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In recent years, deep learning models have seen extensive use in various domains, with the 

YOLO algorithm family emerging as a prominent player. YOLOv5, known for its real-time 

object detection capabilities and high accuracy, has been widely embraced in transportation-

related research. However, the introduction of YOLOv8 in early 2023 signifies a significant 

leap forward in object detection technology. Despite its potential, the literature on YOLOv8 

remains relatively scarce, leaving room for exploration and adoption in research. This study 

pioneers real-time vehicle detection using the YOLOv8 algorithm. An in-depth analysis of 

YOLOv8n, the smallest scale model within the YOLOv8 series, was conducted to assess its 

suitability for real-time scenarios, particularly in Intelligent Transportation Systems (ITS). 

To reinforce its real-time capabilities, a parametric analysis covering image processing time, 

detection sensitivity, and input image characteristics was performed. To optimize model 

performance, a training dataset was created through flight tests using a custom autonomous 

drone, encompassing various vehicle variations. This ensures that the model excels in 

recognizing diverse motor vehicle configurations. The results reveal that even this compact 

sub-model achieves an impressive detection accuracy rate exceeding 80%. The study 

establishes that YOLOv8n, evaluated for the first time in ITS applications, effectively serves 

as an object detector for real-time smart traffic management. 

Keywords: 

vehicle detection, YOLOv8, aerial 

monitoring, intelligent transportation 

systems, UAV 

1. INTRODUCTION

Intelligent Transportation Systems (ITS) have assumed a 

pivotal role in contemporary transportation for a multitude of 

compelling reasons. These ITS innovations, encompassing 

traffic management systems, collision avoidance systems, and 

automated vehicle technologies, serve as prominent leaders in 

the pursuit of enhancing road safety, demonstrating a 

distinguished track record of reducing accidents and 

mitigating their severity [1-3]. They possess an uncanny 

ability to swiftly detect and respond to perilous conditions, 

outpacing human drivers and thereby contributing to accident 

prevention and the preservation of precious lives. In the 

ongoing battle against traffic congestion, ITS emerges as a 

formidable ally. Armed with the prowess of real-time data 

analysis, adaptive signal control, and dynamic route guidance, 

ITS champions the cause of optimized traffic flow [4]. This 

not only translates into reduced travel durations for commuters 

but also manifests as a tangible reduction in fuel consumption 

and the associated specter of air pollution, an affliction often 

linked to traffic bottlenecks. ITS technologies further 

underscore their significance by rendering the transportation 

system more operationally efficient. Their adept optimization 

of vehicle routes, judicious reduction of idling time, and 

minimization of fuel consumption all conspire to yield 

palpable cost savings for both individuals and businesses alike 

[5]. The environmental stakes are high, and ITS rises to the 

occasion by leveraging the reduction of greenhouse gas 

emissions and air pollution. The complementing infrastructure 

for electric and hybrid vehicles, intricately interwoven with 

ITS, assumes the mantle of further reducing the ecological 

footprint of our transportation networks. 

In an age emphasizing inclusivity, ITS demonstrates its 

commitment by providing real-time accessibility information. 

It becomes an enabler for individuals with disabilities, offering 

vital insights into accessible routes, facilities, and transit 

alternatives, thereby fostering a more inclusive and 

accommodating transportation system. Economic growth 

finds a promoter in the efficient transportation systems 

buttressed by ITS. By facilitating the fluid movement of goods 

and people, these systems bestow the gift of reduced 

transportation costs upon businesses [6]. Simultaneously, they 

entice investment by virtue of improved transportation 

infrastructure, leading to the creation of lucrative job 

opportunities. The data-driven essence of ITS emerges as a 

valuable asset, generating a wealth of information for the 

discerning eye of policymakers [7]. This treasure trove of data 

informs sound decisions concerning transportation policy 

formulation, infrastructure investments, as well as the ongoing 

tasks of planning, maintenance, and improvement. In times of 

crisis, ITS assumes a pivotal role by providing real-time traffic 

intelligence. It optimizes emergency vehicle routes and 

augments communication protocols during critical moments, 

thereby accelerating response times and enhancing disaster 

management capabilities [8, 9]. In the pursuit of 

environmental sustainability, ITS technologies, including eco-
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driving systems and adaptive cruise control, ascend to the 

forefront [10]. Their judicious deployment optimizes fuel 

efficiency and contributes indispensably to the noble cause of 

curtailing vehicle emissions. Additionally, the overall travel 

experience undergoes a transformation under the benevolent 

gaze of ITS. By offering real-time insights into traffic 

conditions, public transit schedules, and available parking 

spaces, ITS elevates the convenience quotient and 

significantly mitigates the stress typically associated with 

daily commuting. 

Traffic monitoring stands as an integral pillar within the 

domain of ITS, bearing significant responsibility for the 

management and optimization of traffic dynamics on our 

roadways. This facet of ITS brings together an array of 

technologies and systems to perform the essential tasks of 

collecting, analyzing, and disseminating real-time traffic data 

[11]. At its core, ITS employs a diverse range of sensors and 

data collection devices that read the intricate rhythms of traffic 

conditions. Picture cameras, radar, lidar, and the 

inconspicuous inductive loop detectors nestled within the road 

surface. Even GPS-equipped vehicles and the ubiquity of 

mobile phone data contribute to this process of data collection 

[12-14]. These instruments continually gather information 

about vehicle speeds, traffic volume, density, and other 

pertinent parameters. Once gathered, this data embarks on a 

journey of real-time processing and analysis. Advanced 

algorithms and software work tirelessly to transform raw data 

into meaningful insights. Their discerning gaze identifies 

traffic congestion, pinpoints incidents such as accidents or 

road closures, and unveils any unusual traffic patterns that 

might emerge. Traffic monitoring maintains a close 

relationship with traffic management systems. In response to 

real-time data, these systems take action, deftly adjusting 

traffic signal timings, activating dynamic message signs to 

inform drivers, and overseeing ramp meters to regulate the 

flow of vehicles entering highways [15]. 

