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 To address the critical issue of late skin cancer diagnosis and its severe implications, this 

study leverages the latest in Computer Aided Diagnosis (CAD) and machine learning 

technologies. Despite the alignment of these technologies with professional medical 

diagnostics, challenges such as data imbalance, management of extensive datasets, and the 

need for high-quality images for superior feature extraction continue to pose significant 

hurdles. To overcome these challenges, this work introduced a novel approach utilizing 

ensemble learning, which significantly enhances the accuracy of early skin cancer detection. 

This research elaborates on the creation of two distinct ensemble models: one that combines 

the capabilities of VGG-16 and ResNet-50, and another that utilizes VGG-19 and Xception. 

These combinations were specifically chosen for their complementary strengths in deep 

learning and feature extraction, which are crucial for improving diagnostic accuracy. The 

models were trained on a comprehensive dataset of over 3000 skin images, achieving a 

groundbreaking training accuracy of 100% and a testing accuracy that reaches up to 85%. 

The rationale behind selecting these models for ensemble approach is their proven 

effectiveness in deep learning tasks. VGG models are renowned for their deep convolutional 

networks that excel in capturing intricate details, while ResNet models effectively address 

the vanishing gradient problem, enabling deeper network training without compromising 

performance. This strategic amalgamation enhances the ability to tackle the complexities of 

skin cancer detection. In comparative analysis, I eschew specific study references for a 

broader perspective on performance enhancement. The accuracy of these proposed models 

shows a substantial increase over existing methods, with testing accuracies advancing from 

the typical range of 75% to 84% observed in prior works, to as high as 85% in my models. 

This improvement not only demonstrates the superiority of ensemble learning approach over 

single-model methods but also establishes a new benchmark in the accuracy and reliability 

of skin cancer diagnostic tools.  
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1. INTRODUCTION 

 

Skin cancer is one of the most common types of cancer that 

has rapidly spread in recent years. According to the report in 

[1], skin cancer can be diagnosed in one out of three cases of 

cancer, and it is estimated that more than 0.1 million new cases 

will be diagnosed globally by the end of 2022, with nearly 

7,000 deaths per year from this disease. Nevertheless, skin 

cancer is typically classified into two categories, namely: i) 

melanoma (malignant) and ii) non-melanoma (benign). 

Melanoma is a life-threatening type of skin cancer and is 

responsible for more than 70% of deaths of patients globally 

diagnosed with melanoma [2]. Skin cancer is caused due to the 

abnormal growth of the cells and spreads to other body parts. 

Most cases of skin cancer are caused by prolonged exposure 

to the sun's ultraviolet (UV) radiation [3]. This increases the 

risk of all major types of skin cancers, such as basal cell skin 

cancer (BCC), melanoma, and squamous cell skin cancer 

(SCC) [4, 5]. However, a decrease in exposure to UV radiation 

is one of the effective methods for preventing BCC and non-

melanoma types of skin cancer, which is curable by surgical 

techniques, whereas melanoma is generally treated by 

radiation therapy or chemotherapy [6]. Melanoma has a high 

survival rate amongst all other cancer types if diagnosed early 

[3]. A typical procedure for diagnosing melanoma is 

employing the ABCDE rule, which can classify melanoma and 

non-melanoma from benign skin lesions [7]. Thus, it becomes 

essential to use computational techniques to improve the 

diagnosis process. A computational diagnosis of melanoma 

will help facilitate the early diagnosis process and save the 

patients' lives. At present, a biopsy of skin samples is 

performed by doctors to diagnose melanoma. However, this 

process is invasive, painful, and time-consuming [8]. Thus, the 

computational diagnosis will help in the noninvasive and 

effective diagnosis of melanoma. 

Recently, artificial intelligence techniques (AI), such as 

machine learning (ML) and deep learning (DL), have been 

explored in various studies for the analysis of skin images for 

early diagnosis of melanoma. These techniques not only help 

dermatologists in the early diagnosis of skin cancer but also 
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help in avoiding unnecessary expenditures in imaging tests 

and biopsies [9]. Computational systems for melanoma 

diagnosis help in providing high accuracy diagnose of 

melanoma. For initial analysis of skin cancer, dermatologists 

often analyze macroscopic images of the skin. However, it 

becomes challenging to analyze these images due to the low 

quality of images and the presence of skin lines and shadows 

in the images [8]. Computational techniques can help resolve 

these challenges through image processing, data cleaning, and 

feature extraction [7-9]. Skin cancer is one of the leading 

causes of death in recent times. Various cases of death have 

been reported worldwide due to the inaccuracy of the medical 

diagnosis system. A person suffering from skin cancer can be 

saved if early diagnosis occurs with highly efficient diagnosis 

techniques [10]. Thus, various machine learning techniques 

have been suggested in recent studies to diagnose skin cancer 

to resolve this challenge. However, challenges need to be 

resolved to harness the full potential of machine learning in 

diagnosing skin cancer. Machine learning techniques often 

require high-quality data. In this context, high-quality image 

data helps achieve high accuracy in detecting, segmentation, 

and feature extraction of skin cancer. Retrieving high-quality 

image datasets is challenging as datasets are often 

heterogeneous with variable quality of images [11-13]. 

Furthermore, the segmentation of clinical images is a time-

consuming and tedious task. These challenges make us search 

for more advanced techniques, such as ensemble learning, 

which can make the diagnosis and segmentation process faster. 

The challenges of machine learning techniques are 

summarized in Table 1. 

 

Table 1. Summary of challenges of various machine learning 

models 

 
Type of 

Model 
Functions of Model Challenges of Model 

Linear  

These functions as 

additive model which 

is capable of 

computing risk by 

using a weighted 

combination of 

features. 

Additive nature of the 

model fails to detect the 

interactions between the 

variables. 

Neural 

Network 

It is a highly non-

linear model which 

predicts based on the 

network of weighted 

transformation of 

features of input. 

This technique is 

challenging to interpret, 

which increases the 

overall complexity of the 

model and to generate 

more accurate outcomes, 

parameter optimization is 

also required. 

Decision 

Tree 

It is also a non-linear 

algorithm that helps in 

the representation of 

the interaction between 

the variables. 

This technique fails to 

establish a continuous 

relationship between the 

variables and outcomes. 

 

Ensemble Learning (EL) helps resolve the challenges 

described in Table 1 by improving the predictive performance 

of a single model by combining outcomes from multiple 

trained models [14]. There are various deep learning and 

ensemble learning techniques suggested by other studies 

which are not suitable to be implemented at large scale, for 

example, the authors [15] have suggested a technique based on 

machine learning and dynamic training-testing augmentation 

to predict skin cancer. Although the technique achieved a 

higher accuracy, but this technique can’t be implemented in 

real world as this technique takes 300 hours of GPU time of 

Tesla V100 GPU to complete predictions. Because of high 

time consumption, this technique is not suitable to be used in 

cases of emergency. Furthermore, the authors [16] have 

developed a machine learning technique based on 6-class 

classification using support vector machine (SVM) algorithm 

to classify acne, eczema, psoriasis, and skin cancer from 1800 

skin images with an accuracy of 83%. However, this technique 

is not reliable as a single model is used to classify various skin 

diseases that too with a low accuracy. The authors [17] have 

used ensemble deep learning technique to detect skin cancer 

from skin images. This technique achieved good results in 

detecting skin cancer but failed to evaluate the role of 

optimizers such as Adam optimizer. Therefore, to resolve the 

challenges faced by these studies and to suggest a more 

focused approach to detect skin cancer, this paper 

implemented EL through VGG-16 and ResNeT-50 and VGG-

19 and Xception models. This paper proposes a novel 

approach for diagnosing melanoma from skin images through 

Ensemble Learning (EL). In concise, EL is a technique in 

which various machine learning models are integrated to 

generate one optimum model. Thus, EL helps generate more 

accurate results than any of the single ML and DL models, 

which is further explained in the upcoming sections of this 

paper. The main contributions of this paper are summarized as 

follows: 

• This paper suggests an EL model with the help of VGG-

16 + ResNeT-50 and VGG-19 + Xception models for 

melanoma diagnosis from skin images, along with a 

comparative analysis between the two models. 

• A comparative analysis between various ML and DL 

models is also conducted with the EL model to show the 

efficiency of ensemble learning. 

The remainder of this paper is structured as follows. The 

literature review is introduced in Section 2. This is followed 

by Section 3, where the methodology is described. The results 

and analysis are shown in Section 4. Finally, the paper is 

concluded with remarks for future directions in Section 5. 

