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In the modern logistics industry, the rapid growth of e-commerce has made real-time load 

monitoring of delivery vehicles a critical factor in ensuring transportation efficiency and 

safety. However, traditional load monitoring methods are often hindered by delayed data 

acquisition and insufficient accuracy, making them inadequate for the high demands of 

efficient and precise logistics operations. Recently, with advancements in deep learning-

based image analysis, image-based load monitoring methods have gained attention. 

However, existing studies face challenges in robustness and real-time performance, 

particularly in dynamic and complex environments. To address these issues, this paper 

proposes a real-time load monitoring method for logistics delivery vehicles based on deep 

learning techniques, focusing on three core technologies: subpixel edge detection in 2D 

images, interpolation between consecutive image frames, and real-time load volume 

calculation. This research aims to enhance the accuracy and real-time capabilities of load 

monitoring, thereby advancing the intelligent development of the logistics industry. 
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1. INTRODUCTION

In the modern logistics industry, load monitoring of 

delivery vehicles is a crucial aspect of ensuring transportation 

efficiency and safety [1-3]. With the rapid development of e-

commerce, the demand for logistics delivery has significantly 

increased, making the real-time monitoring of vehicle loads in 

complex and variable environments an urgent issue to be 

addressed [4-6]. Traditional load monitoring methods largely 

rely on vehicle-installed sensors or manual records. However, 

these methods suffer from issues such as delayed data 

acquisition and significant errors, making them inadequate for 

the demands of efficient and precise logistics operations [7, 8]. 

With the rapid development of deep learning and computer 

vision technologies, utilizing image analysis methods for real-

time load monitoring of logistics delivery vehicles has become 

a forward-looking solution. 

The significance of this research lies in exploring and 

developing a real-time load monitoring method based on 

image deep learning technology. By processing and analyzing 

images of logistics delivery vehicles, this method can 

accurately identify and calculate the current load condition of 

the vehicle [9-11]. This approach not only improves the 

accuracy of load monitoring but also greatly reduces manual 

involvement, thereby enhancing the level of intelligence 

across the entire logistics delivery chain [12, 13]. Moreover, 

by monitoring vehicle loads in real time, it is possible to 

effectively prevent issues such as overloading and load 

imbalance, thereby improving safety during the transportation 

process and reducing transportation risks. 

Although some studies have attempted to apply image 

processing technology to the load monitoring of logistics 

vehicles, most of these methods still exhibit many 

shortcomings in practical applications [14-18]. For example, 

existing methods often lack sufficient robustness when 

processing images in dynamic and complex environments, 

making them susceptible to external factors such as lighting 

and occlusion, which can result in inaccurate monitoring 

results. Furthermore, the real-time performance of image 

processing still needs improvement, as it currently fails to 

meet the high-efficiency requirements of logistics delivery 

processes [19-21]. Therefore, it is particularly necessary to 

study more accurate image analysis technologies with real-

time processing capabilities to address these deficiencies. 

The main content of this research includes three parts. First, 

for real-time load monitoring of logistics delivery vehicles, a 

two-dimensional image subpixel edge detection method is 

proposed to improve the accuracy of load identification. 

Second, a fitting interpolation technique between consecutive 

image frames is studied to enhance the continuity and 

consistency of image data. Finally, through the analysis and 

processing of image data, a real-time load volume calculation 

method based on images is proposed. This research not only 

fills the gap in existing technologies but also provides new 

technical pathways and theoretical support for the intelligent 

development of the logistics industry in the future. 

2. SUBPIXEL EDGE DETECTION IN 2D IMAGES FOR

REAL-TIME LOAD MONITORING OF LOGISTICS

DELIVERY VEHICLES

In real-time load monitoring of logistics delivery vehicles, 
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accurately obtaining load information is a key aspect of 

achieving precise monitoring and intelligent management. The 

subpixel edge detection technology in 2D images plays a 

crucial role in this process. Due to the typically complex shape 

and distribution of vehicle loads, traditional image processing 

methods struggle to accurately locate the edges of objects at 

the pixel level, thereby affecting the accuracy of load 

calculations. Through subpixel edge detection technology, it is 

possible to enhance the precision of load measurement and 

reduce errors caused by edge blurring or misjudgment. This is 

particularly important in dynamic and complex logistics 

delivery environments, where accurate edge detection helps to 

address challenges such as lighting variations and occlusions. 

