning is used to 

adapt three specific pre-trained CNN models (EfficientNetB0, 

VGG16, InceptionV3) for this task. The models are selected 

since they are suitable for mobile applications. Transfer 

learning proves beneficial in enhancing model learning 

capabilities. The time of the training can be reduced through 

this approach. It discusses misclassification due to image 

opacity, particularly in the left and right upper lobes and 

suprahilar areas, which resemble normal X-ray images. 

Munusamy et al. [29] created a unique FractalCovNet 

architecture for both CT-scan image segmentation and CXR 

image classification. It employs U-Net architecture with 

Fractal blocks, designed to automate COVID-19 detection. 

The FractalCovNet model is first trained for CT-scan image 

segmentation and subsequently fine-tuned for CXR image 

classification using transfer learning. The percentage of the 

infection can be determined by this method but the time 

complexity is high. 

Jangam et al. [30] presented a deep learning-based COVID-

19 detection strategy with the help of X-ray images. The model 

is a stacked ensemble consisting of four pre-trained deep 

learning models such as VGG 19, ResNet 101, DenseNet 169, 

and Wide Residual Network (WideResNet 50 2). The models 

are fine-tuned to detect COVID-19. Three best-performing 

diverse models from the base models are selected to form a 

weighted averaging-based heterogeneous stacked ensemble. 

Transfer learning is employed to leverage pre-trained model 

weights for faster training and fine-tuning for the COVID-19 

detection task. To train the model, five images from X-ray and 

a chest scan were used for training. The ensemble approach 

performed better than the basic models and consumes more 

time. 
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Table 1. Comparative analysis with existing methods 

 

Author Year Methodology Type of Image Advantages Limitations 

Minaee et al. [3] 2020 DTL CXR images 
High sensitivity, ROC, and 

specificity 
Not reliable for large-scale data 

Rasheed et al. [13] 2021 PCA+ CNN CXR images The overfitting problem is reduced 
No learning of high abstract 

features 

Jain et al. [17] 2020 

alternate 

diagnostic 

method 

CXR images 

It is fast, accurate, reliable, and 

requires fewer computational 

requirements 

Low sensitivity 

Mukherjee et al. 

[23] 
2021 DNN 

CXRs and chest CT 

scan images 
It is a lightweight model Computationally inefficient. 

Panwar et al. [24] 2020 DL 
Chest CT scan and 

CXR images 
Faster detection 

A lot of Misclassification of 

pneumonia as COVID-19 

Houssein et al. 

[25] 
2021 

hybrid 

quantum CNN 
CXR 

High precision, f1-measure, 

accuracy, and sensitivity 

The size of the images used for 

training is small 

Abbas et al. [26] 2021 DeTraC CXR 
The irregularities in the image are 

corrected.  
Less efficient 

Das et al. [27] 2021 deep CNN CXR High classification accuracy The complexity is high 

Gaur et al. [28] 2021 Deep CNN CXR 

High accuracy, sensitivity, 

effective screening and detection 

measures. 

Less opacity leads to 

misclassification 

Munusamy et al. 

[29] 
2021 FractalCovNet CXR Cost and time effective Misclassification of COVID-19 

Jangam et al. [30] 2021 

stacked 

ensemble 

model 

chest CT scan and 

CXRs images 
High recall and accuracy Pre-processing is not efficient 

Ni et al. [31] 2020 DL chest CT images 
The reading process is accelerated 

without affecting the sensitivity 
Low specificity 

Ni et al. [31] presented a DL based COVID-19 prediction 

with a chest CT image. This work employs various 

thresholding methods like adaptive thresholding, binary 

thresholding, and Otsu thresholding, with preprocessing 

techniques including noise elimination using filters like 

Median, Gaussian, and Bilateral. The study achieved 

improved image quality based on peak signal-to-noise ratio 

(PSNR) and mean-square error (MSE), with bilateral filtering 

showing the best results. The combination of Binary and Otsu 

Thresholding yielded favourable stroke object segmentation. 

However, further optimization is needed, including edge 

sharpening and removal of brain skull parts, to enhance 

segmentation accuracy and reduce false detections of illnesses. 

The approach involves segmentation, lesion detection, and 

location of the lesion. The approach also compared the 

outcomes of the deep learning with those of radiologists and 

found the proposed deep learning can achieve better results 

than the manual approaches. 

 

 

3. PROPOSED MACHINE LEARNING BASED COVID-

19 DETECTION METHODOLOGY 

 

The proposed diagnosis of COVID-19 employs deep 

learning techniques to find whether the image of the lungs 

obtained from the CT scan is affected by COVID-19, 

pneumonia, or non-COVID. The diagnosis is carried out from 

the images after pre-processing the images, segmentation, 

feature extraction, and classification steps. The segmentation 

and feature extraction are carried out with region splitting and 

a SSAE. The classification is carried out by LCS-KELM. 

Figure 1 shows the model of the COVID-19 prediction scheme. 

The steps involved in the proposed prediction of COVID-

19 are as follows. 

 

3.1 Pre-processing 

 

The images in the dataset have different sizes and therefore 

have varying sizes, so all images were resized with the same 

dimension. If the images consist of any noise, thresholding is 

used to remove them [32]. Class imbalance is indeed a 

prevalent concern in medical imaging datasets, where one 

class (e.g., COVID-19 positive cases) might be significantly 

underrepresented compared to other classes (e.g., non-COVID 

cases). This imbalance can lead to a biased model that 

performs poorly on the minority class. To mitigate class 

imbalance issues, data augmentation techniques are applied. 

This includes: 

 

• Rotation: Images are rotated by a certain degree to 

increase the dataset size. 

• Flipping: Images can be flipped horizontally or 

vertically. 

• Zoom: Images are zoomed in or out to generate 

slightly different perspectives. 

• Cropping: Different sections of an image are cropped 

to create new images. 

• Translation: Images are shifted either vertically or 

horizontally. 

• Brightness and Contrast Adjustment: Modifying 

the brightness and contrast to simulate different 

lighting conditions. 

 

In the context of medical images, these augmentations 

generate new images from the existing dataset, thus increasing 

the amount of training data, especially for the 

underrepresented class. This can help in training a more 

balanced and generalized model. 
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Figure 1. Block diagram of the proposed model 

 

3.2 Segmentation 

 

The segmentation of the image consists of highlighting the 

ROI. The segmentation process includes the separation of lung 

lesion regions from the image. The lesions are segmented with 

the region segmentation technique. The region splitting 

consists of a split of the region and similar regions are merged. 

FCM is a traditional clustering approach that provides the 

capacity to optimally partition data [33, 34]. However, it 

works effectively only in regions where there is no noise.  