 

 

2. RELATED WORK 

 

Recently, ML techniques have played a significant role in 

the diagnosis of cancer; however, it remains not entirely 

accepted by dermatologists due to concerns that ML 

techniques will replace dermatologists [18]. However, this is 

not the case, as ML techniques are applied to make the 

diagnosis faster. Technological advancements make ML more 

widely used for melanoma classification and diagnosis. Since 

early detection is necessary for treating skin cancer, computer-

aided diagnosis with the help of ML is suggested by various 

studies. The authors [19] have analyzed more than 5000 skin 

images of more than 3000 patients using the FRCNN model 

for skin cancer detection. The accuracy of this system for a 6-

class classification was 86.2% and for a 2-class classification 

was 91.5%. The authors [20] suggested using a faster region-

based convolutional neural network (RCNN) combined with 

K-Means clustering to diagnose melanoma. This method 

achieved an average accuracy of 95.4%, 93.1%, and 95.6% on 

the datasets collected from ISIC-2016-2017 and PH2. 

Furthermore, the authors [21] have used various transfer 

learning models like ResNeT-50, Inception V3, and Inception 

ResNeT with ESRGAN processing for detecting and 
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classifying skin cancer on the ISIC2018 dataset. This 

technique has achieved an accuracy score of 83.7%, 85.8%, 

and 84%, respectively. The authors [22] have suggested an 

explainable CNN-based stacked ensemble framework for 

detecting melanoma at its early stages. This framework 

achieved an accuracy score of 95.76% in the detection of 

melanoma. The authors [23] have presented various CNN 

architectures for detecting skin cancer on the HAM10000 

dataset. DenseNeT-169 has achieved the highest accuracy of 

92.25% for all architectures. The authors [24] have suggested 

a pretrained deep learning model, MobileNeT, for detecting 

skin cancer. This model achieved an accuracy of 80.81% over 

the HAM10000 dataset. The authors [25] have developed a 

raw deep transfer learning model for classifying melanoma 

into seven categories. This method achieved an accuracy of 

82.9%. A novel deep learning technique, InSiNeT, is 

suggested to detect benign and malignant skin lesions from the 

HAM10000 dataset [26]. This technique achieved an accuracy 

of 94.59%, 91.89%, and 90.54%, respectively. The authors 

[27] have developed a hybrid deep learning model based on 

the fusion of 3D wavelet transformation and tested this non-

invasive technique on the PH2 database. This technique 

achieved 99.3% accuracy in detecting and classifying skin 

cancer. The authors [28] have suggested a CNN model to 

detect and classify skin cancer from the ISIC dataset of 2637 

images. This model achieved an accuracy of 88% in 

classifying skin cancer images as benign or malignant. The 

authors [29] have suggested using the VGG-16 model to 

improve the accuracy of the diagnosis of skin cancer. The 

authors [30] have suggested employing transfer learning based 

on MobileNeT-V2 for detecting melanoma from skin images 

from the ISIC 2020 dataset. The authors [31] have proposed a 

CNN-based architecture with magnitude-based weight 

pruning for detecting skin cancer with an accuracy of 99%. 

The authors [32] have suggested a diagnostic tool based on 

computer vision and machine learning algorithms for detecting 

skin cancer with an accuracy of 79.96%. The authors [33] have 

suggested an improved deep learning model with CNN for 

detecting skin cancer in skin images. The presented model 

outperforms various other models, as per the authors. The 

authors [34] have suggested a novel data augmentation 

technique to resolve the challenge of class imbalance and data 

scarcity based on covariant synthetic minority oversampling 

technique (SMOTE) along with detection of skin cancer. This 

technique achieved an accuracy of 92.18%. The authors [35] 

have implemented the VGG-SegNet scheme to extract the SM 

section from DDI image to further conduct a relative 

assessment between the segmented SM and ground truth. This 

technique was tested on the ISIC2016 database and achieved 

good results to detect and classify skin cancer. The authors 

[36] have implemented the VGG-UNet scheme to extract and 

evaluate the abnormal sections in dermoscopy images with 

high accuracy. The performance of the suggested scheme is 

verified using optimizers like Adam or SGD with average 

pooling. The scheme is tested on the ISIC 2016 dataset and 

evaluation was done using Jaccard Index, Dice coefficients 

and accuracy score. The exploration of machine learning (ML) 

and deep learning (DL) techniques in recent studies has 

significantly advanced the field of skin cancer diagnosis, 

showcasing the potential for these technologies to augment 

and expedite traditional diagnostic processes. Despite these 

advancements, the integration of ML and DL into clinical 

practice has been met with challenges that have limited their 

widespread adoption [37]. A critical examination of previous 

studies reveals several limitations inherent to the current 

methodologies employed in skin cancer detection [38]. 

Firstly, a recurring issue is the imbalance in training datasets, 

where the quantity and variety of skin cancer images are 

insufficient or skewed towards certain types or stages of the 

disease. This imbalance hampers the model's ability to 

generalize across the diverse manifestations of skin cancer, 

leading to potential biases in diagnosis. Moreover, the 

adaptability of these models across different domains or 

datasets—referred to as cross-domain adaptability—remains a 

significant hurdle. Many models are fine-tuned for specific 

datasets and struggle to maintain their accuracy when applied 

to data from different sources or demographics. Additionally, 

the real-world application of these ML and DL techniques 

often encounters logistical and technical obstacles. The 

complexity of deploying these models in clinical settings, 

coupled with the need for substantial computational resources, 

poses a barrier to their practical use, especially in under-

resourced environments. The requirement for high-quality, 

annotated datasets for training also underscores the need for 

collaboration between technologists and medical professionals, 

further complicating the path from research to clinical 

implementation. In response to these challenges, this paper 

advocates for the use of ensemble learning as a robust solution 

to enhance the accuracy and reliability of skin cancer diagnosis. 

By integrating multiple models, ensemble learning can 

mitigate the issues of data imbalance and model overfitting or 

underfitting, offering a more nuanced and comprehensive 

approach to diagnosis. This technique also presents a solution 

to the problem of model complexity, as it leverages the 

strengths of various models to improve diagnostic predictions 

without the need for excessively high computational resources. 

In this research, I meticulously address the limitations 

observed in previous studies by crafting an ensemble learning 

framework that is specifically tailored for the nuanced task of 

skin cancer detection. This paper delineates a novel approach 

where multiple diagnostic models, each with proven efficacy 

in certain aspects of skin cancer identification, are harmonized 

to work in concert. This collaborative model framework is not 

arbitrarily chosen but is the result of an in-depth analysis 

aimed at selecting models that complement each other’s 

detection capabilities. The ensemble method stands apart due 

to its deliberate focus on enhancing the ensemble's collective 

intelligence, thereby significantly improving diagnostic 

accuracy. I achieved this by employing a rigorous optimization 

process, ensuring that each model within the ensemble 

contributes optimally to the final diagnosis outcome. This 

process involves adjusting and fine-tuning the models based 

on their performance metrics, with a keen focus on minimizing 

errors that individual models might introduce. Furthermore, 

the approach in this work innovatively addresses common 

challenges in skin cancer detection, such as data imbalance 

and the model's adaptability to diverse datasets. By integrating 

models that are robust across various conditions and data 

representations, the ensemble framework exhibits superior 

generalizability. This adaptability is critical for real-world 

applications where data variability is a given. The contribution 

of this work to the field is underscored by a comprehensive 

validation process, demonstrating that the ensemble learning 

framework not only achieves higher diagnostic accuracy but 

also maintains consistent performance across different testing 

scenarios. This validation is crucial for establishing the 

reliability of my method in clinical settings, where consistency 

and accuracy are paramount. 