A vital function of traffic monitoring is incident detection. 

When accidents or other incidents occur, the system springs 

into action, instantly recognizing the anomaly and initiating 

appropriate responses. This could involve notifying 

emergency services, fine-tuning traffic signals, or relaying 

real-time traffic updates to drivers through variable message 

signs and smartphone apps [16, 17]. The treasure trove of 

traffic information harvested through monitoring is then 

shared with a variety of stakeholders. Traffic management 

centers, law enforcement agencies, and the general public all 

benefit from this wealth of information. Websites, mobile apps, 

and electronic highway signs serve as conduits, equipping 

drivers with the knowledge they need to make informed 

decisions about their routes. Some ITS systems elevate their 

game by employing predictive analytics. By scrutinizing 

historical data and current trends, they offer glimpses into the 

future, forecasting traffic congestion and estimated travel 

times. This forecasting empowers drivers to chart more 

efficient routes. In terms of long-term transportation planning, 

traffic monitoring data is a priceless asset. By maintaining 

extensive records of historical data, transportation agencies 

uncover valuable trends, plan infrastructure enhancements, 

and evaluate the ramifications of policy changes. Finally, 

traffic monitoring synergizes with other ITS components, 

creating a seamless and interconnected transportation 

ecosystem. Vehicles equipped with advanced driver assistance 

systems (ADAS), like adaptive cruise control, become 

receptive to real-time traffic intelligence [18]. They adapt their 

speed and routes accordingly, enhancing both safety and 

efficiency on the roadways. In essence, traffic monitoring 

within ITS exemplifies the marriage of cutting-edge 

technology with the complex choreography of traffic 

management, all aimed at making our journeys safer, smoother, 

and more informed. 

The application of Unmanned Aerial Vehicles (UAVs) and 

image processing in traffic monitoring represents an 

innovative approach to the administration and analysis of 

traffic dynamics, aimed at mitigating congestion, bolstering 

safety, and enhancing transportation infrastructure [19-21]. 

This cutting-edge technology capitalizes on the capabilities of 

UAVs, frequently equipped with an array of cameras and 

additional sensors, to capture real-time aerial imagery. 

Subsequently, these assets are harnessed in conjunction with 

advanced image processing techniques to derive valuable 

traffic-related insights. UAVs, more colloquially known as 

drones, are strategically deployed in designated areas 

necessitating traffic oversight. These drones can operate 

autonomously or under remote control, facilitating flexible 

deployment strategies. They adeptly acquire high-resolution 

aerial images or videos of the traffic milieu, with the choice of 

cameras on the UAVs ranging from standard RGB cameras to 

specialized sensors such as thermal cameras, LiDAR, or 

multispectral cameras. The selection of sensors is contingent 

upon the precise objectives of the monitoring operation. 

In practice, the captured imagery is transmitted 

expeditiously, either in real-time or near-real-time, to a ground 

station or a cloud-based server for processing. This 

instantaneous data transfer affords authorities immediate 

access to the pertinent information. The crux of this endeavor 

hinges on the adept application of advanced image processing 

techniques, a process that begets invaluable traffic insights. 

These insights encompass an array of functions, including 

vehicle detection and tracking, traffic flow analysis, incident 

detection, counting and classification, license plate 

recognition, and pedestrian detection [22-25]. The efficacy of 

these algorithms is underscored by their proficiency in 

identifying vehicles, precisely tracking their trajectories, and 

gauging their velocity and heading. The analysis of vehicle 

positions and speeds serves as the basis for monitoring traffic 

congestion and discerning flow patterns, both pivotal facets of 

traffic management. Furthermore, this system excels in 

promptly identifying anomalies such as accidents or road 

obstructions, facilitating swift response and resolution. 

Additionally, this technological apparatus is adept at 

quantifying the volume of vehicles, classifying them by type 

(e.g., automobiles, trucks, motorcycles), and employing 

Optical Character Recognition (OCR) to decipher license plate 

information for enforcement or tracking purposes [26]. 

Moreover, pedestrian detection capabilities extend to the 

identification and monitoring of pedestrian movement in 

proximity to roadways and intersections. To present the 

amassed data in a user-friendly and actionable format, it is 

routinely transmuted into intuitive representations, including 

traffic heatmaps, graphical displays, or real-time dashboards. 

This facilitates informed traffic management strategies and 

informed decision-making processes. 

In the ever-evolving landscape of object detection, 

traditional methodologies offer a well-trodden path. However, 

it is increasingly evident that deep learning-based techniques 

have surged to the forefront, consistently demonstrating their 

prowess in delivering superior results [27]. This paradigm shift 

has not been limited to a singular domain but has rather 
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permeated numerous sectors, with transportation-related 

applications being no exception. The demand for image 

processing in transportation has catalyzed the ascendancy of 

deep learning approaches, mirroring their success in various 

other fields. One of the hallmark applications in this trajectory 

is the identification of vehicles amidst the bustling traffic 

ecosystem [28]. Deep learning models have proven to be 

particularly adept at discerning the complex shapes, sizes, and 

orientations of vehicles, even in challenging real-world 

conditions. Moreover, these models extend their capabilities 

to encompass vehicle tracking, enabling the continuous 

monitoring of individual vehicles as they traverse through 

intricate traffic scenarios [29]. This tracking functionality is 

instrumental in applications like traffic management, security 

surveillance, and the optimization of transport logistics. 