FCM ignores the local information that is accessible, as well 

as the artefacts in the spatial environment. The primary 

disadvantage of this approach is that it required more iterations 

to reach a point of convergence. Because of this, the 

algorithm's time complexity is higher. An efficient clustering 

algorithm should be able to do the following tasks: (i) Reduce 

local optima problem, (ii) Effectively measure the similarity 

and differentiate elements even in the smooth contour area, (iii) 

The algorithm should be tolerant to noise (iv) Minimise time 

complexity; clustering techniques often require a long time to 

converge, which must be minimised. However, the FCM 

approach may incorrectly segment the regions due to the 

presence of noisy pixels. Therefore, we present Tolerant Local 

median FCM, which incorporates features such as local optima 

minimization, fuzzy clustering, effective clustering in the 

smooth contour region, and noise tolerance. Table 2 gives the 

pre-processed and segmented output of the proposed approach. 

The TLMFCM algorithm addresses the existing FCM's 

incapacity to deal with noisy data and low precision in 

deriving clusters of the contour area. 

 

Table 2. Pre-processed and segmented output of the 

proposed approach 

 
Class COVID-19 Common 

Pneumonia 

Normal 

Input 

   
Pre-

processing 

   
Segmentation 

   
 

In TLMFCM, a data vector is utilised for the operation since 

the 2-Dimension (2D) data makes it harder. When iteration 

begins, it estimates the median value of the window selected. 

This parameter is responsible for overcoming the complexity 

issues and Fmmfi minimises local optima problems. The cluster 

centre modification procedure is given by Eqs. (3)-(6). Eq. (3) 

is a common technique of producing a cluster centre, which 

returns the currently available cluster. However, for faster 

convergence and better parameter selection, Eq. (5), which is 

a median adjustment distance is utilised for the adjustment of 

the final cluster centre by computing the distance between the 

cluster centre of the previous iteration and the present iteration. 

This gives Eq. (4) which will be immediately applied for the 
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optimal adjustment of the existing cluster centre. The 

procedure for TLMFCM is described as follows: 

The FCM parameters such as the number of clusters, 

maximum iteration, convergence criteria, and fuzzy factor are 

initialized. During the first iteration, a random membership 

function is built using the available data. Since the 2D data 

makes the operation harder, the operation is done with a data 

vector Vxs. 

The median adjustment parameter is determined using Eq. 

(1). 

 

( )
( ) CCV
QMed

QMed
F txs

Ks st

st
mmfi

s

−
+

=


2

1
 

(1) 

 

where, Med(Qst) signifies the median of the chosen window, 

Vxs signifies the data vector, CCt signifies the cluster centre. A 

random membership function with 𝐾 × TC is created to start 

the iterative process as given in Eq. (2). 

 

  



 −+=

= =

K

s
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t
txsmmfi funitr CCVMFJ

1 1

2

 

(2) 

 

where, K and TC signify the maximum number of pixel 

elements and a number of clusters respectively, and Mfun 

indicate the membership function. The cluster centre that is 

presently available is determined using Eq. (3). 
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The distance of median adjustment to correct the final 

cluster centre is determined using Eq. (4). 

 

( )P

C
C

v

Maj
aj

max

_
=

 

(4) 

 

where, CajM indicates the median adjustment distance and is 

found using Eq. (5). 

 

( )CCMedC tprtoldMaj ___ −=
 

(5) 

 

where, Cold_t and Cpr_t indicates the old and present cluster 

centres respectively. The final cluster centre is calculated 

using Eq. (6). 

 

( )CC tpr
C

t
aj

_
1

=
 

(6) 

 

According to the obtained final cluster centre, the 

membership function Mitr is determined or updated sing Eq. 

(7). 
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where, dst and dks indicates the distance between Vxs and CCt 

in various forms. The objective function will be determined 

during each iteration using Jitr Eq. (2). 

Finally, the difference between Jitr and Jitr-1 (the preceding 

iteration's objective function value) is computed to ensure that 

the convergence requirements are met. If the value of the 

objective function does not meet the setup requirements, the 

cycle repeats again until the convergence is reached. 

The implementation details of the TLMFCM algorithm are 

depicted in algorithm 1 as follows: 

Window Size: The choice of the window size has 

implications for the granularity of segmentation. After 

multiple trials, we settled on a window size of 3×3 for our CT 

images. This size efficiently captures the local information 

without being overly sensitive to noise or overly generalizing 

the features. 

 

Algorithm 1: TLMFCM segmentation 

Input: Pre-processed training dataset 

Output: Segmented image 

1: Initialize the parameters and maximum iteration 

2:  for the pre-processed training datasets do 

3:    Calculate the median adjustment 

parameter Fmmfi 

4:    Start the iterative process Jitr 

5:    Determine the present cluster 

centre Cpr_t using Eq. (3). 

6:    Calculate the distance of median 

adjustment Caj 

7:    Compute the final cluster centre 

( )CC tpr
C

t
aj

_
1

=  

8:    Update the membership function 

Mitr 

9:    Compute the difference between 

Jitr and Jitr-1 

10: end forℝ 

11: if the convergence requirements are met  

12:   Cluster the regions 

13:  else 

14:   Repeat the process until the termination 

condition satisfies 

15: end if 

 

Number of Clusters: The choice of the number of clusters 

typically depends on the inherent structure of the image data. 

For our dataset, we chose three clusters- representing the 

background, lung tissues, and lesions or anomalies. The 

decision is based on our understanding of the typical CT 

images and preliminary experiments. 

Parameters: The TLMFCM algorithm relies on a few 

parameters: 

Fuzziness Factor: The algorithm uses a fuzziness factor of 

2. This value provides an optimal balance between hard and 

soft clustering for our dataset. 

Convergence Criteria: A critical component for the 

efficiency of our algorithm is the convergence criteria. We 

adopted a threshold value of 1×10-5 for the change in 

consecutive objective function values. If the difference 

between the current and the previous objective function value 

falls below this threshold, the algorithm is deemed to have 

converged. 

Maximum Iteration: While the convergence criteria 

usually suffice, it's prudent to have a fallback to prevent 

indefinite looping. Thus, we have set a maximum iteration 

count of 1000 for our TLMFCM algorithm. 

Initialization: The FCM parameters, such as the number of 
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clusters and convergence criteria, were initially set. During the 

first iteration, a random membership function was constructed 

using the available data. This approach ensured randomness in 

the initial phase, allowing a broad exploration of the solution 

space. 
 

3.3 Feature extraction 
 

Seven types of features like gray level dependence matrix 

(GLDM) features, neighbouring Gray-tone difference matrix 

(NGTDM) features, gray level run length matrix (GLRLM) 

features, gray level size zone matrix (GLSZM) features, gray 

level co-occurrence matrix (GLCM) features, and first-order 

histogram-based features are used for feature extraction. 

Therefore, a total of 85 features are extracted to classify 

COVID-19 patients [35]. Once the lesions are segmented, 

feature extraction is carried out with a stacked sparse auto-

encoder.  

When a nonlinear function specifies the relationship 

between independent and dependent features, autoencoders 

are employed to minimise the dimensionality of data. 