1691



Table 2. Summary of literature review 

 

Reference Model/Technique Key Techniques Accuracy (%) 
Computational 

Efficiency 

Robustness to 

Noise 

[19] FRCNN Skin Cancer Detection 
86.2 (6-class), 

91.5 (2-class) 
Medium High 

[20] RCNN + K-Means Melanoma Diagnosis 95.4, 93.1, 95.6 High Medium 

[21] 

Transfer Learning (ResNeT-50, 

Inception V3, Inception ResNeT) + 

ESRGAN 

Skin Cancer Detection 83.7, 85.8, 84 High High 

[22] 
Explainable CNN-based Stacked 

Ensemble 

Early Melanoma 

Detection 
95.76 Medium High 

[23] 
Various CNN Architectures 

(DenseNeT-169 highlighted) 
Skin Cancer Detection Up to 92.25 High Medium 

[24] Pretrained MobileNeT Skin Cancer Detection 80.81 Low Medium 

[25] Deep Transfer Learning 
Melanoma 

Classification 
82.9 Medium Medium 

[26] InSiNeT 
Benign and Malignant 

Lesion Detection 

94.59, 91.89, 

90.54 
Medium High 

[27] 
Hybrid Model (3D Wavelet 

Transformation) 

Skin Cancer 

Classification 
99.3 Medium High 

[28] CNN Model 
Skin Cancer 

Classification 
88 Medium Medium 

[29] VGG-16 
Diagnosis 

Improvement 
Not Specified High Medium 

[30] Transfer Learning (MobileNeT-V2) Melanoma Detection Not Specified Low Medium 

[31] CNN with Weight Pruning Skin Cancer Detection 99 Medium High 

[32] Computer Vision and ML Algorithms Skin Cancer Detection 79.96 Low Medium 

[33] Improved Deep Learning with CNN Skin Cancer Detection Not Specified High Medium 

[34] Data Augmentation (SMOTE) 
Addressing Data 

Imbalance 
92.18 Low Medium 

[35] VGG-SegNet Extracting SM Section Not Specified Medium Medium 

[36] VGG-UNet 
Evaluating 

Dermoscopy Images 
Not Specified Medium High 

 

In essence, this paper goes beyond presenting another 

ensemble learning application in the realm of medical 

diagnostics. It introduces a carefully constructed, optimized 

ensemble learning framework designed to overcome specific 

challenges in skin cancer detection. This targeted approach, 

backed by empirical evidence of its efficacy, marks a 

significant step forward in the application of machine learning 

techniques for improving health outcomes. A summary of 

literature review is discussed under Table 2. 

Moreover, the decision to employ ensemble learning is 

underpinned by its proven efficacy in numerous studies across 

different domains of cancer diagnosis, where it has 

consistently outperformed single-model approaches in 

accuracy, reliability, and generalizability. Reference to similar 

works in the literature further solidifies the rationale behind 

my choice. For instance, a study on cervical cancer prediction 

[39] leveraged ensemble learning to integrate multiple 

machine learning techniques, resulting in a significant 

decrease in variance and bias, and an improvement in 

performance, achieving an accuracy of 87.21%. This aligns 

with my objective to enhance diagnostic accuracy through the 

reduction of model errors and the consolidation of strengths 

from various algorithms. Similarly, in the domain of lung and 

colon cancer detection, a research work [40] introduced a 

hybrid ensemble feature extraction model that combined deep 

feature extraction with ensemble learning, achieving 

remarkable accuracy rates of 99.05% for lung cancer, 100% 

for colon cancer, and 99.30% for combined detection. The 

success of this hybrid model in efficiently identifying cancer 

from histopathological datasets underscores the potential of 

ensemble learning in handling complex, image-based 

diagnostics by merging deep learning's feature extraction 

capabilities with ensemble learning's robust classification 

performance. Moreover, a meta-learning study [41] addressed 

the challenge of training efficient models with limited labelled 

data, a common hurdle in medical imaging, by proposing a 

metric-based meta-learning model that integrates attention 

mechanisms with ensemble learning. This approach not only 

enhanced the feature extraction ability but also reduced the 

risk of overfitting, showcasing ensemble learning's versatility 

in improving model adaptability and performance in scenarios 

with scarce data. These studies underscore the adaptability, 

efficiency, and improved performance of ensemble learning 

techniques in cancer detection tasks, mirroring the goals of 

skin cancer detection paper. By drawing on the strengths of 

various algorithms to minimize weaknesses inherent in single-

model approaches, ensemble learning offers a robust solution 

to the challenges previously outlined. 

 

 

3. PROPOSED MODEL 

 

This section gives an overview of the suggested 

methodology. Despite advancements, typical machine 

learning approaches may fail to achieve high accuracy in 

dealing with an imbalanced dataset as it is difficult for these 

techniques to handle multiple data features [42]. To tackle 

these challenges, ensemble learning is used. This technique 

helps explore machine learning techniques to get better results 

by extracting features and fusing the outcomes with various 

voting mechanisms [43, 44]. The methodology is explained in 

the upcoming subsections.
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3.1 Working of ensemble learning 
 

EL is a technique in which multiple machine learning 

models (base learners) are integrated, and only a single 

optimum prediction output is produced, irrespective of their 

inputs [45-47]. More specifically, the EL technique is 

classified into generative and non-generative techniques. Non-

Generative techniques combine the predictive outcomes of the 

pretrained models, and these models are trained independently 

of each other. The ensemble algorithm directs them on how 

their predictive outcomes are integrated to generate one single 

output [48-50]. Generative techniques can influence the base 

learners they are using. These models can tune their algorithms 

to achieve a higher predictive accuracy [45]. This is explained 

by Algorithm 1. 
 

Algorithm 1: Ensemble Learning (EL) Algorithm 

Pre-Requisite: X ∈ Training Data, N ∈ Base Classifiers, T∈ 

Test Data 

Output: combined prediction, skin cancer or no skin 

cancer 

1. for j = 1 to N do 

2.       Training Set, Xj is created from X 

3.       Base classifier, Yj is created from X 

4. end 

5. for every test data, t ∈ T do 

6.              Y * (t) = Vote (Y1(t), Y2(t), …., YN(t)) 

7. End 

 

Two of the major non-generative techniques are voting and 

stacking. Voting is a technique in which various models are 

allowed to vote to generate a single predictive outcome. In 

contrast, stacking combines multiple machine learning models 

through a meta-classifier or regressor [46, 47]. In stacking, the 

base models are trained on the entire training data, and the 

meta-model is trained on the predictive outcomes obtained 

from those base models as features [48, 49]. Generative 

techniques such as bagging, and boosting are also helpful in 

achieving high accuracy. Bagging is also defined as bootstrap 

aggregation, as this technique integrates bootstrapping or 

sampling of data and aggregation to form an ensemble model 

[49]. Each base model is trained over different subsets of data, 

and then their outcomes are combined to form a single output 

and, in this way, the final outcome is less overfitted. This 

technique is helpful in bringing stability to the model and, thus, 

reducing variance [50, 51]. Boosting technique helps in 

converting weak base learners to strong base learners, with 

less bias and better accuracy. If an observation is incorrectly 

classified, the weight of that observation is increased to 

improve accuracy and vice versa [52]. EL helps in resolving 

the challenges of bias and variance as faced by various 

machine learning techniques and is preferred for this study. 

The bias and variance are defined by Eqs. (1)-(4) as: 
 

𝑋[𝑎 − 𝑏]2 = 𝑏𝑖𝑎𝑠2 +
1

𝑌
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

+ (1 −
1

𝑌
) 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

(1) 

 

𝑏𝑖𝑎𝑠(𝑚) =
1

𝑌
∑(𝑋[𝑎𝑗] − 𝑏)

𝑗

 (2) 

  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑉) =
1

𝑌
∑ 𝑋 [𝑎𝑗 − 𝑋[𝑎𝑗]]

2

𝑗

 (3) 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐶) =
1

𝑌(𝑌 − 1)
∑ ∑ 𝑋 [𝑎𝑗

𝑗≠𝑘𝑘

− 𝑋[𝑎𝑗]] [𝑎𝑗 − 𝑋[𝑎𝑗]] 

(4) 

 

where, b = target, 𝑎𝑗 = output of jth model, X = ensemble size. 

The bias calculates the average difference between the base 

learner and the predictive outcome of the model. Variance 

measures their average variance and covariance helps in 

measuring the difference between the base learners pairwise.  

To build an Ensemble Model, consider a dataset consisting 

of ‘e’ examples and ‘f’ features. This is further defined by 𝑍 =
{𝑎𝑖 , 𝑏𝑖}, and (|𝑍| = 𝑒, 𝑎𝑖 ∈ 𝑌𝑏 , 𝑏𝑖 ∈ 𝑌), such that an ensemble 

model, λ  utilizes an aggregate function A, aggregating ϕ 

inducers, 𝑖1, 𝑖2, 𝑖3 … . . 𝑖ϕ  and generates a single predictive 

outcome given by Eq. (5) as: 

 

𝑏�̃� = ϕ(𝑎𝑖) = 𝐴(𝑖1, 𝑖2, 𝑖3 … . . 𝑖ϕ) (5) 

 

where, 𝑏�̃�  ∈ 𝑌  for regression problems and 𝑏�̃�  ∈ 𝐶  for 

classification problems [38]. This represents the general 

framework of EL model. Furthermore, Ensemble Learning 

(EL) is an advanced technique in machine learning where 

multiple models, known as base learners, collaborate to 

produce a singular, optimized prediction output. This 

technique capitalizes on the strengths of various models to 

improve predictive performance, especially in complex tasks 

like skin cancer diagnosis. EL is broadly categorized into 

generative and non-generative techniques, each with distinct 

mechanisms for integrating the predictions of base learners. 