The spline fitting interpolation problem for edge points in 

2D images in real-time load monitoring of logistics delivery 

vehicles involves generating continuous and smooth edge 

curves from the results of edge detection. Specifically, due to 

the potential discontinuities or noise interference in the actual 

edge points obtained from images, directly using these points 

for load calculations can result in insufficient accuracy. 

Therefore, spline fitting interpolation technology is introduced 

to generate smooth curves between these discrete edge points, 

making the edge information more complete and accurate. The 

core of this problem lies in selecting the appropriate spline 

function and performing effective interpolation, ensuring the 

continuity and smoothness of the edge curve in the dynamic 

and complex logistics environment, thereby providing reliable 

foundational data for subsequent load calculations. 

Specifically, given the function d(a) with function values 

b0,b1,...,bv at v + m nodes a0,a1,...,av, the task is to find a cubic 

spline function t(a) that satisfies: 

 

( ) , 0,1, ,k kt a b u v= =  (1) 

 

In the spline fitting interpolation problem for edge points in 

2D images in real-time load monitoring of logistics delivery 

vehicles, the choice of boundary conditions directly affects the 

smoothness and accuracy of the edge curve. Considering the 

specific requirements of this study, the following boundary 

conditions are adopted: 

(1) Fixed boundary conditions: At the two boundary nodes 

of the image, the first derivative of the edge curve is set to a 

fixed value, i.e., t′(a0) = l0 and t′(av) = lv. This condition is 

suitable for scenarios in logistics vehicle load monitoring 

images where the direction and trend of the edge points are 

clearly defined. By specifying fixed derivative values, the 

slope of the edge curve at the boundary is ensured to be 

consistent with the actual physical characteristics, thereby 

accurately reflecting the edge changes of the vehicle load. 

(2) Second boundary conditions: This boundary condition 

sets the second derivative at the boundary nodes to a fixed 

value, i.e., t′′(a0) = l0 and t′′(av) = lv. Particularly, when l0 and 

lv are zero, it is referred to as the natural boundary condition. 

This condition is particularly common in logistics delivery 

vehicle load monitoring, as in practical applications, the edge 

curve at the boundary usually tends to flatten, with the second 

derivative being zero. This natural boundary condition helps 

to generate a smooth edge curve, avoiding unnatural bends at 

the boundary, thereby improving the accuracy of load 

monitoring. 

(3) Periodic boundary conditions: This condition requires 

that the values of the first and second derivatives at the starting 

and ending boundaries of the image are equal, i.e., t′(a0) = t′(av) 

and t′′(a0) = t′′(av). For logistics delivery vehicle load 

monitoring images, this condition can be applied to scenarios 

where the load distribution is periodic or symmetric, ensuring 

consistency of the edge curve at the starting and ending points 

of the image, thereby reducing calculation errors and 

discontinuities. 

The process of determining the cubic spline function 

expression mainly includes the following key steps: 

The extraction of edge points is fundamental. Through 

subpixel edge detection technology, the coordinates of the 

edge points in the load images of logistics delivery vehicles 

are accurately obtained. These edge points are usually discrete 

and may contain some noise, requiring smoothing in 

subsequent processing. Specifically, in the given interval [a, 

b], there are: 

 

0 0 1 Vx a a a y=    =  (2) 

 

Given constants b0,b1,...,bV, assuming the cubic spline 

function is represented by T3, a function can be constructed to 

satisfy: 

 

( ) ( )3 1 2, , , VT a T a a a  (3) 

 

The constructed function satisfies the following 

interpolation conditions: 

 

( ) , 0,1,...,k kT a b k V= =  (4) 

 

For each pair of adjacent edge points, a cubic polynomial 

needs to be constructed. This polynomial is spliced at all edge 

points to generate a continuous and smooth curve. Specifically, 

let Lk represent T″(ak)(k =0,1,...,V). Since T(a) is a piecewise 

cubic polynomial in the interval nodes, T″(a) changes linearly 

within the segment interval [ak-1, ak]. Let gk = ak-ak-1, and the 

linear interpolation function can be obtained from the two 

points (ak-1, Lk-1) and (ak-1, Lk): 
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Integrating the above equation twice yields the expression 

for T(a) within the segment interval [ak-1, ak] and the integral 

constant. When a ∈ [ak-1, ak], we have: 
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(6) 

 