Autoencoders are a sort of unsupervised artificial neural 

network used to extract features from data automatically. It is 

one of the most effective feature extraction methods, and it is 

utilized in a variety of applications, including voice 

recognition, human gesture detection, and self-driving cars. In 

a sparse autoencoder, the Kullback-Leibler divergence (KL) is 

added to attain sparsity [36].  

The features of some datasets have a complicated 

relationship. As a result, utilizing just one Autoencoder is 

insufficient. It is possible that a single Auto encoder won't be 

able to decrease the input features' dimensionality. As a result, 

stacked autoencoders are employed in these situations. 

Multiple encoders are stacked above one another in a stacked 

autoencoder. The SSAE has an input layer, three hidden layers, 

and an output layer. By stacking numerous SAEs together, the 

expressive capacity of features retrieved by a sparse 

autoencoder is enhanced. The small dataset can cause gradient 

disappearance and overfitting. This can be avoided by 

employing a stacked sparse auto-encoder. The outcome of the 

first SAE is connected to the output of the second SAE. In the 

second SAE, more expressive characteristics will be extracted. 

This output is connected to the next SAE for improved feature 

representation and so on. The SSAE consists of an input layer, 

3 hidden layers, and an output layer. 200 hidden nodes are 

present in the first SAE. The features that are extracted by the 

1st SAE are represented as given in Eq. (8). 
 

( )byWTp ii
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(8) 

 

where, b, WT, σ and yi are the bias, weight, activation functions, 

and input respectively. The output (higher level features) of 

the 1st hidden layer is then given as input to the 2nd SAE that 

has a hidden layer with 50 nodes. The 2nd layer further 

encodes in a higher-level representation as given in Eq. (9). 
 

( )byWTp ii
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(9) 

 

The output from the 2nd layer is given to the third layer 

which consists of 10 nodes in the hidden layer which further 

encodes into higher level representation as given in Eq. (10). 
 

( )byWTp ii
333 +=

 
(10) 

The SSAE technique extracts many expressive features by 

stacking several SAEs as given in Figure 2. The high-level 

features extracted from the SSAE are given as input to the 

output layer (LCS-KELM classifier) that has 3 nodes. 

 

LCS-

KELM 

classifier

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer  
 

Figure 2. Architecture of SSAE 

 

The implementation details of SSAE is provided below: 

Number of Layers and Nodes per Layer: Our SSAE 

comprises an input layer, three hidden layers, and an output 

layer. The first hidden layer has 200 nodes. This layer captures 

primary features from the raw input. The second hidden layer 

further processes these features and consists of 50 nodes. The 

third hidden layer, designed to capture even more abstract 

features, has 10 nodes. The number of nodes in the output layer 

matches the feature size needed for the LCS-KELM classifier, 

which is three in our case. 

Activation Functions: For our SSAE, we employed the 

sigmoid activation function for the hidden layers. This choice 

was based on the sigmoid property of capturing non-linearity’s 

and its effective gradient propagation. For the output layer, we 

utilized a linear activation function to obtain raw feature 

values for the subsequent classification stage. 

Sparsity Parameters: The KL divergence regularization 

was added to induce sparsity in the SSAE. The desired average 

activation value, often denoted as rho, was set at 0.05. This 

ensures a low average activation for the nodes, encouraging 

sparsity. The sparsity regularization parameter, typically 

denoted as beta, was set at 3, ensuring that the sparsity 

constraint is prioritized in the model. 

Optimizer Used: We employed the Adam optimizer for 

training the SSAE. Adam has shown consistent performance 

in handling deep architectures like autoencoders. It 

dynamically adjusts learning rates for each parameter, 

allowing for faster convergence and efficient handling of 

sparse data. The initial learning rate for Adam was set at 0.001, 

and default values were used for other parameters (beta1=0.9, 

beta2=0.999). 

 

3.4 Classification 

 

In this phase, the LCS-KELM is used to classify whether 

the CT images belong to COVID-19, pneumonia, or non-

COVID-19. The extreme learning machine (ELM) concept of 
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single hidden layer Feed Forward Neural Networks (FFNN) 

was introduced in 2005 [37]. The LCS-KELM classifier as 

depicted in algorithm 2 predicts the presence of COVID-19 by 

using the features that are learned from the third hidden layer 

of SSAE. The number of nodes in the LCS-KELM is taken as 

three since there are three groups to be classified.  

The kernel function’s width η and the regularization 

coefficient Creg and are two essential factors in KELM. Since 

these two parameters have no theoretical foundation, tuning 

the model is required to find the best combination of the 

parameters. Therefore, the parameters η and Creg are optimized 

by using a LCS optimization algorithm. 

 

3.4.1 Seagull optimization algorithm 

Seagulls are a type of coastal bird that has been around for 

around thirty million years and can be found in nearly every 

area of the world. Even though fish is the prime source of food 

for seagulls, they also eat a variety of things, including moles, 

earthworms, amphibians, reptiles, and insects. Seagulls are 

intelligent birds with a lifespan of 10-15 years. 

Seagulls usually dwell in swarms. They live in big 

communities and interact with fellow group members using 

various voices. They steal food from other animals, birds, and 

sometimes people, which is one of their weirdest habits. They 

also employ various methods of hunting. For instance, they use 

bread crumbs or make a rain shower noise with their feet to 

attract fish. Another feature is their migration behaviour. 

Seagull migration refers to the movement of seagulls 

northward in the spring and southward in the fall, from the 

ground to the heights, or from coast to coast, to avoid harsh 

winter weather and find the most plentiful food sources. This 

process is believed to be a regular activity of seagulls moving 

from one location to another in search of a diverse variety of 

abundant food sources to maintain good energy levels [38]. 

The migration begins with a swarm of seagulls. Their 

original locations are distinct from one another to avoid 

collisions.  

• They use their swarm experience to migrate towards 

the best survival direction. 

• Seagulls generally attack migratory birds in a spiral 

shape behaviour over the sea. 

 

(i) Initialization 

The population of the seagull is initialized and then the 

maximum number of iterations is set. The initial position of 

the seagull is taken as the initial parameters (random values of 

η and Creg) and the prey is taken as the optimal values of η and 

Creg. The fitness of each possible solution (η and Creg) is 

evaluated and the solution with minimum fitness value is 

updated regularly. Finally, the solution with the least fitness 

value (output) is taken as the optimal parameters values of η 

and Creg. Optimizing these parameters helps to accurately 

classify the images fed to the KELM classifier. 

(ii) Fitness evaluation 

The prime objective function is to minimize the fitness 

function. The fitness of the solution is evaluated by using Eq. 

(11). 
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(11) 

 

where, Vacti and Vprei indicate the actual and predicted values 

respectively, and Tsam indicate the number of training samples. 

(iii) Migration of seagulls (exploration) 

The algorithm simulates how a flock of seagulls migrates 

from one location to another during migration. A seagull must 

meet three conditions during this phase: 

(a) Avoidance of collisions 

A model is specified by extra variable A for upgrading the 

new location of the seagull in order to minimize collisions with 

neighbouring seagulls (search agent). 