Non-generative ensemble techniques, such as voting and 

stacking, do not alter the base learners but focus on the 

strategic combination of their outputs. In voting, the prediction 

outcome is determined through a majority vote among the 

models. For example, if three models predict 'skin cancer' and 

two predict 'no skin cancer,' the final verdict will be 'skin 

cancer.' Stacking, on the other hand, employs a meta-classifier 

(or meta-regressor) that learns how to best combine the 

predictions from multiple models. The base models are trained 

on the full training dataset, and the meta-model is trained on 

the outputs of these base models. Generative techniques like 

bagging and boosting actively modify the training process of 

base learners to enhance prediction accuracy. Bagging 

(Bootstrap AGGregatING) involves training each model on 

different data subsets, combining their predictions to reduce 

variance and improve stability. Boosting sequentially trains 

models, focusing more on instances that previous models 

misclassified, thereby converting weak learners into strong 

ones by iteratively adjusting the weights of observations. In 

this paper, two EL models have been used: i) Ensembling 

VGG-16 and ResNeT-50 and ii) Ensembling VGG-19 and 

Xception Model for early detection of Skin cancer. These 

techniques are explained further in the upcoming subsections. 

 

3.2 Model selection 1: Ensembling based on VGG-16 and 

ResNeT-50 

 

Lately, it has been found that machine learning helped us 

save people's lives during the COVID-19 pandemic. With the 

help of machine learning tools, I was able to diagnose fatal 

diseases in a less possible time [20]. Similarly, skin cancer is 

also one of the most fatal diseases and the most challenging to 

diagnose. This challenge in diagnosis is due to the color 
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images of the skin, which are almost similar for both benign 

and malignant cases [53]. Thus, a reliable approach to early 

diagnosis of skin cancer is required. In this paper, the EL 

approach is suggested, which can fasten the diagnosis process.  

Let the first layer of the EL model be VGG-16. In VGG-16, 

there are 16 layers, with 3 being used as a convolutional filter, 

and the rest 13 convolutional layers are used for extracting 

features. The convolutional process of the layers is defined by 

Eq. (6) as: 

 

𝐹(𝑎, 𝑏) = (𝑋 ∗ 𝑌)(𝑎, 𝑏) ∑ ∑ 𝑃(𝑚, 𝑛)𝑄(𝑎 − 𝑚, 𝑏

𝑛𝑚

− 𝑛) 

(6) 

 

Here, m and n are defined as the dimensions of the kernel. 

a and b are the coordinates of the convolutional matrix [54]. In 

this network, a ReLU layer works after each convolution layer, 

which has a maximum pooling layer and is used for sampling. 

Consider the dataset with ‘s’ samples with 

𝛼(1), 𝛽(1), . . . , 𝛼(𝑠), 𝛽(𝑠) used for training the dataset. Then 

the overall cost function a (T) is defined by Eq. (7) as: 

 

𝑇(𝐹, 𝑥) = [
1

𝑠
∑ (

1

2
||𝑋𝑓,𝑥(αλ − βλ)||

2

)

𝑠

λ=1

]

+
ϕ

2
∑ ∑ ∑ (𝐹λ𝑛

(𝑖)
)

2
𝐿𝑘+1

𝑛=1

𝐿𝑘

λ=1

𝑗𝑘−1

𝑖=1

 

(7) 

 

Here, 𝑋𝑓,𝑥 is defined as the model of neural network, (𝐹𝜆𝑛
(𝑖)

) 

is defined as the connection weight in between the λth element 

of the first layer and the nth element of the k+1 layer. x is 

defined as the bias of the neuron of the hidden layer. This 

equation helps in resolving the challenge of overfitting [55-57]. 

The Network architecture of VGG-16 is given by Table 3.  

 

 

Table 3. Network architecture for VGG-16 

 
Block Number Convolutional Layers Dimensions No. of Parameters 

Xxxxx Input (224 × 224 × 3) 0 

1 Conv-Layer 1 (224 × 224 × 64) 1792 

1 Conv-Layer 2 (224 × 224 × 64) 36928 

1 Max-Pool 1 (112 × 112 × 64) 0 

2 Conv-Layer 1 (112 × 112 × 128) 73856 

2 Conv-Layer 2 (112 × 112 × 128) 147584 

2 Max-Pool 2 (56 × 56 × 128) 0 

3 Conv-Layer 1 (56 × 56 × 256) 295168 

3 Conv-Layer 2 (56 × 56 × 256) 590080 

3 Conv-Layer 3 (56 × 56 × 256) 590080 

3 Max-Pool 3 (28 × 28 × 256) 0 

4 Conv-Layer 1 (28 × 28 × 512) 1180160 

4 Conv-Layer 2 (28 × 28 × 512) 2359808 

4 Conv-Layer 3 (28 × 28 × 512) 2359808 

4 Max-Pool 4 (14 × 14 × 512) 0 

5 Conv-Layer 1 (14 × 14 × 512) 2359808 

5 Conv-Layer 2 (14 × 14 × 512) 2359808 

5 Conv-Layer 3 (14 × 14 × 512) 2359808 

5 Max-Pool 5 (7 × 7 × 512) 0 

Total Parameter   14714688 

 

Table 4. General architecture of ResNeT-50 

 
Layer Size of Output 50 Layers 

Convolution-1 (112 × 112) (7 × 7, 64, stride-2) (3 × 3, max pool, stride-2) 

Convolution-2-X (56 × 56) 
1 ×  1 64
3 ×  3 64
1 ×  1 256

       × 3 

Convolution-3-X (28 × 28) 
1 ×  1 128
3 ×  3 128
1 ×  1 512

       × 4 

Convolution-4-X (14 × 14) 
1 ×  1 256
3 ×  3 256
1 ×  1 1024

     × 6 

Convolution-5-X (7 × 7) 
1 ×  1 512
3 ×  3 512
1 ×  1 2048

      × 3 

 (1 × 1) Average Pooling 1000-d FC, SoftMax 

 

According to the previous study [55], In VGG-16, the input 

given to the network is in the form of an image with dimension 

224 × 224 × 3. The initial 2 layers of the network have 64 

channels with a filter size of 3 × 3 with the same padding as 

explained in Table 2. A max pooling layer of 2 × 2 is added to 

the network along with two different layers of convolutional 

filter size of 128 and 3 × 3. Along with this, the input image is 

passed through two other sets of three convolutional layers and 

a max pooling layer of 512 with a 3 × 3 size with the same 

padding. After this processing, the final feature map of 7 × 7 

× 2 is acquired. The output generated by the network is in the 

form of a vector, y = y1, y2,…y999 which defines the 

probability of classification of the class. To make sure that the 

obtained probabilities sum up to 1, a SoftMax function [58] is 
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used, which is defined by Eq. (8) as: 

 

𝑍(λ𝑥) =
𝑒𝑥𝑝(λ𝑥)

∑ 𝑒𝑥𝑝(λ𝑠)𝑠

 (8) 

 

where, λ𝑥 is defined as the values obtained from the neurons 

of the output layer. Exp is defined as a nonlinear function. 

After defining the SoftMax function, I have to minimize 

between the actual and predicted outcomes. This is defined 

using the error function or loss function [59] defined by Eq. (9) 

as: 

δ =
1

𝑦
∑ 𝑚𝑖𝑛𝑖

𝑄

β(λ𝑖 , 𝐿𝑄) (9) 

 

where, the values of 𝛽 = 0, when 𝜆𝑖 = 𝐿𝑄, else the value of 𝛽 

= 1, 𝜆𝑖 is defined as the ground truth (GT) vectors and 𝐿𝑄 is 

defined as the probable vector. Once the VGG-16 model is 

developed, I need to combine it with ResNeT-50.  

ResNeT-50 is a neural network, belonging to the class of 

residual network which is 50 layers deep. In this paper, a 

pretrained model which is trained on more than a million 

images from the ImageNet dataset [58] has been used. This 

network can classify images into a thousand different 

categories like animals, plants, etc. The general representation 

of the ResNeT-50 architecture is given by Table 4. 

According to the previous study [58], the general network 

of ResNet-50 contains 3 convolutional layers of size 1 × 1, 3 

× 3, and 1 × 1, respectively, and these are passed through a 

ReLU activation function for generating results. As explained 

in Table 3, the ResNeT-50 model consists of five 

convolutional layers with each smaller convolutional layer of 

type 1,3,4, and 6 layers. The network takes an input as a RGB 

image of size 224*224 pixels. The first block will generate an 

output of 64 feature maps with 112*112 pixels. As the 

convolutional process progresses, there is an increase in the 

number of features along with the depth of the network. 