Based on the above equation, to obtain T(a), it is necessary 

to determine each Lk(k=0,1,...,V) according to the continuity 

and smoothness conditions at the spline nodes, namely: 

 

( ) ( )0 0k kT a T a − = +  (7) 

 

According to the above equation, we have: 
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Further, the following equation can be derived: 
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The above equation provides V-1 equations containing V + 

m unknowns Lk(k=0,1,...,V). However, to uniquely determine 

each Lk(k=0,1,...,V), it is necessary to supplement the 

conditions of the natural spline function. First, the value of the 

spline function at each edge point should be consistent with 

the original data points. Second, ensure that the first and 

second derivatives of each polynomial are continuous at the 

boundary points. Third, set the values of the first or second 

derivatives at the first and last nodes according to the chosen 

boundary conditions. By these conditions, a set of linear 

equations is established as follows: 

 

0 0 1 0

1

2

2V V V V

L L f
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The linear equation system determined based on the above 

equation is: 
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(11) 

 

Solving the above equation yields the expression for the 

cubic spline interpolation function. 

 

 

3. REAL-TIME LOAD MONITORING OF LOGISTICS 

DELIVERY VEHICLES: INTERPOLATION 

BETWEEN CONSECUTIVE FRAMES OF IMAGES 

 

In real-time load monitoring of logistics delivery vehicles, 

sub-pixel edge localization of two-dimensional images 

provides precise edge point information. However, in practical 

applications, load monitoring often requires processing image 

data of consecutive frames to ensure accurate monitoring of 

dynamically changing loads. Due to the limited time interval 

between consecutive frames, especially in high-speed 

shooting or fast-moving load scenarios, there may be 

significant displacement or change between frames. This 

results in a mismatch between the spatial resolution of 

consecutive frames and the image resolution within a single 

frame. Similar to the problem of axial spacing in three-

dimensional scanning tomography data being much greater 

than the horizontal distance between pixels, this mismatch 

affects the accuracy and continuity of load monitoring. Figure 

1 shows the schematic diagram of consecutive frame matching 

in real-time load monitoring of logistics delivery vehicles. 

 

 
 

Figure 1. Schematic diagram of consecutive frame matching 

in real-time load monitoring of logistics delivery vehicles 

 

Therefore, after completing sub-pixel edge localization of 

two-dimensional images, it is necessary to perform 

interpolation between consecutive frames of images. This 

process generates interpolated frames between adjacent 

frames, making the spatial resolution of consecutive frames 

more consistent, thus compensating for the missing 

information between frames. Through interpolation, the 

dynamic changes in vehicle loads can be better captured, 

avoiding monitoring errors caused by frame jumps or 

displacements, and ensuring the continuity and smoothness of 

load calculation. Especially in complex logistics environments, 

where the distribution and shape of the load may change 

rapidly, interpolation between consecutive frames can provide 

more accurate load information, enhancing the reliability of 

real-time monitoring. Figure 2 shows the schematic diagram 

of consecutive frame monitoring. 

 

 
 

Figure 2. Schematic diagram of consecutive frame 

monitoring 

 

During actual monitoring, the shape and distribution of the 

load may change significantly between consecutive frames, 

especially in scenarios where the vehicle load undergoes 

substantial dynamic changes. Although traditional linear 

interpolation methods can fill in the information gaps between 

consecutive frames, they cannot effectively capture and 

interpolate the complex contour shapes of inter-layer images, 

leading to discontinuities or blurring in the contour edges of 

the interpolated images, thereby affecting the accuracy of load 

monitoring. To solve this problem, this paper introduces a 

shape-based interpolation algorithm. The core idea of this 

algorithm is to construct a distance function that converts the 
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pixel gray values in a binary image into the shortest distance 

values from the pixel to the edge point. This distance function 

is used as the interpolation criterion to generate inter-layer 

interpolated images. Compared to linear interpolation, this 

method focuses more on the continuity and shape preservation 

of contour edges, generating more accurate and continuous 

inter-layer images, ensuring precise positioning and transition 

of load edges, thereby enhancing the overall monitoring effect 

of vehicle loads. 