The search agent’s location without colliding with another 

search agent is found using Eq. (12). 
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(12) 

 

where, m denotes the current iteration, �⃗� 𝑐 denotes the current 

location of the search agent, and B denotes the search agent's 

movement behaviour in a particular search space which is 

determined using Eq. (13). 
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(13) 

 

where, fd indicates the variable B’s frequency control in the 

interval [0, fd]. 

(b) Movement towards the best solution 

The search agents change or renew their location depending 

on the best result using Eq. (14). 
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(14) 

 

where, �⃗� 𝑐  signifies the candidate’s location, �⃗� 𝑏𝑡(𝑚)  in 

relation to the best-fit candidate �⃗� 𝑐(𝑚), A signifies a random 

number that determines whether to pursue exploration or 

exploitation, which is computed using Eq. (15). 

 

RdBA = 22  
(15) 

 

where, Rd indicates a random value in the range [0, 1]  

(c) Movement towards the best search agent 

Lastly, the search agent can update its location with respect 

to the best solution using Eq. (16). 
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where, �⃗⃗� 𝑐  denotes the search agent's distance from the best 

solution. 

(iv) Attacking the prey (exploitation) 

The goal of the exploitation is to make use of the search 

process's experience and history to get the best solution. 

During migration, seagulls may adjust their assault angle and 

pace. They use their weight and wings to keep their altitude. 

The spiral motion happens in the air when hunting the prey. 

The following Eq. (17) to Eq. (19) is a description of this 

behaviour in the x, y, and z planes. 

 

( )rkx cos=
 

(17) 

 

( )rky sin=
 

(18) 

 

rkz =  (19) 
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where, r signifies a random value in the range [0≤r≤2π] and k 

signifies the spiral turn’s radius, which is determined using Eq. 

(20). 

 

 = ek r
 

(20) 

 

where, α and β are the constants that define the spiral shape. 

The seagull’s new location is updated using the Eq. (21). 
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(21) 

 

where, the best solution is saved in �⃗� 𝑐(𝑚). 

 

3.4.2 Locally controlled SOA 

Lévy flight (LF) has been utilised to improve the suggested 

SOA in this section. This technique is used to alleviate the 

premature convergence problem, which is the SOA's major 

drawback. LF is a random walk technique for effective local 

search control [39]. 

The balance between exploration and exploitation is critical 

in practically all meta-heuristic algorithms to ensure excellent 

performance. A high level of variety in the population should 

be maintained so that exploration and exploitation can be 

represented in the evolving population. If diversity is 

insufficient, local exploitation may result in early convergence, 

and therefore the chance to reach the global optimum may be 

lost. LF has been shown in studies to increase the efficiency of 

the resource-seeking process in unpredictable circumstances. 

Using LF, the global search space may be explored more 

efficiently. A LF approach is combined with the SOA 

algorithm to balance exploration and exploitation. 

LF is defined using Eq. (22). 

 

( ) qqLv −− 1
 

(22) 

 

where, q signifies the step size and 0<σ<2.  
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where, 𝐹~𝑁(0, 𝜏2), 𝐺~𝑁(0,1) 
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Figure 3. Flowchart for LCS-KELM 
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where, 𝛤(. ) denotes the gamma function. 

The location of the search agent is updated using Eq. (25). 
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(25) 

 

where, �⃗⃗� 𝑐  denotes the previous location of search agent, �⃗� 𝑐 

denotes the current location of the search agent, �⃗� 𝑐 signifies 

the candidate’s location, and Lv(q) denotes LF. 
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where, �⃗⃗� 𝑐  denotes the search agent’s distance from the best 

solution, �⃗⃗� 𝑐𝑙 denotes the updated location of the search agent. 

The seagull stops hunting for prey i.e., the output is obtained 

(optimal η and Creg parameter values of KELM) when the 

maximum number of iterations is reached or when the best 

values of the KELM parameters are found. Figure 3 gives the 

flowchart for the LCS-KELM. 

 

Algorithm 2: LCS-KELM-based classification 

Input: Extracted features 

Output: Classified output: COVID-19, normal, pneumonia 

1: Initialize the population, maximum iteration 

2:  while current iteration<maximum 

iteration do 

3:    Determine the fitness of the 

solution 

4:    Update the initial location 

5:    Migrate the seagull from one 

location to another 

6:    Attack the prey (solution) 

7:    Apply levy flight 

( ) qqLv −− 1
 

8:  end while 

9: Return η and Creg 

10: if termination condition satisfies 

11:   Provide the values of the parameters η 

and Creg to KELM 

12:    else 

13:   Repeat the process until current 

iteration>=maximum iteration 

14: end if 

 

 

4. SIMULATION SETUP AND COMPARATIVE 

ANALYSIS 

 

The simulation is conducted in python using the COVID-19 

dataset collected from the reference [40]. The experiments 

utilized a machine running on Windows 10 operating system, 

powered by an Intel Core i9-7900X CPU with a clock speed 

of 3.30 GHz. The system also featured an NVIDIA GeForce 

GTX 1080 Ti graphics processing unit and had 32.0 GB RAM. 

The following segments delve deeper into the details of the 

dataset, assessment criteria, and the resulting experimental 

findings. 

 

4.1 Model components 

 

The primary components of the diagnostic model include 

the SSAE and the LCS-KELM. The SSAE, a specialized deep 

neural network, is constructed with an input layer, three 

progressively smaller hidden layers, and an output layer. 

Starting with 200 nodes in the first hidden layer, the 

architecture ensures a hierarchy of feature abstraction as the 

number of nodes decreases in subsequent layers. The SSAE’s 

main purpose is to condense the high-dimensional CT scan 

images into a compact yet informative representation, 

highlighting the crucial diagnostic characteristics. On the other 

hand, the LCS-KELM, designed for swift training and superior 

generalization, consists of a single hidden layer. Leveraging 

the feature set derived from the SSAE, the LCS-KELM 

precisely classifies the CT scan images into one of three 

categories: COVID-19, Normal, or Pneumonia. Together, 

these components create an efficient and accurate diagnostic 

system. 

 

4.2 Training process 

 

The training process harnesses features extracted by the 

SSAE, employing the LCS-KELM classifier optimized by the 

SOA. Through 10-fold cross-validation, each data point is 

methodically utilized for both training and testing, ensuring 

robust model accuracy. 

(a) Dataset Description and Source: 

The dataset used for the simulations is termed as the 

“COVID-19 dataset”, which was collected from reference [40]. 

The dataset comprises images of lungs obtained from CT scans. 

These images are primarily grouped into three categories: 

• COVID-19 

• Common Pneumonia 

• Normal (indicating no presence of the COVID-19 or 

Pneumonia). 