Finally, an output of 7*7 pixels with a feature size of 2048 is 

extracted from the network and further classification is done 

by average pooling of the fully connected layers with SoftMax 

function as explained by the previous study. 

Once the models are developed, the outputs generated by 

these models need to be integrated into a single output. Two 

methods which are followed to combine this output are 

weighing method and meta-learning method. The weighing 

method is most appropriate for the cases where the 

performance of the base model is comparable [60, 61]. This 

approach is applied to the voting mechanism. In the voting 

mechanism, the arithmetic mean of the predictive outcomes 

from multiple models are taken if the problem involves 

regression and for classification, the statistical model is 

calculated [62]. Another approach for combining the outputs 

into a single form is meta-learning. Meta learning is defined as 

the learning algorithm which learn from other learning 

algorithms. This means that the learning model already learn 

how to integrate the predictions generated from the base model 

to a single model [63]. Single machine learning model suffer 

from various challenges like lack of high-quality training 

datasets and high time complexity of the algorithms to 

generate predictions. Meta Learning helps in resolving these 

challenges by optimizing the base model algorithms and helps 

in the development of more generalized models. One of the 

major meta-learning processes which is also utilized in this 

study is stacking. In the stacking process, the learning models 

are trained by using the data available. Afterwards, a combiner 

algorithm is developed to combine all predictions generated, 

which is also called as the ensemble members, and the final 

predictions are generated based on this combiner algorithm. 

 

3.3 Model selection 2: Ensembling VGG-19 and Xception 
 

VGG-19 is similar to VGG-16. The only difference is in the 

number of layers. VGG-19 consists of 19 layers as 16 

convolution layers, 3 fully connected layers, 5 max pooling 

layers, and 1 SoftMax layer. The general architecture of VGG-

19 is explained in Table 5. 

 

Table 5. General network architecture of VGG-19 

 
Block No. Convolutional Layer Type Output Size No. of Parameter 

xxxx Input (512 × 512 × 3) 0 

1 Layer-1 (512 × 512 × 64) 1,792 

1 Layer-2 (512 × 512 × 64) 36,928 

1 Max-Pool (256 × 256 × 64) 0 

2 Layer-1 (256 × 256 × 128) 73,856 

2 Layer-2 (256 × 256 × 128) 1,47,584 

2 Max-Pool (128 × 128 × 128) 0 

3 Layer-1 (128 × 128 × 256) 2,95,168 

3 Layer-2 (128 × 128 × 256) 5,90,080 

3 Layer-3 (128 × 128 × 256) 5,90,080 

3 Layer-4 (128 × 128 × 256) 5,90,080 

3 Max-Pool (64 × 64 × 256) 0 

4 Layer-1 (64 × 64 × 512) 11,80,160 

4 Layer-2 (64 × 64 × 512) 23,59,808 

4 Layer-3 (64 × 64 × 512) 23,59,808 

4 Layer-4 (64 × 64 × 512) 23,59,808 

4 Max-Pool (32 × 32 × 512) 0 

5 Layer-1 (32 × 32 × 512) 23,59,808 

5 Layer-2 (32 × 32 × 512) 23,59,808 

5 Layer-3 (32 × 32 × 512) 23,59,808 

5 Layer-4 (32 × 32 × 512) 23,59,808 

5 Max-Pool (16 × 16 × 512) 0 

Total No. of Parameters- 20,02,4384 No. of Non-Trainable Parameters- 0  

No. of Trainable Parameters- 20,02,4384   
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The VGG-19 architecture, renowned for its depth and 

simplicity, employs convolutional layers as its core 

component to analyze visual inputs [64]. These layers work by 

applying a series of filters (or kernels) across the input image 

to extract high-level features. Each filter in VGG-19 has a 

fixed size of 3 × 3 pixels, which is a deliberate choice to 

capture the essence of the image's spatial hierarchy with 

minimal computational complexity. The stride, which refers to 

the step size the filter moves across the image, is typically set 

to 1 pixel. This small stride ensures a thorough and detailed 

scanning of the image, allowing the network to capture fine-

grained details by progressively building a comprehensive 

feature map. As a filter traverses the image, it performs a 

convolution operation at each position, computing the dot 

product between the filter's weights and the corresponding 

input pixels. This process generates a feature map for each 

filter, highlighting specific attributes in the image, such as 

edges, textures, or patterns, depending on the filter's learned 

weights. The VGG-19 model employs multiple such 

convolutional layers stacked together, each layer capable of 

detecting increasingly complex features as the depth increases. 

After the initial feature extraction, the network utilizes pooling 

layers, specifically max pooling, to downscale the feature 

maps. Max pooling operates by selecting the maximum value 

in a 2 × 2 pixel window with a stride of 2, effectively reducing 

the dimensionality of the feature maps by half. This reduction 

serves not only to decrease the computational load and 

memory usage but also to introduce an element of translation 

invariance to the model's representation. Following the 

convolutional and pooling layers, VGG-19 transitions to fully 

connected layers. The transition is facilitated by a flattening 

operation, which transforms the 2D feature maps into a 1D 

vector. This vector serves as input to the fully connected layers, 

where the network performs high-level reasoning based on the 

extracted features. The fully connected layers are equipped 

with weights that are learned during training, allowing the 

network to combine the detected features in various ways to 

make predictions. The final layer in the VGG-19 architecture 

is a fully connected output layer, which employs a softmax 

activation function to convert the network's outputs into 

probabilities. Each neuron in this layer corresponds to a class 

label, and the softmax function ensures that the output values 

sum up to 1, thus providing a probabilistic interpretation of the 

model's predictions. Building on the foundational explanation 

provided for the VGG-19 model, the Xception model 

introduces a unique approach to convolutional neural networks 

(CNNs) by incorporating the concept of depth wise separable 

convolutions into its architecture. With a total of 71 layers and 

designed to process input images of size 299 × 299, the 

Xception model stands as a deep and complex network 

structured to enhance feature extraction capabilities beyond 

traditional CNNs. At the heart of the Xception architecture are 

14 distinct groups, each composed of multiple convolutional 

layers that contribute to a total of 36 convolutional layers 

dedicated to extracting a wide range of features from the input 

data. Unlike conventional convolutional layers that 

simultaneously learn spatial and channel-wise features, the 

Xception model employs depth wise separable convolutions, a 

technique that decouples the learning of spatial correlations 

and channel-wise correlations within the image data. This 

separation occurs in two stages: first, the model applies depth 

wise convolutions that separately learn spatial features for 

each input channel, followed by pointwise convolutions (1 × 1 

convolutions) that combine these features across the channels. 

This approach not only increases the model's efficiency by 

reducing the number of parameters and computational 

complexity but also enhances its ability to capture more 

nuanced patterns within the data. A distinguishing feature of 

the Xception architecture is its use of residual connections, a 

method that facilitates the flow of information across layers by 

connecting the input of a group to its output. This is achieved 

by adding the input to the output of a block before applying 

the activation function. However, it is noteworthy that these 

residual connections are present in all but the first and last 

groups of the model. The absence of residual connections in 

these groups is by design, to allow the model to perform initial 

and final transformations of the data without the additive 

influence from the input. Residual connections are crucial for 

combating the vanishing gradient problem in deep networks, 

ensuring that gradients can flow through the network during 

training, thus enabling the effective training of deeper models 

without degradation in performance. In the Xception model, 

each group is structured to perform a specific sequence of 

operations that progressively increase the representational 

power of the network. The groups vary in their internal 

configuration, with differences in the number of depth wise 

separable convolutions and the presence of intermediate 

activation functions and pooling layers. This variability allows 

the model to efficiently learn a broad spectrum of features, 

from basic to highly complex, by adjusting the focus and depth 

of feature extraction at each stage. Upon processing through 

the convolutional groups and depth wise separable 

convolutions, the Xception model employs an output fusion 

technique to integrate the extracted features into a coherent 

output. This technique involves aggregating the outputs from 

various stages of the model, leveraging both the depth and 

breadth of the learned features to make a comprehensive 

prediction. This final output encapsulates the model's 

interpretation of the input image, categorizing it with a high 

degree of accuracy based on the learned representations. The 

schematic representation of Xception model is shown in 

Figure 1. 