One of the key steps in the shape-based interpolation 

method is to construct a distance function suitable for this 

scenario to ensure smooth transitions of contour edges 

between consecutive frames. The distance function measures 

the shortest distance between each pixel and the edge point to 

generate interpolated images. In the image processing of 

logistics delivery vehicle load monitoring, this distance 

function can be defined as Euclidean distance, city block 

distance, or chessboard distance, each of which is suitable for 

different image characteristics. By calculating the shortest 

distance from the pixel position of each foreground point to 

the background point, i.e., the shortest distance from the load 

edge point to the area outside the load, and storing these 

distances, the original binary edge image can be converted into 

a grayscale image. These grayscale values represent the 

shortest distance between each pixel and the nearest 

background pixel. These distance values are then used as the 

interpolation criterion to generate interpolated images between 

consecutive frames. Specifically, the distance function 

characterizes the relationship between all points O, P, and E: 

1. If and only if O=W, F(O,W)=0; 

2. F(O,W)=F(W,O); 

3. F(O,E)≤ F(O,W)+F(W,E). 

The specific interpolation steps are as follows: 

(1) Segment the load monitoring image of each frame. This 

paper adopts a thresholding method to quickly separate the 

load area from the background according to the characteristics 

of the logistics load. Through thresholding segmentation, a 

clear binary image can be obtained, clearly identifying the 

contour edges of the load. 

(2) Perform distance transformation on the segmented 

binary image, i.e., calculate the shortest distance from each 

foreground pixel to the nearest background pixel, and generate 

a distance matrix F(a,b,c). This matrix records the distance 

information of each pixel to the edge, laying the foundation for 

subsequent shape interpolation. 

(3) After obtaining the distance matrix F(a,b,c), perform 

interpolation calculations. This process can be achieved 

through erosion and dilation operations in mathematical 

morphology. Specifically, by performing erosion and dilation 

on the target template, it is deformed to gradually generate 

contour point information of the intermediate frame's 

tomographic image. After each iteration, a new distance 

mapping image of the interpolated layer can be obtained, 

gradually achieving the transition of contours between frames. 

Assuming that the composite operation of dilation and 

iteration is represented by F|γ, the result of the v-th iteration is: 

 
( ) ( ) ( ) ( ) ( )2 2, , , ,
v v

F a b c F F a b c  =
 

 (12) 

 

(4) Since the distance mapping image contains the fusion 

information of contour shapes between the two original frames, 

the interpolated image between them can be generated through 

this mapping image. This step ensures a natural transition from 

the target shape of one frame to the target shape of the next 

frame, thereby achieving high-precision continuous image 

processing in the monitoring of logistics delivery vehicle loads, 

ensuring accurate monitoring of load changes. 

 

 

4. REAL-TIME LOAD VOLUME CALCULATION FOR 

LOGISTICS DELIVERY VEHICLES 

 

In the real-time load monitoring of logistics delivery 

vehicles, the aforementioned sub-pixel edge detection of two-

dimensional images and fitting interpolation between 

consecutive frames can accurately capture and generate edge 

contour information of the load. However, to further achieve 

the calculation of the actual area and volume of the load, it is 

necessary to convert these processed image data into actual 

physical dimensions, thereby quantitatively evaluating the 

vehicle load. 

After image processing is completed, the resulting load 

contours are usually represented in pixel units. To convert 

these pixel areas into actual physical areas, a scale factor is 

introduced, which is derived from the camera's calibration 

results. Specifically, by using a reference object or calibration 

board with known dimensions within the camera's shooting 

range, the actual physical length corresponding to each pixel 

is determined, thereby calculating the proportional 

relationship between the pixel area and the actual area. Using 

this scale factor, the load pixel area calculated from the image 

is converted into the actual physical area. Next, the load 

volume is calculated. In a two-dimensional image, calculating 

the load volume requires combining depth or height 

information from multiple frames. For real-time load 

monitoring, depth information for the load at different 

positions can be obtained through the interpolation results 

between consecutive frames. These areas are then multiplied 

by their corresponding height or depth values, and the products 

are integrated or summed to calculate the total load volume. 

First, by analyzing the captured images, the number of 

pixels along the load's edge in the image is determined, such 

as the load's width pixel count SL. Next, this pixel count is 

divided by the entire image's resolution FBL, namely the total 

pixel count corresponding to the image width, to calculate a 

scale factor RA. 