(b) Characteristics and Size: 

The dataset’s images vary in their initial dimensions, 

prompting the need for pre-processing. For consistent analysis, 

all the images were resized to a standard size, 512x512. The 

dataset’s composition consists of 2035 images for the COVID-

19 class, 2119 images for the normal class, and 3390 images 

for the pneumonia class, leading to a total of 7544 images. 

(c) Feature Extraction using SSAE: 

In the feature extraction phase, the post-segmented images 

from the dataset are processed using a SSAE. SSAE, a variant 

of deep neural networks, serves as an effective tool for 

distilling high-dimensional data from images into a compact, 

lower-dimensional format. Structurally, the SSAE is 

composed of an input layer, followed by three hidden layers, 

and culminating in an output layer. Intriguingly, each hidden 

layer is characterized by a varying number of nodes. For 

instance, the inaugural hidden layer boasts 200 nodes. As the 

data progresses through these layers, it undergoes a 

transformation, with each layer encapsulating the features into 

increasingly abstracted and succinct representations. 

(d) Parameter Optimization using SOA: 

To ensure that the KELM operates at peak efficiency, it’s 

crucial to fine-tune its parameters meticulously. This 

optimization process leverages the SOA to pinpoint the ideal 

values for the kernel function’s width and the regularization 

coefficient inherent to the KELM. Drawing inspiration from 
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natural behaviors exhibited by seagulls, such as their distinct 

patterns of migration and hunting, the SOA meticulously 

adjusts these parameters to maximize the model’s predictive 

capabilities. Further enhancing the algorithm’s efficiency and 

ensuring it avoids the pitfalls of local minima, the inclusion of 

LF into the SOA ensures a more comprehensive and effective 

search for the optimal parameter configuration. 

(e) Model Training using KELM with Optimized 

Parameters and 10-cross validation: 

Utilizing the refined features procured from the SSAE, the 

LCS-KELM classifier embarks on its training journey. The 

core objective of LCS-KELM is to discern whether a CT scan 

delineates a COVID-19 infection, pneumonia, or a non-

COVID instance. Essential to its efficacy is its employment of 

the optimized parameters ascertained by the SOA, ensuring the 

pinnacle of predictive accuracy. To bolster the model’s 

credibility and robustness, a 10-fold cross-validation 

technique is applied. This meticulous approach involves 

partitioning the entire dataset into ten segments. Over ten 

iterations, nine of these segments serve as the training set 

while the remaining segment functions as the test set. This 

cyclical methodology guarantees that each data point is 

utilized for both training and testing, reinforcing the model’s 

reliability and mitigating any potential for overfitting. The 

Table 3 specifies the parameters used in the proposed 

methodology. 

The experiments utilized 10-fold cross-validation as given 

in Figure 4 to validate the suggested model. Each instance of 

the dataset is exposed to 80% training and 20% testing at least 

once by cross-validation. As a result, biased outlier modelling 

may be avoided. 

By employing this rigorous training process and optimizing 

the parameters with real-world-inspired algorithms like the 

Seagull Optimization, the proposed methodology showcases 

improved accuracy, precision, recall, and other metrics over 

existing methods. 

 

 

Table 3. Parameters table 

 
Parameter Description 

Dataset source [40] CT Scan images 

Dataset categories Covid-19, Pneumonia, normal 

Image resize dimension 512×512 

Noise removal Thresholding [32] 

SSAE layers (Input, 

Hiddenx3, Output) 

5 layers 

Hidden nodes in SSAE 200 (1st layer), 50 (2nd layer), 10 

(3rd layer)  

Optimization algorithm SOA with Levy flight 

KELM parameters 

optimized 

Kernel functions width and 

regularization coefficient 

Validation method 10-fold cross validation 

Maximum iterations for 

SOA 

100 

Population of Seagulls 50 

Dimension for SOA 2 

 

4.3 Evaluation metrics 

 

Metrics such as Area under the ROC curve (AUC), F1 score, 

Specificity, Recall or Sensitivity, Precision, Accuracy, and 

run-time are computed in each fold and the obtained results are 

compared with the existing COVID-19 detection techniques. 

(i) Accuracy 

The most prevalent criterion for evaluation is accuracy. The 

greater the classifier's performance, the higher the accuracy. It 

is computed using Eq. (27). 
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where, STP and STN denote True Positive and True Negative 

respectively, whereas SFP and SFN denote False Positive and 

False Negative respectively. 
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Figure 4. Cross-fold validation 
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(ii) Recall 

The fraction of positive instances in the dataset that is 

anticipated to be positive is known as recall. It is computed 

using Eq. (28). 
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(iii) Specificity 

The ability of a classifier to detect negative samples is 

measured by specificity. It is computed using Eq. (29). 
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(iv) Precision 

Precision refers to the percentage of positive forecasts that 

fall into the positive category. It is computed using Eq. (30). 
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(v) F1-score 

The weighted harmonic average of precision and recall is 

the F-score and is determined using Eq. (31). 
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where, Srcl and Spr are the recall and precision scores. 

(vi) ROC 

The false positive rate (FPR) is plotted against the true 

positive rate (TPR) to create a ROC curve (FPR). It is 

determined by using Eq. (32) and Eq. (33) respectively. 
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4.4 Qualitative analysis 

 

The qualitative prowess of the proposed methodology is 

underpinned by several intricate components and strategies, 

each addressing specific challenges inherent in medical 

imaging. Firstly, the TLMFCM stands out in its robustness 

against noisy data, a frequent challenge in CT scans. By 

emphasizing local median values, it ensures accurate 

segmentation of lung lesions, even amidst data imperfections. 

Furthermore, the methodology's adoption of the SSAE 

provides a sophisticated mechanism for delving deep into 

high-dimensional data, transforming it into compact 

representations that retain essential diagnostic characteristics. 

This becomes pivotal, especially when the relationship 

between features can be complex and nonlinear, as is often the 

case with medical images. Moving to classification, the 

harmonious integration of the LCS-KELM classifier with the 

SOA ensures meticulous fine-tuning of kernel parameters, 

drawing inspiration from seagull behaviors for efficient 

parameter optimization. The inclusion of LF further refines 

this, striking a balance between exploring new solution areas 

and honing in on the best-found solutions, thus preventing 

premature convergence. Collectively, these attributes render 

the proposed methodology as a qualitatively superior approach, 

promising enhanced accuracy in the segmentation and 

classification of COVID-19 from CT scans, a crucial 

requirement in today's medical landscape.  

 

4.5 Quantitative results 

 

The proposed LCS-KELM classifier is compared with 

existing techniques such as PCA+CNN [13], DNN [23], 

HQCNN [25], Deep CNN [26], and Stacked ensemble model 

[27]. Figure 5 gives the accuracy scores obtained for the 

proposed LCS-KELM classifier and existing ones under 5-

fold and 10-fold validation. Under 5-foldcross-validation, the 

classification accuracy for PCA+CNN [13], DNN [23], 

HQCNN [25], Deep CNN [26], and Stacked ensemble model 

[27] and the proposed LCS-KELM classifier are 74%, 82%, 

85%, 88%, 92%, and 97% respectively. This shows that the 

proposed classifier has higher accuracy than the existing ones. 