Beyond mere identification and tracking, deep learning-based 

techniques have unlocked the potential for more nuanced 

insights. Estimating vehicle speeds, for instance, has become 

increasingly accurate and reliable, thanks to the granular 

analysis enabled by these models [30]. This capability is 

invaluable for traffic flow analysis, accident reconstruction, 

and the enhancement of road safety measures. Moreover, the 

ability to precisely count vehicles in various contexts, whether 

it be for traffic management or congestion analysis, has been 

significantly enhanced by deep learning methods [31]. These 

models can distinguish between different vehicle types, from 

sedans to trucks and motorcycles, offering a comprehensive 

view of traffic composition. 

Among the plethora of deep learning models available, the 

You Only Look Once (YOLO) algorithm family has garnered 

considerable attention [32, 33]. Notably, YOLOv5 iteration 

has enjoyed widespread favoritism across a spectrum of 

transportation-related research [34, 35]. Its real-time object 

detection capabilities, coupled with high accuracy, make it an 

attractive choice for applications requiring timely responses 

and precision. Nonetheless, the most recent iteration of the 

YOLO algorithm, YOLOv8, was introduced to the research 

community in early 2023 [36]. This represents a significant 

advancement in the field of object detection. However, the 

academic corpus pertaining to YOLOv8 remains relatively 

sparse at this juncture. Consequently, while its potential in 

vehicle detection is promising, it has yet to firmly establish 

itself as a mainstream choice within the literature. 

The research objectives within the scope of this study on 

real-time vehicle detection using the YOLOv8 algorithm in 

ITS can be summarized as follows: One of the primary 

objectives of this study is to comprehensively evaluate the 

performance of the YOLOv8 algorithm, the latest iteration of 

YOLO, in real-time vehicle detection within the framework of 

intelligent transportation systems. The aim is to meticulously 

analyze the accuracy, speed, and efficiency of the algorithm in 

detecting vehicles across diverse environmental conditions 

and traffic scenarios. Another key goal of the research is to 

explore the practical applications of real-time vehicle 

detection in ITS. This involves assessing how YOLOv8 can 

contribute to critical tasks such as traffic monitoring, 

congestion management, vehicle tracking, and enhancing 

safety within transportation systems. Moreover, the study 

endeavors to optimize YOLOv8 to enhance its performance in 

real-world ITS applications. This optimization primarily 

focuses on refining training strategies rather than solely fine-

tuning the network architecture, aiming to achieve superior 

accuracy and reliability in vehicle detection. Additionally, the 

research aims to identify and address the challenges and 

limitations associated with deploying YOLOv8 for real-time 

vehicle detection in ITS. This encompasses addressing issues 

such as occlusions, varying lighting conditions, instrument 

diversity, and computational constraints, while also proposing 

potential solutions to mitigate these challenges effectively. 

 

 

2. METHODOLOGY 

 

2.1 YOLOv8 network architecture 

 

YOLOv8 (or v8) represents a significant advancement in 

object detection, particularly in terms of its anchor-free 

methodology. Unlike its earlier iterations, which relied on 

anchor boxes to predict bounding boxes for objects, v8 

eliminates the need for these anchors, streamlining the 

detection process. By adopting a center point detection 

approach, it can more accurately localize objects within an 

image without being constrained by predefined anchor boxes. 

This anchor-free methodology offers several advantages, 

including improved adaptability to varying object scales and 

aspect ratios, as well as enhanced robustness to occlusion and 

cluttered scenes. Furthermore, v8's anchor-free design 

simplifies the model architecture and training process, 

resulting in faster inference speeds and reduced computational 

complexity. The backbone of v8, often regarded as the 

architectural foundation, plays a pivotal role in the model's 

overall performance. It employs a variant of the Cross Stage 

Partial Network (CSPNet) backbone architecture, which 

integrates Cross Stage Connection (CSC) modules and Partial 

Convolutional layers. This backbone design enhances feature 

extraction capabilities while maintaining computational 

efficiency. The CSPNet backbone facilitates effective 

information flow across network stages, enabling the model to 

capture both low-level and high-level features with greater 

accuracy. Additionally, v8's backbone architecture 

incorporates various backbone sizes, allowing for flexibility in 

balancing between computational cost and detection 

performance. With its innovative backbone design, v8 

achieves remarkable accuracy and speed in object detection 

tasks. Moreover, the efficacy of the v8 is further enhanced 

through the utilization of an upgraded loss function designed 

to maximize efficiency across diverse computational 

platforms, encompassing both central processing units (CPUs) 

and graphics processing units (GPUs). This refined loss 

function not only optimizes the model's performance on 

hardware accelerators like GPUs, which excel in parallel 

processing, but also ensures seamless operation on CPUs, 

offering versatility in deployment across different computing 

environments. By tailoring the loss function to accommodate 

the distinct characteristics of CPUs and GPUs, v8 can deliver 

consistent and reliable performance across a wide range of 

hardware configurations, thereby enhancing its applicability 

and accessibility in various real-world scenarios. 
YOLOv8 introduces various model sizes, each tailored to 

different application scenarios and computational constraints. 

The YOLOv8 family includes variants such as v8n (nano), v8s 

(small), v8m (medium), v8l (large), and v8x (extra-large), 

offering a spectrum of options to suit varying requirements. 