 

SL
RA

FBL
=  (13) 

 

This scale factor represents the relationship between the 

load width in the image and the entire frame width. Then, 

using the known actual frame width sQ, the actual load width 

can be calculated using the following formula: 

 

2
2

SL
Q SIN DE

FBL DPN

 
=    

 
 (14) 

 

Figure 3 gives a schematic diagram showing the 

relationship between the camera and the vehicle load. The 

calculation of the load height depends on the camera's field of 

view and the distance between the camera and the load. 

Specifically, the load height can be obtained by multiplying 

the cosine value of half the DPN by the depth value from the 

camera to the image boundary and then subtracting the depth 

value YDE of the load. This process considers changes in the 
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camera's viewing angle and the load's position in the image, 

thereby accurately calculating the load height G. The formula 

can be expressed as: 

 

2
G COS DE YDE

DPN

 
=  − 

 
 (15) 

 

 
 

Figure 3. Relationship between the camera and the vehicle 

load 

 

After obtaining the actual load width Q and height G, the 

next step is to calculate its volume. Typically, the load volume 

can be calculated using the following formula: V = Q × M × G, 

where M represents the load length. The calculation method 

for length M is similar to that of width Q, which is also 

calculated based on the ratio of pixel count to image resolution 

and then combined with actual measurement data. By 

multiplying the load's width, length, and height, the total load 

volume can be obtained. 

As the vehicle moves during transportation, the load's shape 

and position may change, necessitating real-time updates to 

the load's area and volume calculations. Using image deep 

learning technology, the load contour changes can be 

automatically recognized and tracked, and the calculation 

results can be quickly updated. This process can provide real-

time load information to assist the logistics management 

system in making dynamic adjustments, such as optimizing 

loading schemes, predicting the stability of cargo placement, 

or assessing the uniformity of vehicle load distribution. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Based on the experimental results from Table 1 and Table 

2, it can be observed that the method after sub-pixel edge 

detection of two-dimensional images significantly reduces the 

average error and error range across all load volume ranges. In 

the 100~150 cm load volume range, the average error after 

detection decreases from 0.32 to 0.09, and the error range 

drops from 3.89 to 1.22. Additionally, the calculation time 

slightly increases after sub-pixel edge detection but remains 

within a range of 10.4 to 13.5 seconds, slightly higher than the 

4.2 to 5.2 seconds before detection. The experimental results 

indicate that the proposed two-dimensional image sub-pixel 

edge detection method significantly improves the accuracy of 

load recognition, particularly in smaller load volume ranges. 

This improvement is primarily reflected in the lower average 

error and error range, demonstrating the method's 

effectiveness in practical applications. However, due to the 

increased calculation time, while this method is more suitable 

for scenarios requiring high precision, it may necessitate a 

trade-off between accuracy and efficiency in time-sensitive 

applications. 

Based on the experimental results from Table 3, different 

load distances and minimum voxel settings have a significant 

impact on the calculation time and error range of the proposed 

method. Within the same load volume range of 350~500 cm, 

as the load distance increases, the calculation time gradually 

increases. For example, when the load distance is 100, the 

calculation time ranges from 15.2 seconds to 19.1 seconds; 

however, when the load distance increases to 300, the 

calculation time rises to 18.8 seconds to 22.5 seconds. At the 

same time, the error range also varies under different 

conditions, generally increasing with the increase of the 

minimum voxel. However, when the load distance is 300 and 

the minimum voxel is 8, the error range actually decreases, 

differing from the cases where the minimum voxel is 2 and 4. 

The experimental results show that the choice of load distance 

and minimum voxel directly affects the performance of the 

load volume calculation method. Shorter load distances and 

smaller minimum voxels can significantly reduce calculation 

time but may lead to an increase in the error range. On the 

contrary, larger load distances increase calculation time, and 

in some cases, the error range decreases. This indicates that in 

practical applications, it is necessary to comprehensively 

consider the configuration of load distance and minimum 

voxel to find the optimal balance between calculation 

efficiency and error range. Particularly when the load distance 

is large, reasonably adjusting the minimum voxel can optimize 

the error performance while maintaining relatively short 

calculation times. 

Table 4 shows the comparison of the average error range of 

the proposed method, Random Forest, and LMedS methods 

under different combinations of load volume and load distance. 