Similarly, when the performance is tested under 10-fold 

validation, the proposed LCS-KELM classifier shows better 

classification accuracy of 95.2%. The parameters in the 

KELM are optimally chosen by the LCS optimization. This 

LCS prevents premature convergence and increases 

classification accuracy. 

 

 
 

Figure 5. Accuracy analysis 

 

Existing techniques in the realm of COVID-19 diagnosis 

through imaging have shown promise but come with their 

share of limitations. PCA+CNN [13], for instance, relies on 

PCA - a linear dimensionality reduction method that might 

miss complex non-linear relationships, potentially leading to 

information loss. DNNs [23], while powerful, grapple with 

overfitting issues, especially when training data is sparse, and 

demand significant computational resources. HQCNN offers 

an avant-garde approach, but its complexity and nascent stage 

mean its practicality for widespread deployment is 

questionable. Similarly, the Deep CNN architecture, with its 

depth, can also succumb to overfitting and demands 

meticulous tuning. Lastly, Stacked Ensemble Models, though 

aiming for robustness through model diversity, can be 

computationally expensive and performance can waver if the 

base models aren't diverse enough or produce correlated errors. 
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In contrast, the proposed LCS-KELM approach is crafted to 

address these challenges. Emphasizing on optimized feature 

extraction, the methodology harnesses the SSAE's capability 

to capture essential data characteristics pivotal for precise 

diagnosis. This nuanced focus on feature extraction ensures 

crucial data elements are preserved and leveraged effectively. 

Moreover, the LCS-KELM is renowned for its swift training, 

enabling rapid model updates and deployments, which is a 

crucial aspect in the dynamic field of medical diagnostics. The 

integration of the SOA with the classifier ensures optimal 

parameter settings, enhancing prediction accuracy. Further, 

the model's design inherently handles class imbalances and, by 

leveraging LF, achieves a harmonized balance between 

exploration and exploitation, reducing the chances of 

overfitting and boosting generalization. Thus, the proposed 

model, with its unique synthesis of techniques, seeks to 

provide an advanced, efficient, and robust solution for 

diagnosing COVID-19 using CT scan imagery. 

The recall score for proposed and existing ones is shown in 

Figure 6. The recall scores acquired for PCA+CNN [13], DNN 

[23], HQCNN [25], Deep CNN [26], and Stacked ensemble 

model [27], and the proposed LCS-KELM classifier is74%, 

72%, 85%, 81%, 88%, and 91% respectively. The suggested 

LCS-KELM classification technique produces superior 

outcomes based on the analysis with the existing techniques. 

This aids in properly identifying the patients affected by 

COVID-19. A single Autoencoder won't be able to minimise 

the input features' dimensionality. The proposed model 

employs a stacked model rather than a single model for 

extracting the features. This improves the recall or Sensitivity 

score compared to other schemes. 

 

 
 

Figure 6. Recall analysis 

 

The specificity obtained for the suggested approach is 

depicted in Figure 7. When testing the performance of the 

proposed LCS-KELM classification method, it is observed 

that the proposed LCS-KELM classifier offers higher 

specificity (97%) than the existing techniques such as 

PCA+CNN [13] (65%), DNN [23] (73%), HQCNN [25] 

(77%), Deep CNN [26] (80%), and Stacked ensemble model 

[27] (81%). One of the factors that improve the specificity of 

the proposed method is due to the elimination of noise in the 

image by the binary thresholding method. This helps to 

accurately segment and classify the images. 

The precision analysis for the suggested approach is 

depicted in Figure 8. When testing the proposed LCS-KELM 

classification method in the COVID-19 dataset, it is observed 

that the proposed LCS-KELM classifier offers higher 

precision (93%) than the existing techniques such as 

PCA+CNN [13] (68%), DNN [23] (75%), HQCNN [25] 

(74%), Deep CNN [26] (85%), and Stacked ensemble model 

[27] (91%). In the proposed methodology, the TLMFCM 

segmentation technique clusters the data by using the fuzzy 

methodology and also reduces the local optima problem. 

Compared to the existing techniques, the TLMFCM 

segmentation technique is able to differentiate elements in 

smooth contour areas. This increases the precision during 

classification. 

 

 
 

Figure 7. Specificity analysis 

 

 
 

Figure 8. Precision analysis 

 

The performance analysis is shown in Figure 9 in terms of 

the F1-score. The proposed LCS-KELM classifier 

outperforms the current systems while computing F-score. The 

F1-score for PCA+CNN [13], DNN [23], HQCNN [25], Deep 

CNN [26], and Stacked ensemble model [27] and the proposed 

LCS-KELM classifier are 62%, 70%, 75%, 71%, 84%, and 

91% respectively. 

From Figure 10, it is observed that the proposed LCS-

KELM classifier has a higher AUC than the other models such 

as PCA+CNN [13], DNN [23], HQCNN [5], Deep CNN [26], 

and Stacked ensemble model [27]. The proposed LCS-KELM 

model has the highest AUC of 0.988 while DNN has the 

lowest AUC of 0.959. Table 4 and Table 5 show the numerical 

results obtained for the proposed and the existing approaches 

for 5-fold and 10-fold validation respectively. 
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Table 4. Comparative analysis of overall performance with existing techniques for 5-fold validation 
 

Method  Accuracy (%) Precision (%) Recall (%) F1-score Specificity (%) 

PCA+CNN [13] 74 68 74 62 65 

DNN [23] 82 75 72 70 73 

HQCNN [25] 85 74 85 75 77 

Deep CNN [26] 88 85 81 71 80 

Stacked ensemble model [27] 92 91 88 84 81 

Proposed LCS-KELM classifier 97 93 91 91 87 

 

Table 5. Comparative analysis of overall performance with existing techniques for 10-fold validation 

 
Method  Accuracy (%) Precision (%) Recall (%) F1-score Specificity (%) 

PCA+CNN [13] 80 83 85 70 71 

DNN [23] 88 90 82 71 75 

HQCNN [25] 81 84 84 80 70 

Deep CNN [26] 86 82 89 85 76 

Stacked ensemble model [27] 90 83.5 93 82 80 

Proposed LCS-KELM classifier 95.2 90 95.8 95 92.5 

 
 

Figure 9. F1-score analysis 

 

 
 

Figure 10. ROC analysis  

 

Figures 11-13 provide a comprehensive comparative 

analysis of segmentation in terms of accuracy, sensitivity and 

specificity in the context of COVID-19 diagnosis from 

medical images. Figure 11 illustrates accuracy percentages, 

showcasing the proposed LCS-KELM classifier's remarkable 

precision, surpassing other methods like PCA+CNN, DNN, 

HQCNN, Deep CNN, and Stacked Ensemble Model. The 

second graph, focusing on sensitivity percentages, highlights 

the superior ability of the LCS-KELM classifier to accurately 

detect COVID-19 cases. The third graph emphasizes 

specificity percentages, revealing the classifier's excellence in 

correctly identifying non-COVID-19 cases. Together, these 

graphs provide a clear visual representation of the outstanding 

segmentation performance of the proposed method in terms of 

accuracy, sensitivity, and specificity, making it a robust tool 

for precise COVID-19 diagnosis from medical images. 