The different model sizes vary in terms of their depth, width, 

and number of parameters, with smaller models like v8n 

featuring fewer layers and parameters, while larger models 

like v8x are more complex and computationally intensive. 

This range of model sizes provides flexibility in balancing 
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between detection accuracy and computational resources. A 

significant divergence from earlier versions of the algorithm is 

the substitution of the objectness segment, marking a 

fundamental shift in the methodology employed. In this 

updated approach, the algorithm strategically divides the 

object detection task into distinct classification and regression 

branches, each focusing on specific aspects of the detection 

process. This separation of tasks allows for a more specialized 

treatment of classification and regression, optimizing the 

algorithm's ability to discern objects accurately. Notably, 

within the regression branch, there is a notable integration of 

integral form notation, a concept pioneered in the Distribution 

Focal Loss (DFL) framework. This utilization of integral form 

notation represents a sophisticated mathematical technique 

that enhances the algorithm's capacity to precisely localize 

objects within images. 

 

2.2 Network’s compatibility with real-time constraints 

 

Embarking on the exploration of v8 marks the initiation of 

a multifaceted exploration, where the path forward hinges 

upon a pivotal decision: the careful selection of the most 

suitable network size amidst a rich tapestry of architectural 

choices. Within the v8 framework lies a vibrant spectrum of 

five pre-trained networks, crafted to cater to an extensive array 

of applications spanning domains from object detection in 

autonomous vehicles to surveillance systems in smart cities. 

These networks unfold like chapters in a compelling narrative, 

each offering a unique blend of characteristics and capabilities 

tailored to meet the demands of diverse scenarios. At one end 

of this spectrum resides the sleek and nimble v8n, designed for 

efficiency and swift inference, ideal for resource-constrained 

environments or real-time applications where agility is 

paramount. Conversely, at the other end stands the formidable 

v8x, boasting an impressive array of parameters and 

computational prowess, engineered to handle complex scenes 

with unparalleled precision and robustness. The magnitude of 

these models extends beyond mere numbers, encapsulating a 

wealth of nuanced features and architectural intricacies that 

define their essence. Each parameter, contributes to the 

overarching performance profile of the model, shaping its 

ability to discern objects with clarity amidst varying 

conditions and environmental contexts. As the exploration 

unfolds, the significance of this decision becomes increasingly 

apparent, as the chosen network size sets the stage for the 

ensuing exploration and experimentation. It dictates not only 

the computational footprint and inference speed, but also the 

scope and fidelity of the insights gleaned from the data. In this 

dynamic landscape of detection and inference, the choice of 

network size serves as a compass, guiding the expedition 

towards the realization of ambitious objectives and the 

attainment of unparalleled insights. 
A parametric approach was employed to assess the 

algorithm's real-time compatibility. In summary, multiple tests 

were conducted, with detailed descriptions provided in 

subsequent paragraphs. Initially, various images of identical 

dimensions were fed into all sub-models of YOLOv8, and the 

inference times of each sub-model were compared. This 

facilitated a clearer understanding of both the similarities and 

differences between the sub-models. Following this, a single 

image was input into all sub-models, and IoU thresholds were 

parametrically compared. Essentially, this comparison 

quantified the extent of overlap between predicted and actual 

bounding boxes across all sub-models in object detection tasks. 

The resulting mAP values corresponding to these comparisons 

were analyzed to ascertain the performance of each sub-model. 

Having identified YOLOv8 as the most suitable sub-model for 

real-time applications, further tests involved resizing a single 

image to various dimensions and comparing the inference 

times of this sub-model for each size. This analysis is crucial 

in real-world scenarios to determine the optimal image sizes 

for instantaneous processing. Additionally, a numerical 

comparison was conducted by calculating mAP values for 

input images generated parametrically at different sizes, 

providing further insights into the algorithm's performance 

across varying image dimensions. 

In addition to these factors, a parametric approach was 

employed during data collection using the drone, capturing 

images from all conceivable orientations and viewing angles, 

a crucial aspect in training the algorithm. The drone utilized in 

the experiments is the DJI Mavic, a commercial vertical take-

off and landing (VTOL) drone equipped with four rotors. 

Renowned for its high-resolution and wide-angle camera, it 

proves to be an ideal choice for aerial imaging. Operating with 

an advanced control system utilizing Pixhawk, the foremost 

control computer in its class, the drone ensures precise flight 

control owing to its sophisticated IMU sensors and GPS 

system. Furthermore, its programmable nature allows for 

autonomous control, enhancing the consistency of the data 

collection process. The drone's advanced telemetry system 

greatly facilitates data transmission to the ground station, 

boasting a range exceeding 25 kilometers. Notably, its 

extended flight time of over 40 minutes enables prolonged, 

uninterrupted data collection. Throughout the experiments, the 

drone was operated in various flight modes, capturing images 

from nearly every available spatial and visual perspective. 

This systematic approach ensured the acquisition of images at 

diverse altitudes, orientations, and locations, following a 

parametric methodology rather than a random one. The 

specifics and outcomes of each test are elaborated upon in the 

subsequent paragraphs. 

 

 
 

Figure 1. Exploring the time efficiency across different 

YOLOv8 model variants for image processing 

 

In the experimental scrutiny, a comprehensive battery of 

tests was executed to gauge the temporal intricacies of image 

processing, from the genesis of image capture to the precise 

placement of bounding boxes. A series of trials were 

conducted employing a standardized protocol, leveraging 

images each boasting dimensions of 360×360 pixels, serving 

as the empirical foundation upon which insights were gleaned. 