 

 
 

Figure 1. Schematic representation of Xception model 

 

 

4. RESULT ANALYSIS 

 

This section explains the performance of the models 

developed with a comparative analysis of the model. The first 

step for the generation of results is data collection. The data is 

collected from the previous study [65], which is publicly 

available. As training an efficient ensemble learning model 
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requires high-quality data, this dataset serves the image quality 

requirements for this study. This dataset contains well-

balanced data in the form of images classified into benign and 

malignant skin images. The dataset includes 2 folders, test and 

train, consisting of 2 subfolders, benign and malignant, with 

more than 3000 images of skin with a size of 224 × 224. The 

samples of the data are shown in Figure 2. No data 

preprocessing is required in this dataset as the images used are 

already pre-processed. This has saved time and reduced the 

complexity of the proposed model. 

 

4.1 Results analysis for model 1 (VGG-16 + ResNeT-50) 

 

The first ensemble model is concerned with VGG-16 and 

ResNeT-50. Initially, the images from the training dataset 

have been loaded, and prior passing images through the model, 

data augmentation is performed. The efficiency of the model 

depends on the quality of the images. However, it has been 

observed that the representability of the dataset is lost during 

data preprocessing which might affect the accuracy of the 

model. Data augmentation helps in resolving the challenge of 

data representation by reducing data overfitting and class 

imbalance of the data, which makes the model efficient and 

yields better prediction accuracy. The data augmentation 

parameters used for Model-1 (VGG-16 + ResNeT-50) are 

given in Table 6. 

 

 
a) Benign images 

 
b) Malignant images 

 

Figure 2. Sample images of benign and malignant skin 

cancer from the dataset 

 

Table 6. Data augmentation parameters used during model 

building 

 

Parameters 
Values 

Passed 
Remarks 

Rotation 

Range 
20 

This parameter helps in rotating 

the images with angle between 0-

20 degree. 

Width Shift 

Range 
0.01 

This parameter helps in shifting 

the image along the X-axis by the 

value passed. 

Height Shift 

Range 
0.01 

This parameter helps in Vertical 

Shift by the value passed. 

Horizontal 

Flip 
False 

This parameter helps to stop the 

flipping of the rows and columns 

horizontally. 

Vertical Flip False 

This parameter helps to stop the 

flipping of the rows and columns 

vertically. 

 

After data augmentation, the data is ready to be passed 

through the model. Initially, the data is passed through the 

VGG-16 model with default ImageNet weights as explained 

by the network architecture in Table 2. After this procedure, 

fine tuning is done. This technique helps us in initializing a 

new model to be trained on the image data from the same 

dataset domain by using the weights of a previously trained 

network. This technique helps in increasing the efficiency of 

the data training process and helps in overcoming the small 

data size. Various approaches that are used for fine tuning of 

models. The first approach is flattening of the layers in the 

network. This method is used for the conversion of all 2-

dimensional arrays from a feature map into a continuous single 

layer of linear vectors. This flattened layer is fed into the fully 

connected layer for image classification. Another approach is 

based on Dense Layer, which is used for image classification 

based on the outcomes received from the Convolution Layers. 

This is supported using ReLU function which will give the 

output only if the input is positive, else it will give a negative 

value. At last, a dropout function along with sigmoid is used 

for ignoring the random neurons in the network temporally 

during forward passing and the weights are not applied to that 

neuron during the backward passing. These techniques are 

further also applied to the ResNeT-50 network and then both 

models are combined to generate a single ensemble model. In 

an ensemble network model, an average layer is applicable, 

which takes the average of each of the feature maps and then 

sends this average value to the activation layer for further 

processing. This is summarized in Table 7. 

 

Table 7. Summary of average layer ensemble model-1 

 

Layer Output Size 
Parameter 

No. 
Connection 

Input 
None × 512 

× 512 × 3 
0 [ ] 

Functional 

Model-1 
None × 2 157838850 ['input_3[0][0]'] 

Functional 

Model 
None × 2 48302530 ['input_3[0][0]'] 

Average None × 2 0 
['model_1[0][0]',                                                                           

'model [0][0]']   

Total # of 

Parameters- 

206,141,380 

No. of 

Trainable 

Parameters- 

173,614,340 

No. of Non-

Trainable 

Parameters- 

32,527,040 
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Figure 3. Schematic representation of the model-1 obtained after application of Adam optimizer 

 

 
 

Figure 4. Normalized confusion matrix for the model 1 

 

The ensemble model developed is based on various deep 

learning algorithms. This model tries to generalize the data 

received and generates predictions on new unseen data. During 

this process, I need to take care of minimizing the loss function 

which might affect the overall accuracy of the model. To 

resolve this challenge, optimizers are used. There are various 

optimizers available for various neural network models, but it 

has been decided to proceed with the Adam optimizer at a 

learning rate of 0.0001 as it is the most widely used optimizer. 

Adam optimization algorithm is a replacement algorithm for 

the SGD optimization algorithm for training various deep 

learning models. This algorithm can help in resolving the 

challenges like the handling of sparse gradients on noisy 

dataset problems by utilizing the properties of AdaGrad 

algorithm and RMSProp algorithm in a better way [66, 67]. 

The model obtained after application of Adam optimizer is 

given in Figure 3. 

After optimization, this model is finally trained for 50 

epochs of 32 batch size with 0.10 validation split. The results 

obtained are recorded in Table 8 and recorded in Figures 4 and 

5, respectively. 

From Table 8, it can be observed that the model achieved 

100% accuracy for most of the cases during the training phase. 

This model achieved a testing accuracy of 80% which is also 

good, but it can get better. Thus, another ensemble model, 

based on VGG-19 and Xception, has been employed. Figure 4 

tells us about the representation of class groupings having 1.0 

samples. This means that the sum of each row represents 100% 

of the components present in that particular class of dataset. 

 

 

Table 8. Results obtained with training ensemble model 1 

 
No. of 

Epochs 
Loss Accuracy Val_Loss Val_Accuracy 

1 7.9184 0.9722 8.2701 0.7500 

2 7.7049 0.8333 8.7855 0.7500 

3 7.7997 0.9167 10.4405 0.7500 

4 7.2230 0.8889 11.1027 0.7500 

5 7.4586 0.8889 10.9496 0.7500 

6 7.2470 0.8889 10.8756 0.7500 

7 7.3378 0.8333 10.8523 0.7500 

8 7.1824 0.8611 10.7030 0.7500 

9 6.4601 0.9167 10.3991 0.7500 

10 6.7294 0.9167 7.3404 0.7500 

11 6.1865 0.9167 6.3422 0.7500 

12 6.1645 0.9167 6.2744 0.7500 

13 5.9988 0.9444 10.0257 0.7500 

14 6.0222 0.9444 8.4231 0.5000 

15 6.5633 0.9167 6.4708 0.2500 

16 6.0402 0.8611 6.3414 0.2500 

17 5.7226 0.9444 6.1048 0.7500 

18 5.6395 0.9722 5.9043 0.7500 

19 5.6295 0.9167 5.7007 0.7500 

20 5.5063 0.9722 5.6630 1.0000 

21 5.4763 0.9167 5.6177 1.0000 

22 5.3802 1.0000 5.5539 1.0000 

23 5.3622 0.9167 5.4564 1.0000 

24 5.4855 0.9167 5.3865 1.0000 

25 5.2050 1.0000 5.3476 1.0000 

26 5.2728 0.9167 5.3121 1.0000 

27 5.5851 0.9444 5.2792 1.0000 

28 5.2454 0.8611 5.3130 1.0000 

29 5.0941 0.9722 5.2884 1.0000 

30 5.1055 0.9722 5.2588 0.7500 

31 5.0464 1.0000 5.2295 0.7500 

32 4.9917 0.9444 5.1960 0.7500 

33 4.9486 0.9772 5.0407 0.7500 

34 4.9029 0.9444 4.9484 1.0000 

35 4.9018 0.9444 4.9198 1.0000 

36 4.9155 0.9444 4.8951 1.0000 

37 4.8327 0.9722 4.8678 1.0000 

38 5.2751 0.9167 4.7622 1.0000 

39 4.7475 1.0000 4.6577 1.0000 

40 4.7621 1.0000 4.6287 1.0000 

41 4.7208 1.0000 4.6070 1.0000 

42 4.7405 0.9722 4.5794 1.0000 

43 4.6232 1.0000 4.5562 1.0000 

44 4.6359 0.9722 4.5329 1.0000 

45 5.1113 0.9167 4.5091 1.0000 

46 4.8092 0.9722 4.4880 1.0000 

47 4.5444 1.0000 4.4694 1.0000 

48 4.5612 0.9722 4.4523 1.0000 

49 4.4999 1.0000 4.4308 1.0000 

50 4.9379 0.9722 4.4109 1.0000 
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4.2 Evaluation parameters 

 