Table 6 provides a comprehensive comparison of 

segmentation performance between the proposed LCS-KELM 

classifier and existing techniques, utilizing both 5-fold and 10-

fold cross-validation methods. The segmentation performance 

is evaluated based on key metrics such as accuracy, sensitivity, 

and specificity. 

 

 
 

Figure 11. Segmentation accuracy comparison 

 

Figures 14-16 offer an exhaustive comparative analysis of 

feature extraction performance in terms of accuracy, 

sensitivity, and specificity using medical images. Figure 14 

presents accuracy percentages, prominently showcasing the 

superior precision achieved by the proposed method in 

extracting features. It outperforms established methods like 
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PCA+CNN, DNN, HQCNN, Deep CNN, and Stacked 

Ensemble Model. Figure 15, dedicated to sensitivity 

percentages, emphasizes the LCS-KELM classifier's 

exceptional ability to accurately detect COVID-19 cases 

during the feature extraction process. Lastly, Figure 16 

underscores specificity percentages, in extracting features. 

These figures collectively depict the remarkable feature 

extraction performance of the proposed method, 

demonstrating its superiority in terms of accuracy, sensitivity, 

and specificity. 

 

 
 

Figure 12. Segmentation sensitivity comparison 

 

 
 

Figure 13. Segmentation specificity comparison 

 

 
 

Figure 14. Feature extraction accuracy comparison 

 
 

Figure 15. Feature extraction sensitivity comparison 

 

 
 

Figure 16. Feature extraction specificity comparison 

 

 
 

Figure 17. Classification accuracy comparison 

 

Table 7 provides an extensive comparative analysis of 

feature extraction performance between the proposed LCS-

KELM classifier and existing techniques, using both 5-fold 

and 10-fold cross-validation methods. This evaluation is based 

on key metrics, including accuracy, sensitivity, and specificity. 

For the proposed LCS-KELM classifier in the 5-fold cross-

validation scenario, the accuracy is 96.4%, sensitivity is 93%, 
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and specificity is 92%. In the 10-fold cross-validation scenario, 

it achieves an accuracy of 96%, sensitivity of 95.7%, and 

specificity of 94%. These outstanding numerical results 

further validate the effectiveness of the proposed method in 

feature extraction for precise COVID-19 diagnosis from 

medical images. 

 

 
 

Figure 18. Classification sensitivity comparison 

 

Figures 17-19 offer a comprehensive comparative analysis 

of classification performance in the context of COVID-19 

diagnosis from medical images, focusing on accuracy, 

sensitivity, and specificity. Figure 17 illustrates accuracy 

percentages, highlighting the exceptional precision achieved 

by the proposed LCS-KELM classifier compared to 

established methods such as PCA+CNN, DNN, HQCNN, 

Deep CNN, and Stacked Ensemble Model. Figure 18 delves 

into sensitivity percentages, emphasizing the superior ability 

of the LCS-KELM classifier to accurately detect COVID-19 

cases during the classification process. Finally, Figure 19 

underscores specificity percentages, revealing the classifier's 

excellence in correctly identifying non-COVID-19 cases. 

These figures collectively demonstrate the outstanding 

classification performance of the proposed method, 

showcasing its superiority in terms of accuracy, sensitivity, 

and specificity. 

Table 8 provides a comprehensive comparative analysis of 

classification performance between the proposed LCS-KELM 

classifier and existing techniques, utilizing both 5-fold and 10-

fold cross-validation methods. This evaluation considers key 

metrics, including accuracy, sensitivity, and specificity. For 

the proposed LCS-KELM classifier in the 5-fold cross-

validation scenario, the accuracy is 96.4%, sensitivity is 93%, 

and specificity is 92%. In the 10-fold cross-validation scenario, 

it achieves an accuracy of 96%, sensitivity of 95.7%, and 

specificity of 94%. These numerical results underscore the 

effectiveness of the proposed method in classification for 

precise COVID-19 diagnosis from medical images, further 

validating its robustness. 

 

4.6 Comparative analysis with machine learning models 

 

In the study, several baseline ML techniques, including 

Support vector machine (SVM) [18], Random Forest [19], 

Decision Tree [20], K-Nearest Neighbors (KNN) [21], and 

Naïve Bayes [22], were employed to benchmark and draw 

comparisons with the performance of the newly proposed 

LCS-KELM classifier in detecting COVID-19. According to 

the visual representation in Figure 20, the LCS-KELM 

classifier demonstrated exceptional efficacy, achieving an 

overall classification accuracy surpassing 96.4%. This is a 

remarkable accomplishment when considering the variability 

and complexity of diagnosing conditions like COVID-19. 

Furthermore, upon analyzing the performances delineated in 

Figure 20, it becomes evident that LCS-KELM stands out as 

the top-performing classifier. In contrast, the Decision Tree 

emerges as the least effective among the evaluated classifiers. 

The subsequent rankings, in decreasing order of performance, 

are Random Forest, Naïve Bayes, KNN, and SVM. This 

hierarchy underscores the enhanced capabilities of the LCS-

KELM classifier, which not only outperformed the traditional 

models but set a new benchmark in accuracy for COVID-19 

detection using ML techniques. 

 

Table 6. Comparative analysis of segmentation performance with existing techniques for 5-fold and 10-fold validation 

 

Method 

5-Fold 10-Fold 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PCA+CNN [13] 70 70 63 75 76 68 

DNN [23] 68 68 75 74 74 79 

HQCNN [25] 78 73 68 80 77 72 

Deep CNN [26] 80 70 77 84 76 81 

Stacked ensemble model [27] 85 80 83 88 86 86 

Proposed LCS-KELM 

classifier 
92 90 90 94.7 94.9 94 

 

Table 7. Comparative analysis of feature extraction performance with existing methods for 5-fold and 10-fold validation 

 

Method 

5-Fold 10-Fold 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PCA+CNN [13] 72 76 63 78 87 68 

DNN [23] 85 76 75 80 85 72 

HQCNN [25] 81 88 78 83 86 73 

Deep CNN [26] 85 78 79 81 82 80 

Stacked ensemble model [27] 91 87 82 89 89 83 

Proposed LCS-KELM 

classifier 
96.4 92 90.4 96 96 94 
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Table 8. Comparative analysis of classification performance with existing techniques for 5-fold and 10-fold validation 

 

Method 
5-Fold 10-Fold 

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) 