The salient outcomes of these empirical inquiries have been 

visualized in Figure 1, providing a visual narrative of the 
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discerned trends and nuances. Amidst the intricate tapestry of 

findings, a notable revelation emerges: within dynamic and 

fluid environments, the diminutive stature of v8's v8n variant 

emerges as the paragon of real-time processing prowess. Its 

nimble architecture and judicious utilization of computational 

resources render it uniquely adept at navigating the ever-

shifting terrain of rapidly evolving scenes, where the 

exigencies of time demand swift and decisive action. This 

proclivity positions v8n as the quintessential choice in 

scenarios where temporal exigencies reign supreme, offering 

a seamless fusion of speed and precision that is indispensable 

in the face of dynamicity. 

However, amidst this narrative of real-time exigencies, it is 

imperative to acknowledge the multifaceted landscape of 

practicality and resource constraints. While the v8n variant 

emerges as the torchbearer of real-time proficiency, its 

brethren within the v8 lineage harbor their own unique virtues 

and capabilities. In resource-constrained milieus, where the 

exigencies of time may be tempered by pragmatic 

considerations, alternate models within the v8 pantheon offer 

viable avenues of exploration. Though they may not boast the 

instantaneous responsiveness of their v8n counterpart, these 

models nonetheless proffer a reservoir of computational 

acumen, capable of navigating less dynamic terrains with 

commendable accuracy and efficacy. Thus, within the 

labyrinthine expanse of computational vision, the choice of v8 

model transcends mere performance metrics, embracing a 

holistic understanding of contextual exigencies and 

operational imperatives. 

Performance metrics play a crucial role in evaluating the 

efficacy and reliability of machine learning models, 

particularly in tasks such as object detection, classification, 

and segmentation. Among the myriad metrics available, 

Precision (P), Recall (R), mean Average Precision (mAP), and 

F1 score stand out as fundamental measures that provide deep 

insights into the performance of a model. Precision, often 

referred to as positive predictive value, measures the 

proportion of true positive predictions among all positive 

predictions made by the model. It is calculated as the ratio of 

true positives (TP) to the sum of true positives and false 

positives (FP) as indicated in (1). In other words, precision 

quantifies the accuracy of positive predictions, emphasizing 

the model's ability to avoid false alarms. A high precision 

indicates that the model makes few false positive predictions, 

making it particularly valuable in applications where false 

positives can have significant consequences, such as medical 

diagnosis or security surveillance. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

 

On the other hand, recall, also known as sensitivity, 

measures the proportion of true positives that are correctly 

identified by the model out of all actual positive instances in 

the dataset. It is calculated as the ratio of true positives to the 

sum of true positives and false negatives as given in (2). Recall 

gauges the model's ability to capture all relevant instances of 

the target class, irrespective of false alarms. High recall is 

essential in scenarios where missing even a single positive 

instance can be detrimental, such as disease detection or 

anomaly identification in industrial processes. 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

While precision and recall provide valuable insights 

individually, they often trade-off against each other. A model 

can achieve high precision by being conservative in its 

predictions, but this may lead to a lower recall as it might miss 

some positive instances. Conversely, a model with high recall 

might generate more false positives, thus lowering its 

precision. This trade-off is encapsulated in the F1 score, which 

represents the harmonic mean of precision and recall. It is 

calculated as: 

 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
  (3) 

 

ensuring that both precision and recall contribute equally to 

the final score. The F1 score provides a balanced assessment 

of a model's performance, particularly in scenarios where 

achieving both high precision and high recall is desirable. 

In object detection tasks, where models generate multiple 

bounding boxes or segmentation masks for each object 

instance, evaluating performance becomes more nuanced. 

This is where mAP comes into play. mAP is commonly used 

to assess the accuracy of object detection models by 

considering the precision-recall curve across different 

confidence thresholds. It calculates the average precision 

across all classes and then computes the mean of these average 

precisions as indicated below: 

 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖
𝑛
𝑖=1   (4) 

 

mAP provides a comprehensive measure of a model's ability 

to detect objects across various classes with varying levels of 

confidence. Higher mAP values indicate better detection 

performance, reflecting the model's capacity to accurately 

localize and classify objects in complex scenes. 

In object detection evaluation metrics, the concept of 

mAP@n serves as a pivotal indicator, delineating the 

performance of detection systems under specific conditions. 

This metric encapsulates the precision of object localization 

and classification by imposing a stringent criterion: a 

minimum overlap of n%, as delineated by the Intersection over 

Union (IoU), must be established between the bounding box 

predicted by the detection system and the ground truth 

bounding box for an object to be deemed correctly identified. 

In essence, mAP@n gauges the efficacy of detection 

algorithms in discerning objects with a requisite level of 

accuracy, taking into account the spatial alignment and 

coverage between predicted and ground truth bounding boxes. 

This evaluation metric is instrumental in assessing the 

robustness and reliability of object detection systems across 

diverse scenarios, providing insights into their ability to 

precisely delineate object boundaries and classify them with 

fidelity. 

Figure 2 provides a comprehensive exploration of the 

performance landscape, exploring the efficacy of different 

detection model configurations through the lens of both 

mAP@50 and mAP@50-95 metrics. These metrics offer a 

nuanced assessment by averaging performance evaluations 

across a spectrum of IoU thresholds, capturing the model's 

ability to accurately detect objects across varying degrees of 

overlap between predicted and ground truth bounding boxes. 