In evaluating the models presented in this work, I utilized a 

comprehensive set of metrics each offering unique insights 

into the model's performance. Precision highlights the model's 

accuracy in predicting positive outcomes, indicating the 

likelihood that a positive prediction accurately reflects a true 

positive case. This metric is crucial in contexts where the cost 

of a false positive is significant, underscoring the model's 

reliability in its affirmative diagnoses. Recall or Sensitivity 

measures the model's capability to identify all actual positive 

cases, an essential metric in medical diagnostics where failing 

to detect a condition could have dire consequences. It 

underscores the model's effectiveness in capturing the entirety 

of positive cases within the dataset. The F-1 Score, by 

combining Precision and Recall into a single metric through 

their harmonic mean, provides a balanced view of the model's 

overall accuracy. This metric is particularly valuable in 

situations where the data is imbalanced, ensuring that both the 

model's precision and its ability to recall positive cases are 

considered in its evaluation. Sensitivity, also referred to in the 

context of Recall, is reiterated for its critical role in medical 

applications, reflecting the model's success in correctly 

identifying cases with the condition of interest from all cases 

that actually have the condition. This metric is pivotal for 

ensuring that patients requiring further investigation or 

treatment are correctly identified. Specificity complements 

Sensitivity by measuring the model's ability to correctly 

identify true negatives, indicating its proficiency in ruling out 

individuals without the condition. High specificity is vital in 

reducing the number of false alarms, which can save resources 

and prevent unnecessary anxiety for patients. Together, these 

metrics provide a holistic assessment of the models presented 

in this work, revealing not only their accuracy but also their 

robustness, reliability, and applicability to real-world 

scenarios. By carefully analyzing these parameters, I gained 

valuable insights into the strengths and limitations of models, 

guiding improvements and ensuring their suitability for 

clinical application. These are further defined by Eqs. (10)-(14) 

as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝐴

(𝐴 + 𝐵)
 (10) 

 

where, A = True Positive (TP) and B = False Positive (FP). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑋

(𝑋 + 𝑌)
 (11) 

 

where, X = True Positive (TP) and Y = False Negative (FN). 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
(2 ∗ 𝑃 ∗ 𝑅)

(𝑃 + 𝑅)
 (12) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (13) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (14) 

 

The results obtained through the evaluation parameters are 

recorded in Table 9. 

 

Table 9. Model evaluation results 

 

 Precision Recall 
F-1 

Score 
Support 

Benign (0) 0.75 0.90 0.82 20 

Malignant (1) 0.88 0.70 0.78 20 

Macro Average 0.81 0.80 0.80 40 

Weighted 

Average 
0.81 0.80 0.80 40 

Specificity = 0.7 Sensitivity = 0.9 

 

4.3 Results analysis for model 2 (VGG-19 + Xception) 

 

To keep a fair analysis, all parameters of Model 2 are kept 

same as the parameters of Model 1. Thus, the same data 

augmentation techniques as described in Table 5 have been 

applied. In this model, the same Adam optimizer for results 

optimization has been used. The architecture of the VGG-19 

and Xception Ensemble Average Mode is given by Table 10 

and Figure 5. 

Upon Training Model-2 (VGG-19 + Xception), it has been 

found that this model also achieved the maximum 100% 

accuracy for most cases over the training dataset and 85% 

accuracy over the test dataset. This is better than Model-1. 

This accuracy is acceptable as training an efficient model 

requires a high quality of the dataset. In the real world, there 

is a large dataset with high quality of skin images, which when 

trained with this model can increase the accuracy percentage 

of the model in the diagnosis of skin cancer. Due to the 

restricted capacity of computational resources and less amount 

of data compared to the real world, 85% accuracy is acceptable 

to diagnose skin cancer. Furthermore, the analysis carried out 

in this paper also shows that this model outperforms various 

other single model diagnosis algorithms, which is explained 

through a comparative analysis in the following subsections. 

The results obtained after training of ensemble model 2 

(VGG-19 + Xception) for 50 epochs of batch size 32 with a 

validation split of 0.10 are recorded in Table 11 and Figure 6 

respectively. 

These results clearly indicate that Ensemble Learning 

model 2 based on VGG-19 and Xception is more efficient than 

model 1, VGG-16, and ResNeT-50 in the diagnosis and 

classification of skin cancer. For evaluating the results of the 

proposed work, certain parameters are evaluated for the model. 

For a fair analysis, the same parameters as used for model 1 

for evaluation have been used. These are specificity, 

sensitivity, f-1 score, recall, and precision. These are 

summarized in Table 12. 
 

Table 10. Summary of average layer ensemble model-2 

 

Layer Output Size 
Parameter 

No. 
Connection 

Input 
None × 512 

× 512 × 3 
0 [ ] 

Functional 

Model-1 
None × 2 155112618 ['input_3[0][0]'] 

Functional 

Model 
None × 2 53612226 ['input_3[0][0]'] 

Average None × 2 0 
['model_1[0][0]’, 

'model [0][0]'] 

Total # of 

Parameters- 

208,724,844 

No. of 

Trainable 

Parameters- 

175,725,316 

No. of Non-

Trainable 

Parameters- 

32,999,528 
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Figure 5. Schematic representation of the model 2 obtained after application of Adam optimizer 

 

 

Table 11. Results obtained with training model 2 

 
Epochs Loss  Accuracy Val_Loss Val_Accuracy 

1 14.3932 0.5278 13.6940 0.2500 

2 13.1740 0.7222 12.1494 0.7500 

3 12.2389 0.8611 11.2263 1.0000 

4 11.4939 0.8889 10.6502 0.7500 

5 10.8050 0.8889 10.0337 0.7500 

6 10.4299 0.7222 9.4820 0.7500 

7 9.5462 0.9167 8.9987 0.7500 

8 8.9664 0.9444 8.5766 0.7500 

9 8.4865 0.9444 8.2008 0.7500 

10 8.5989 0.8333 7.8598 0.7500 

11 7.8468 0.9444 7.5094 1.0000 

12 7.5419 0.8889 7.0755 1.0000 

13 7.2033 0.9722 6.8166 1.0000 

14 6.9452 0.9722 6.5963 1.0000 

15 6.7158 0.9722 6.3986 1.0000 

16 6.6310 0.8889 6.2222 1.0000 

17 6.3908 0.9444 6.0642 1.0000 

18 6.2411 0.9444 5.9211 1.0000 

19 6.0651 0.9722 5.7914 1.0000 

20 6.1308 0.9444 5.6738 1.0000 

21 5.8599 0.9444 5.5664 1.0000 

22 5.6861 0.9444 5.4676 1.0000 

23 5.6605 0.9444 5.3763 1.0000 

24 5.5848 0.9722 5.2931 1.0000 

25 5.4014 0.9722 5.2179 1.0000 

26 5.3108 0.9722 5.1498 1.0000 

27 5.2327 1.0000 5.0895 1.0000 

28 5.2453 0.9444 5.0506 1.0000 

29 5.0620 1.0000 5.0315 1.0000 

30 5.0305 1.0000 5.0736 1.0000 

31 4.9609 1.0000 5.3581 0.7500 

32 4.9658 0.9167 5.3692 0.7500 

33 4.8513 1.0000 5.3784 0.7500 

34 4.8002 1.0000 5.6197 0.5000 

35 4.7846 0.9722 5.6277 0.5000 

36 5.1766 0.8889 5.2515 0.7500 

37 4.6724 1.0000 5.0784 0.7500 

38 4.6634 0.9444 5.0112 0.7500 

39 4.6015 1.0000 4.9556 0.7500 

40 4.6113 0.9444 4.9209 0.7500 

41 4.5215 0.9722 4.9324 0.7500 

42 4.4712 0.9722 4.7741 0.7500 

43 4.4662 1.0000 4.4138 1.0000 

44 4.4226 1.0000 4.3695 1.0000 

45 4.3856 0.9722 4.3442 1.0000 

46 4.3560 1.0000 4.3211 1.0000 

47 4.3291 0.9722 4.2964 1.0000 

48 4.2721 1.0000 4.2726 1.0000 

49 4.2773 0.9722 4.2600 1.0000 

50 4.2119 1.0000 4.4117 0.7500 

Table 12. Model evaluation results 

 

  Precision Recall 
F-1 

Score 
Support 

Benign (0) 0.72 0.90 0.80 20 

Malignant (1) 0.87 0.65 0.74 20 

Macro Average 0.84 0.85 0.85 40 

Weighted 

Average 
0.84 0.85 0.85 40 

Specificity = 0.65 Sensitivity = 0.9 

 

 
 

Figure 6. Normalized confusion matrix for model 2 

 