PCA+CNN [13] 75 78 67 77 84 72 

DNN [23] 79 76 71 83 83 76 

HQCNN [25] 81 84 80 86 85 79 

Deep CNN [26] 85 80 76 87 86 82 

Stacked ensemble model 

[27] 
91 85 84 90 90 82 

Proposed LCS-KELM 

classifier 
96.4 93 92 96 95.7 94.1 

 

Table 9. Comparative analysis with machine learning models 

 

Method Fold 
Decision Tree 

[20] 

Random forest 

[19] 

Naïve Bayes 

[22] 

KNN 

[21] 

SVM 

[18] 

Proposed LCS-

KELM 

Accuracy 

(%) 

5 56 60 80 76 84 89.6 

10 67 64 63 70 89 96.3 

 

Table 10. Comparative analysis with machine learning models 

 
Method Fold k-means clustering [41] FCM [42] MFCM [43] Proposed TLMFCM 

Run Time (s) 
5 9.8 9 8.3 6.4 

10 11 10.5 10 8 

 

 
 

Figure 19. Classification specificity comparison 

 
 

Figure 20. Accuracy analysis of classifier with baseline 

techniques 

 

Table 9 presents a comparative analysis of the performance 

of different ML models, including Decision Tree [20], 

Random Forest [19], Naïve Bayes [22], KNN [21], SVM [18], 

and the proposed LCS-KELM, in the context of COVID-19 

detection using CT scan data. The accuracy, expressed as a 

percentage, is used as the evaluation metric for these models 

in both 5-fold and 10-fold cross-validation scenarios. In the 5-

fold validation, the Decision Tree model achieved 56% 

accuracy, Random Forest reached 60%, Naïve Bayes attained 

80%, KNN scored 76%, and SVM showed 84%. Impressively, 

the proposed LCS-KELM outperformed all, achieving an 

accuracy of 89.6%. Similarly, in the 10-fold validation, the 

LCS-KELM model showcased its superiority with an accuracy 

of 96.3%, while the other models scored lower, highlighting 

the exceptional diagnostic precision offered by the proposed 

methodology for COVID-19 detection using CT scans. 

Figure 21 provides a visual representation that offers a 

comparative analysis of the time consumed by various 

segmentation algorithms, including the traditional k-means 

clustering [41], FCM [42], and Modified FCM (MFCM) [43]. 

Notably, the TLMFCM stands out for its efficiency, taking 

only 5.9 seconds for a 5-fold cross-validation and 8.8 seconds 

for a 10-fold validation. This enhanced speed can be attributed 

to TLMFCM's distinctive ability to select optimal parameters 

during each iteration. Instead of adhering to fixed parameters 

or necessitating manual adjustments, TLMFCM dynamically 

fine-tunes its parameters, ensuring that it processes the dataset 

in a more streamlined manner. The consequence is a 

noticeable reduction in computational time without 

compromising on accuracy. Furthermore, such efficiency 

gains are crucial, especially in medical imaging where timely 

decisions can significantly impact patient outcomes. The 

detailed numerical results, which further substantiate these 

observations, are comprehensively laid out in Table 9. This 

table offers a quantitative breakdown, highlighting the edge 

TLMFCM has over traditional algorithms in terms of 

processing speed. 

Table 10 provides a comparative analysis of the runtime 

performances of various ML models against the proposed 

TLMFCM when applied to CT scan data for COVID-19 
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detection. The table measures the runtime in seconds for each 

methodology under two different fold validations: 5-fold and 

10-fold. For the 5-fold validation, the k-means clustering 

model [41] took 9.8 seconds, the FCM method [42] recorded 

a time of 9 seconds, the Modified Fuzzy C-Means (MFCM) 

[43] finished in 8.3 seconds, whereas the proposed TLMFCM 

showcased enhanced efficiency, completing the task in only 

6.4 seconds. The 10-fold validation, which inherently 

demands more computation due to increased iterations, 

presented longer runtimes across the board. Here, the k-means 

clustering took 11 seconds, FCM was slightly quicker at 10.5 

seconds, MFCM clocked in at 10 seconds, and again, the 

proposed TLMFCM outperformed the others, taking just 8 

seconds. This data underscores the computational efficiency 

of the proposed TLMFCM method in comparison to its 

contemporaries. 

 

 
 

Figure 21. Time complexity analysis 

 

4.7 Limitations of proposed approach 

 

While our results are promising but certain limitations exists: 

The model's real-world performance across diverse global 

populations and different imaging equipment remains to be 

evaluated. The possibility of overfitting to the training data 

can't be completely ruled out without extensive testing on 

diverse datasets. As with all ML models, the quality and 

quantity of the training data play a pivotal role. Biases in data 

can inadvertently affect the model's predictions. Continuous 

updates and monitoring will be essential, especially 

considering the evolving nature of the COVID-19 virus and its 

manifestations in CT scans. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

In conclusion, the core objective of our research was to 

devise an innovative and integrated methodology for the 

accurate detection of COVID-19 using CT scans. Through a 

synergetic combination of sophisticated segmentation 

techniques, notably TLMFCM, and the prowess of SSAE for 

robust feature extraction, followed by the precision of LCS-

KELM for classification, we sought to address the 

multifaceted challenges that plague contemporary medical 

imaging diagnostics. Our results indicate that this 

methodology, when deployed in clinical settings, possesses 

the potential to drastically enhance the accuracy, speed, and 

efficiency of COVID-19 diagnosis, laying the foundation for 

prompt patient treatment and more effective containment 

measures. The broader significance of this research transcends 

mere technological advancement; it touches upon the very 

paradigms of clinical practice. By potentially reducing both 

false positives and negatives, we are looking at a future where 

clinical decisions are more informed, patient outcomes are 

improved, and the overall spread of the virus could be better 

managed. However, it is essential to remain grounded in 

recognizing the inherent limitations of this study. While we 

have made strides in a controlled environment, the actual 

litmus test lies in the diverse, global clinical settings, each with 

its unique challenges ranging from varied imaging equipment 

to differing patient demographics. As we look forward to the 

future, several areas demand attention and refinement. The 

optimization algorithms could be made even more robust, and 

integrating adaptive real-time learning could ensure the system 

remains relevant in the face of evolving disease patterns. 

Practical deployment, too, requires a nuanced approach. 

Beyond just technological integration, we must consider 

aspects like data privacy, the ever-present challenges of 

system interoperability, and the need for continuous model 

training. Additionally, the human factor cannot be overlooked; 

clinicians and other healthcare professionals will need to 

interface seamlessly with this technology, necessitating 

intuitive design and comprehensive training. To encapsulate, 

this research presents a promising pathway in the fight against 

COVID-19, harnessing the power of technology for healthcare 

betterment. As we progress, our objective remains clear: to 

make this methodology not just technologically advanced but 

also practically adoptable, ensuring a real-world impact that 

aligns with the broader goals of patient care and public health. 
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