The analysis of the results unravels a notable trend: a 

discernible decrease in performance accompanies the adoption 

of smaller model architectures. While compact models with 

fewer parameters may offer computational advantages and 
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expedited inference times, they inherently sacrifice detection 

accuracy. This trade-off becomes particularly pronounced 

when scrutinizing performance measurements across diverse 

IoU thresholds, underscoring the importance of balancing 

computational efficiency with detection precision in model 

selection processes. 

 

 
 

Figure 2. Exploring the variability in mean average precision 

(mAP) across different YOLOv8 model variants 

 

 
 

Figure 3. Analyzing the relationship between input image 

size and processing speed of YOLOv8n model 

 

 
 

Figure 4. Impact of input image size on mean average 

precision (mAP) performance 

 

In the pursuit of achieving real-time capability, it becomes 

essential to explore additional enhancements when deploying 

the leanest YOLOv8 model, v8n. Apart from merely 

modifying the size of the network, an alternative strategy 

entails decreasing the size of the source image, since it 

immediately impacts the inference duration. To delve deeper 

into this aspect, a rigorous experiment was conducted wherein 

a snapshot was arranged of various dimensions, with the 

width/height ratio consistently adjusted to one across each 

variation. The primary objective was to gauge the rendering 

time of the v8n model across these diverse input image sizes. 

The findings of this comprehensive investigation, elucidating 

the correlation between inference times and the image 

dimensions, are succinctly portrayed in Figure 3. These results 

unearth a discernible pattern, showcasing an almost 

exponential scaling in inference durations as the image 

dimensions increase. Notably, this empirical observation 

highlights the tantalizing prospect of achieving rapid sensing 

outcomes in 325 milliseconds or less by harnessing the power 

of diminutive image sizes. However, it's imperative to 

acknowledge that opting for smaller input image sizes may 

entail certain trade-offs in the model's general proficiency. 

Figure 4 explores the dynamics between the dimensions of 

image and the mAP, offering a compelling investigation into 

how adjustments in input size could profoundly influence the 

precision and efficacy of the detection algorithm. Thus, while 

the reduction in image size presents a promising avenue for 

expediting inference durations, it is paramount to maintain a 

delicate consistency between inference time and capability to 

effectively address to the specific exigencies of the context at 

hand. 

Timing benchmarks were conducted to evaluate the real-

time performance of v8n. The benchmarks took place on a 

workstation equipped with an NVIDIA GeForce RTX 2080 Ti 

GPU, selected for its high computational throughput crucial 

for real-time object detection tasks. To assess v8n's real-time 

capabilities, a diverse set of images representing various object 

densities, sizes, and environmental conditions were used. Each 

image underwent object detection using the v8n model, and 

the inference time was recorded. The results demonstrated 

v8n's impressive real-time performance, with an average 

inference time of approximately 12 milliseconds per frame on 

the specified platform, equivalent to around 68 frames per 

second. In comparison to other YOLO architecture variants 

like v5 and v7, v8n exhibited superior real-time performance 

while maintaining competitive accuracy. Its lightweight 

design enables efficient inference without compromising 

detection quality, making it well-suited for resource-

constrained environments and applications requiring real-time 

processing. These findings highlight v8n's practical utility in 

various domains, including surveillance, autonomous driving, 

robotics, and ITS applications. 

Understanding the computational resource requirements of 

v8n is crucial for determining the necessary hardware 

infrastructure for effective algorithm deployment. These 

requirements were evaluated on the same platform used for 

timing benchmarks. During the evaluation, the utilization of 

computational resources, including GPU, CPU, and memory, 

was monitored. These metrics provide key insights into the 

algorithm's efficiency and scalability, facilitating performance 

optimization and resource allocation. v8n harnesses GPU 

acceleration to accelerate the inference process. The 

experiments revealed efficient utilization of available GPU 

resources, resulting in high GPU utilization rates during 

inference. This optimized utilization ensures near-maximum 

GPU capacity utilization, enhancing throughput and 

minimizing latency. While GPU acceleration primarily 

supports inference, the CPU also contributes to preprocessing 

tasks and system-level operations. The evaluation indicated 

moderate CPU utilization during inference with v8n, with 

efficient handling of preprocessing tasks without causing 

bottlenecks. 

Latency, on the other hand, another critical factor in 

assessing the real-time performance of object detection 

algorithms, was encountered during the evaluation of v8n. 
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These latency issues, which could potentially impede real-time 

responsiveness, stem from various factors such as 

computational overhead, data transfer latency, and system 

contention for resources. To address these latency issues and 

improve real-time performance, several optimization 

strategies were tailored to v8n. These included algorithmic 

optimizations and hardware acceleration techniques. The v8n 

algorithm underwent optimization to reduce computational 

complexity and streamline the inference process. This entailed 

fine-tuning model parameters, optimizing network 

architecture, and implementing efficient data processing 

techniques. By leveraging hardware acceleration, such as GPU 

acceleration, inference latency can be significantly reduced by 

delegating computation-intensive tasks to specialized 

hardware. v8n was optimized to efficiently utilize GPU 

resources, thereby decreasing inference latency and enhancing 

real-time responsiveness. To assess the effectiveness of these 

optimization strategies in reducing latency, latency 

benchmarking experiments were conducted. These 

experiments involved measuring the end-to-end latency of v8n 

under various workload scenarios and comparing it against 

baseline performance metrics. 