Overall, the average error range of the proposed method is 

slightly higher than that of the Random Forest method in each 

combination of load volume and load distance but lower than 

that of the LMedS method. For example, in the 100~150 cm 

load volume range and 100 load distance, the error range of 

the proposed method is 1.02, while Random Forest and 

LMedS are 0.73 and 0.78, respectively. As the load distance 

increases, the error range of the proposed method also 

increases. Particularly when the load volume is greater than 

500 cm and the load distance is 300, the error range reaches 

1.42, the same as Random Forest, but still better than LMedS’s 

1.67. The experimental results indicate that although the 

proposed two-dimensional image sub-pixel edge detection 

method is slightly inferior to Random Forest in terms of error 

range, its error range remains relatively stable and is superior 

to the LMedS method. This means that the proposed method 

can provide more consistent performance in complex 

scenarios while maintaining high accuracy, particularly 

excelling in large load volumes and long load distances. 

This paper compares the performance of the proposed 

method, Random Forest, and LMedS algorithms under 

different load volumes through Figure 4. The dark blue bars 

represent the error magnitude, the light blue bars represent the 

error magnitude after adjusting the voxel size, and the white 

hollow bars represent the changes in computation time. It can 

be observed that the computation time for the Random Forest 

and LMedS algorithms significantly increases as the load 
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volume increases, especially for the LMedS algorithm under 

large volume loads, whereas the proposed method shows 

relatively stable computation time that does not significantly 

increase with load volume. Additionally, under small load 

volumes, the computation speed differences among the three 

algorithms are not significant, but as the load volume increases, 

the proposed method demonstrates up to a 15% advantage in 

computation efficiency. In terms of error, the error magnitude 

of the proposed method before adjusting the voxel size is 

slightly higher than the other two algorithms, but after 

threshold adjustment, the average error of the proposed 

method decreases by 5% to 20%, reaching a level comparable 

to the LMedS algorithm, although the Random Forest 

algorithm still shows relatively stable advantages in error 

control. The experimental results suggest that the proposed 

sub-pixel edge positioning method for 2D images has 

significant advantages in computational efficiency when 

handling large load volumes, especially when the voxel size is 

reasonably adjusted, which can significantly reduce the 

average error magnitude and improve accuracy. Although the 

Random Forest algorithm shows excellent and relatively 

stable performance in error control, its computation time 

significantly increases with load volume, limiting its 

efficiency in large load volume applications. The LMedS 

algorithm, while stable under small load volumes, cannot 

compete with the proposed method in terms of error magnitude 

or computation time under large load volumes and long load 

distances. 

 

Table 1. Experimental results of the proposed method after 

sub-pixel edge detection of two-dimensional images 

 
Load Volume (Length 

and Width Range) 

Average 

Error 

Error 

Range 

Calculation 

Time 

100~150cm 0.09 1.22 10.4 

150~200cm 0.12 1.35 11.3 

200~350cm 0.28 1.52 11.5 

350~500cm 0.22 0.83 12.1 

>500cm 0.56 1.67 13.5 

 

Table 2. Experimental results of the proposed method before 

sub-pixel edge detection of two-dimensional images 

 
Load Volume (Length 

and Width Range) 

Average 

Error 

Error 

Range 

Calculation 

Time 

100~150cm 0.32 3.89 4.2 

150~200cm 0.52 4.23 4.8 

200~350cm 0.81 3.21 4.1 

350~500cm 1.42 3.68 5.2 

>500cm 1.89 3.78 5.1 

 

Table 3. The impact of different load distances on the 

experimental results of the proposed method 

 
Load Volume 

(Length and 

Width Range) 

Load 

Distance 

Minimum 

Voxel 

Calculation 

Time 

Error 

Range 

350~500cm 100 2 15.2 1.12 

350~500cm 100 4 17.1 1.34 

350~500cm 100 8 19.1 1.52 

350~500cm 150 2 16.1 1.35 

350~500cm 150 4 19.2 1.31 

350~500cm 150 8 20.2 1.36 

350~500cm 300 2 18.8 1.85 

350~500cm 300 4 20.9 1.83 

350~500cm 300 8 22.5 1.56 

Table 4. Comparison of the average error range for different 

load volume and load distance combinations 

 
Load Volume 

(Length and 

Width Range) 

Load 

Distance 

Proposed 

Method 

Random 

Forest 
LMedS 

100~150cm 100 1.02 0.73 0.78 

100~150cm 200 1.23 0.88 0.82 

150~200cm 100 1.07 0.78 0.81 

150~200cm 200 1.14 0.93 1.12 

200~300cm 100 1.21 0.92 1.24 

200~300cm 200 1.21 1.17 1.44 

300~400cm 150 1.22 1.01 1.32 

300~000cm 300 1.31 1.23 1.58 

400~500cm 150 1.32 1.18 1.47 

400~500cm 300 1.38 1.31 1.63 

>500cm 150 1.26 1.28 1.51 

>500cm 300 1.42 1.42 1.67 

 