To verify that EL technique can fasten the diagnosis process 

with good accuracy, I have conducted a comparative analysis 

of single developed models with the best performing model, 

that is, model 2 based on VGG-19 + Xception. In order to 

develop effective algorithms to detect and classify skin cancer, 

few criteria are required to be followed. These are; the model 

should be trained on a large dataset to ensure reliability of the 

model. The accuracy of the developed model should be good 

so that it could be used in real world. The model should be less 

complex so that its working should be easily understood by the 

users and to operate it to its full potential. The model 

developed by us fulfils all these criterias and is more efficient 

model than various closely related studies. For example, a skin 

cancer detection and classification model using transfer 

learning is suggested [68, 69]. The model follows a two-step 

process for classification of skin cancer. However, the 

classification accuracy decreases from 85% to 75% during 

two-step process and thus is not efficient enough to be used in 

real world. A mobile enabled classification tool based on 

computer vision is suggested for classification of skin cancer 
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in real time [66, 67]. The application achieved a sensitivity of 

80% and specificity of 75%, whereas, the models suggested by 

us is more effective in terms of sensitivity, which is 90% for 

the best model. The suggested model achieved a classification 

accuracy of 84% which makes the technique unfit to be used 

for long term [70]. Various lightweight deep learning 

techniques are suggested to classify skin cancer [71]. However, 

the accuracy of the suggested models are lower, ranging from 

78% to 84%, making them unreliable to be implemented in 

real world. In the previous study [72], the suggested technique 

achieved an overall classification accuracy of 84.09% and the 

technique suggested in the previous study achieved an 

accuracy of 76% [73]. The accuracy of the techniques 

suggested is lower than the technique suggested in the work 

done by us and thus the model presented in this work is more 

reliable to be used in real world. A comparison between the 

models is summarized by Table 13. 

According to the table, I can conclude that the model 

suggested by us surpasses many other models and is more 

effective in detection and classification of skin cancer. Despite 

of the advantages of the technique suggested in the paper, there 

are certain limitations which are needed to be resolved. The 

ensemble learning technique, while offering significant 

advantages in skin cancer diagnosis, faces challenges such as 

high resource requirements and complex model architecture, 

which could hinder rapid deployment and troubleshooting. To 

address the resource intensity of training ensemble models, 

future work could explore the adoption of lightweight models 

or streamlined ensemble methods that maintain high accuracy 

while being less demanding computationally. This approach 

could make the technology more accessible, especially in 

resource-constrained settings where urgent diagnostic needs 

are prevalent. Improving the model's accuracy beyond the 

current threshold is another critical area for future 

development. Strategies such as augmenting the training 

dataset with more diverse and extensive data, or fine-tuning 

the models with advanced optimization techniques, could 

enhance the model's performance. Additionally, incorporating 

more sophisticated data augmentation methods could help the 

model learn from a wider variety of skin cancer manifestations, 

thereby increasing its generalizability and accuracy. 

Regarding the complexity of the ensemble model architecture, 

future efforts might focus on simplifying the model without 

compromising its predictive power. Simplification could 

involve identifying and retaining only the most impactful 

features and models within the ensemble, thereby easing the 

investigation process in case of model failure. Moreover, 

developing more interpretable models or employing 

explainable AI techniques could also aid in diagnosing and 

rectifying issues more efficiently, reducing time wastage and 

improving model trustworthiness. By tackling these 

limitations through targeted research and development, I can 

enhance the practicality and efficacy of ensemble learning 

models for skin cancer diagnosis, paving the way for their 

broader adoption and implementation in clinical settings. 

Furthermore, building on the identified limitations of current 

ensemble learning technique for skin cancer diagnosis, my 

future work will focus on concrete steps and methodologies 

aimed at overcoming these challenges. To address the high 

resource consumption and complexity inherent in training 

ensemble models, I plan to investigate and implement more 

efficient machine learning frameworks. Specifically, I will 

explore lightweight neural network architectures that are 

known for their reduced computational demand without 

significantly compromising accuracy. This will involve 

comparative analysis to identify architectures that offer an 

optimal balance between performance and resource efficiency. 

To enhance the accuracy of the models presented in this work 

beyond the current levels, this work approach will include 

expanding the training datasets with a broader range of skin 

cancer images, encompassing more diverse skin types and 

cancer stages. This expansion aims to improve the model's 

generalization capabilities across various manifestations of 

skin cancers. Additionally, I will apply more sophisticated 

data augmentation techniques to artificially enlarge the dataset, 

thereby providing the models presented in this work with a 

more comprehensive learning experience. 

In tackling the complexity of the model architecture, I will 

embark on a systematic simplification process. This process 

will involve pruning fewer effective components of the 

ensemble to streamline the architecture, making it more 

transparent and easier to analyze in case of failure. 

Concurrently, I will integrate explainable AI methodologies to 

enhance the interpretability of the models presented in this 

work. This effort will not only facilitate a deeper 

understanding of the model's decision-making processes but 

also significantly ease the investigation and rectification of 

issues should they arise. Future work will also include rigorous 

testing and validation of these improvements to ensure they 

effectively address the current limitations without introducing 

new challenges. Through these focused efforts, I aim to 

advance the development of ensemble learning models, 

making them more accessible, accurate, and user-friendly for 

clinical applications in skin cancer diagnosis. 

 

Table 13. Comparison of the proposed models with the state-

of-the-art 

 
Recent 

Works 
Accuracy (%) 

[68] 
85% for Step-1 Transfer Learning and 75% for 

Step-2 Transfer Learning 

[69] 80% sensitivity and 75% specificity 

[70] 84%  

[71] 

78.9% for SqueezeNet, 76% for ShuffleNet, 

83.1% for ResNet, 82.9% for MobileNetV1 and 

83.7% for DenseNet 

[72] 84.09% for ResNet101 architecture 

[73] 76% 

[74] 76.87% using Random Forest Classifier 

[75] 80% 

[76] 80% 

[77] 80% training and 70% Testing 

Proposed 

models 
80% for Model-1 and 85% for Model-2 

 

 

5. CONCLUSIONS 

 

Skin cancer stands as the most prevalent form of cancer, yet 

it remains highly treatable when identified in its nascent 

stages. It has been documented that over 75% of skin cancer 

fatalities stem from delayed detection. Presently, the diagnosis 

and classification of skin cancer predominantly rely on manual 

methods, which are hampered by several limitations including 

the expertise of radiologists, the complexity of laboratory 

setups, and the protracted duration required to obtain test 

results. In response to these challenges, this paper proposes the 

adoption of an Ensemble Learning technique to expedite and 

automate the diagnostic process. While not intended to 
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supplant existing diagnostic frameworks, this method 

significantly enhances the speed of diagnosis, achieving an 

impressive accuracy rate of 85%. This achievement, however, 

is currently bounded by the limitations of computational 

resources and the quality of the dataset available. With access 

to advanced computational resources and a high-quality image 

dataset, there is a tangible pathway to not only refine the 

accuracy of the model but potentially elevate it beyond the 

85% threshold observed. The infusion of superior datasets 

would enable the model to learn from a more diverse and 

richer set of image features, thereby improving its diagnostic 

precision. In practical terms, the utility of the proposed 

Ensemble Learning method extends beyond theoretical 

applications, offering substantial benefits in real-world 

clinical settings. For instance, integrating this method within 

telemedicine platforms could drastically reduce the wait times 

for skin cancer screening results, making early intervention 

more feasible. Additionally, its application in remote areas, 

where specialist dermatological expertise is scarce, could 

democratize access to reliable diagnostic services. Looking 

ahead, the scope for further research is vast and promising. 

Future investigations could delve into the exploration of 

alternative ensemble learning strategies that may offer even 

greater efficiencies or accuracy improvements. Optimizing the 

current models to be more resource-efficient without 

sacrificing accuracy presents another fertile ground for 

exploration. Moreover, integrating the proposed technique 

with existing diagnostic tools could provide a more holistic 

and robust diagnostic procedure, blending the strengths of 

manual expertise with the precision of machine learning. The 

potential impact of this work extends beyond the realm of skin 

cancer, offering promising implications for other types of 

cancer and medical conditions. The adaptability of the 

Ensemble Learning approach, with appropriate modifications, 

could serve as a versatile tool in the broader medical 

diagnostic field, heralding a new era of rapid, accurate, and 

accessible disease detection and classification. In conclusion, 

this paper not only showcases the efficacy of Ensemble 

Learning in improving skin cancer diagnosis but also lays the 

groundwork for a broad spectrum of future research directions. 

By leveraging better resources and datasets, the proposed 

method has the potential to significantly advance the accuracy 

and reliability of skin cancer diagnostics, with far-reaching 

implications for healthcare delivery worldwide. 
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