 

2.3 Data crafting and preparing the dataset for model 

learning 

 

The capability of any evaluated algorithm is intricately 

linked to the caliber and diversity of the set of images 

employed in its training process. This nexus between dataset 

quality and model efficacy hinges on several critical factors 

that collectively shape the learning process and subsequent 

inference capabilities. Foremost among these factors is the 

overall quality of the dataset itself, which encompasses aspects 

such as data cleanliness, annotation accuracy, and class 

balance. A high-quality dataset ensures that the model is 

exposed to accurate and representative examples of the objects 

it is tasked with detecting, thereby laying a robust foundation 

for learning. Moreover, the inclusion of diverse image 

variations within the dataset is paramount, as it enables the 

model to generalize effectively across a spectrum of real-

world scenarios, encompassing variations in lighting 

conditions, viewpoints, occlusions, and object poses. By 

training on a rich and varied dataset, the model becomes adept 

at recognizing objects under diverse circumstances, enhancing 

its adaptability and robustness in real-world applications. 

Additionally, the abundance of samples available for training 

plays a crucial role in model performance, as it affords the 

model ample opportunities to learn and generalize patterns 

from the data. A larger dataset facilitates more comprehensive 

coverage of the object space, mitigating the risk of overfitting 

and enabling the model to discern subtle nuances and 

variations inherent in real-world data. Thus, by prioritizing 

dataset quality, diversity, and abundance, significant 

enhancements can be made to the model's performance and 

generalization capabilities, thereby paving the way for the 

development of more reliable and effective solutions. 

 

 
 

Figure 5. The diversity of vehicle classes within the dataset 

 
In the preparation for model training and testing, a 

comprehensive dataset featuring a multitude of motor vehicle 

images was curated. This involved a rigorous process initiated 

by a series of planned flight tests utilizing a drone system. 

During these flights, the drone systematically captured an 

extensive array of images, traversing various terrains and 

environmental conditions to ensure diversity in the dataset. 

Upon completing the flights, the recorded video footage 

underwent post-processing, during which it was divided into 

specific time intervals, resulting in frames being extracted 

from each video. This extraction process ensured a rich and 

varied dataset, capturing a wide array of vehicle instances in 

different contexts. Subsequently, the acquired dataset 

underwent careful segregation, with distinct subsets 

earmarked for training, validation, and testing purposes. The 

allocation of data into these subsets was adjusted to ensure 

balanced representation across all classes and to prevent bias 

in model evaluation. Providing a visual insight into the 

dataset's composition, Figure 5 offers a detailed depiction of 

the distribution of vehicle classes, showcasing the diversity 

and breadth of images encompassed within. It's important to 

highlight that this dataset not only boasts quantity but also 

encompasses a diverse range of images, reflecting various 

vehicle types, sizes, colors, and environmental settings. This 

diversity serves as a cornerstone for robust model training, 

enabling the developed algorithms to generalize effectively 

across real-world scenarios and achieve superior performance 

in deployment.  

 

 
 

Figure 6. Sample images from the training dataset 
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In Figure 6, a selection of images from the curated dataset 

is showcased, offering a glimpse into the diverse array of 

motor vehicle instances captured during the drone flights. 

These images encapsulate a spectrum of scenarios, ranging 

from bustling urban streets to serene countryside roads, each 

presenting unique challenges and characteristics for object 

detection algorithms. Through this visual representation, the 

richness and complexity of the dataset can be seen, witnessing 

firsthand the variability in vehicle types, sizes, colors, and 

environmental conditions. This diverse collection serves as 

evidence of the thoroughness of the dataset preparation 

process and underscores the importance of capturing real-

world variability to ensure the robustness and efficacy of the 

trained models. 

 

2.4 Training of the network 

 

Training a detection algorithm is an iterative process that 

entails feeding a model with labeled data to enable it to learn 

and recognize patterns in images or videos. This process 

typically begins with the preparation of a comprehensive 

dataset containing images or videos annotated with bounding 

boxes or segmentation masks indicating the location and class 

of objects of interest. Once the dataset is curated, the training 

commences by feeding batches of data into the model 

iteratively. During each iteration, the model adjusts its internal 

parameters through backpropagation, gradually optimizing its 

performance based on the provided data and the defined 

objective function, such as minimizing classification errors or 

maximizing object localization accuracy. This iterative 

training process continues until the model converges to a 

satisfactory level of performance, as measured by predefined 

evaluation metrics. Throughout training, it is essential to 

monitor the model's performance on a separate validation set 

to prevent overfitting and ensure generalization to unseen data. 

Hyperparameter tuning, such as adjusting learning rates or 

network architectures, may also be performed iteratively to 

enhance model performance further. 
The process of training the algorithm was carried out using 

the flexible platform named Google Colaboratory, commonly 

known as Colab. Google Colab provides a cloud-based 

environment that allows researchers and developers to run 

Python code in a Jupyter notebook format without the need for 

expensive hardware or local installations. Leveraging the 

power of Google's infrastructure, Colab offers free access to 

GPUs and TPUs, enabling accelerated training of deep 

learning models without the burden of managing hardware 

resources. This cloud-based platform facilitates seamless 

collaboration and sharing of code and notebooks, making it an 

ideal choice for training detection algorithms, especially for 

those working with limited computational resources. 

Additionally, Colab provides pre-installed libraries and 

frameworks commonly used in machine learning and deep 

learning, streamlining the setup process and allowing users to 

focus on model development and testing. 

During the thorough training and validation phases lasting 

for 300 epochs, the model underwent a significant 

development, demonstrating a gradual refinement in its 

performance metrics and capabilities. The results of this are 

visually depicted in Figure 7 and Figure 8, where the evolution 

of key performance indicators is graphically presented. The 

figures provide a comprehensive overview of the model's 

progression over time, showcasing trends in metrics such as 

accuracy, loss, and convergence rates. From the initial epochs 

characterized by fluctuations and uncertainties to the latter 

stages marked by stability and convergence, the graphical 

representations offer key insights into the efficacy of the 

training regimen and the model's adaptability to the dataset. 