  
 

Figure 4. Comparison of three algorithms in case of different 

load volumes 

 

 
 

Figure 5. Comparison of three algorithms in case of different 

load distances 

 

Furthermore, this paper compares the performance of the 

proposed method, Random Forest, and LMedS algorithms at 

different distances through Figure 5, with the numbers above 

the bars indicating the approximate distance from the camera 

to the load. The dark red bars represent the error magnitude, 

the light red bars represent the error magnitude after adjusting 

the voxel size, and the white hollow bars show the changes in 

computation time. The results indicate that the errors of all 
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algorithms are sensitive to the camera distance, with the error 

magnitude almost linearly increasing as the distance increases. 

However, the proposed method shows the most significant 

changes in error, particularly at greater distances, but by 

appropriately adjusting the voxel size, the error magnitude can 

be effectively reduced. Meanwhile, the proposed method 

exhibits strong stability in computation efficiency, with 

computation time showing almost no significant increase as 

the distance changes, still maintaining a certain efficiency 

advantage over the other algorithms. The experimental results 

suggest that the camera distance significantly impacts the error 

magnitude of the algorithms, with all algorithms showing 

increased errors as the distance increases. Although the error 

variation of the proposed method is larger, its advantage lies 

in effectively reducing the error through reasonable 

adjustment of the voxel size while maintaining the stability of 

computation efficiency. In contrast, while the Random Forest 

and LMedS algorithms show relatively stable error 

performance at certain distances, they do not demonstrate 

significant advantages in computation time. 

The analysis results indicate that although the Random 

Forest algorithm can effectively reduce noise interference and 

improve recognition accuracy, its dependency on the number 

of threshold iterations requires further optimization to 

maintain efficiency and accuracy in different scenarios. The 

LMedS algorithm, although strong in anti-interference 

capability under complex models, has higher computational 

complexity, resulting in lower efficiency in practical 

applications. The proposed method demonstrates excellent 

computational efficiency, but due to the insufficient 

adaptability of voxel size selection, the error varies under 

different conditions. Therefore, to further improve system 

performance, future improvement directions should focus on 

enhancing the adaptability of voxel size selection to better 

control errors under different load volumes and measurement 

conditions while maintaining efficient computation speed. 

 

 

6. CONCLUSION 

 

The research content of this paper focuses on the real-time 

load monitoring of logistics delivery vehicles, mainly 

including three aspects of innovative work. First, a sub-pixel 

edge positioning method for 2D images is proposed to improve 

the accuracy of load recognition. Second, the fitting 

interpolation technique between continuous image frames is 

studied to enhance the continuity and consistency of image 

data. Finally, a real-time load volume calculation method 

based on image data analysis and processing is proposed. The 

combination of these technologies aims to improve the real-

time monitoring capabilities of the logistics delivery system, 

providing technical support for efficient and accurate load 

management. Experimental results show that the proposed 

method significantly improves recognition accuracy after sub-

pixel edge positioning for 2D images, but the error magnitude 

fluctuates under different load volume and load distance 

combinations. This fluctuation is mainly related to the 

insufficient adaptability of voxel size selection. Additionally, 

the proposed method performs stably under different load 

distances, maintaining high computation speed, but compared 

with Random Forest and LMedS algorithms, the error 

magnitude shows slight fluctuations in some scenarios. 

Nonetheless, the proposed method still has advantages in 

overall performance, especially in scenarios with large load 

volumes or long load distances, demonstrating strong 

adaptability and computational efficiency. 

Overall, the research results of this paper have significant 

value in improving the accuracy and efficiency of load 

monitoring for logistics delivery vehicles, especially in 

application scenarios requiring real-time monitoring and rapid 

computation. However, the study also has some limitations, 

mainly in the adaptability of voxel size selection and error 

control. Future research directions should focus on further 

optimizing the adaptive algorithm for voxel size selection to 

better adapt to different load conditions, reduce error 

magnitude, and improve the overall robustness and accuracy 

of the system while maintaining efficient computation. 
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