The model's performance evaluation involved assessing three 

core metrics: box loss, object loss, and classification loss. 

These indicators serve as vital indicators of the model's 

proficiency in object detection tasks, each encapsulating 

distinct aspects of performance related to localization accuracy, 

object presence detection, and class prediction precision. Box 

loss quantifies the disparity between predicted bounding boxes 

and ground truth annotations, reflecting the model's ability to 

accurately localize objects within an image. Object loss 

measures the model's capability to detect the presence of 

objects within the scene, penalizing false negatives and 

rewarding true positives. Classification loss evaluates the 

model's accuracy in predicting the correct class label for 

detected objects, reflecting its proficiency in object 

recognition and classification. 

 

 
 

Figure 7. Evolution of loss metrics across training epochs for 

the model 

 

 
 

Figure 8. Evolution of loss metrics across validation epochs 

for the model 

 

2.5 Dataset spectrum and spatial distribution 

 

In the pursuit of optimizing algorithmic performance, the 

constitution of objects within the dataset utilized for training 

detection algorithms assumes paramount importance. Beyond 

merely ensuring the presence of objects, the quality and 

diversity of object instances play a pivotal role in shaping the 

algorithm's efficacy. It is imperative that the dataset 

encompasses a broad spectrum of object categories, 

encompassing various classes, sizes, orientations, and 

contextual settings. This rich diversity ensures that the 

algorithm is exposed to a comprehensive range of real-world 
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scenarios, fostering adaptability and resilience in its learning 

process. Furthermore, the spatial distribution of objects within 

the dataset also warrants careful consideration. It is essential 

not only for objects to be evenly distributed across the dataset 

but also for their spatial arrangement to reflect real-world 

conditions. For instance, in a dataset focused on traffic 

surveillance, vehicles should be represented in varying 

densities and spatial configurations, mirroring the 

complexities of urban and rural road networks. This holistic 

approach to dataset curation ensures that the algorithm is 

trained on a representative sample of real-world scenarios, 

enhancing its ability to generalize effectively and perform 

robustly in diverse environments. 
However, deviations from this ideal scenario can introduce 

biases into the model, potentially compromising its 

effectiveness and reliability. Biases can arise from various 

sources, including imbalances in the dataset composition, 

annotation errors, or systemic biases in data collection 

methods. Moreover, biases can also manifest in the form of 

label noise, where inaccuracies or inconsistencies in 

annotation labels affect the model's learning process. These 

biases not only undermine the fairness and equity of the 

algorithm but also pose ethical and societal concerns, 

particularly in applications where algorithmic decisions can 

have significant real-world implications. To address these 

challenges, it is imperative to curate datasets with a balanced 

representation of object classes, ensuring that each category is 

adequately sampled to mitigate biases and promote equitable 

learning across all classes. This may involve employing 

sampling techniques such as stratified sampling or data 

augmentation to address imbalances in the dataset. 

Additionally, rigorous quality control measures can be 

implemented to identify and rectify annotation errors, ensuring 

the integrity and reliability of the dataset. 

Moreover, fostering adaptability within the model 

architecture serves as a crucial mechanism to mitigate the risks 

associated with dataset biases. An adaptable model can 

effectively learn from the variability present in the dataset, 

adjusting its internal representations and decision boundaries 

to accommodate diverse object distributions. This adaptability 

is often achieved through the use of techniques such as 

regularization, dropout, and ensemble learning, which help 

prevent the model from becoming overly reliant on specific 

features or patterns present in the training data. By promoting 

adaptability, the algorithm's capacity can be enhanced to 

generalize across diverse scenarios, thereby improving its 

efficacy and reliability in real-world applications. 

Additionally, techniques such as transfer learning and domain 

adaptation can further bolster the model's adaptability by 

leveraging knowledge gained from related tasks or domains to 

improve performance on the target task or domain. 

Furthermore, interpretability and explainability techniques can 

help shed light on the decision-making process of the model, 

allowing stakeholders to identify and mitigate biases that may 

arise during training. 

In conjunction with addressing dataset biases and fostering 

model adaptability, the collection of image data via the drone 

has significantly contributed to enhancing the diversity and 

spatial arrangement of the dataset. Leveraging the drone for 

image acquisition has provided unparalleled versatility and 

flexibility, enabling the capture of images from vantage points 

and perspectives that would otherwise be inaccessible or 

impractical using traditional ground-based methods. This 

aerial perspective not only facilitated the collection of data 

across vast geographical areas but also allowed for the capture 

of images under varying environmental conditions, including 

urban, rural, and natural landscapes. Furthermore, the dynamic 

nature of drone flight has enabled the capture of images with 

diverse spatial arrangements, encompassing varying distances, 

angles, and elevations relative to the objects of interest. 

Consequently, the dataset has benefited from a rich variety of 

image compositions, thereby reflecting the complexities and 

intricacies inherent in real-world scenarios. 

 

 

3. RESULTS 

 

Following an extensive training and validation process, the 

performance of v8n was assessed using the test dataset. While 

this dataset featured similar proportions of vehicle images 

compared to the other two datasets, it generally comprised 

somewhat more challenging images. It encompassed a diverse 

range of variations, including scenarios with heavy traffic, 

low-light conditions, and narrow-angle images, aligning 

closely with real-world situations. This approach allowed to 

scrutinize v8n's adequacy in handling these complex scenarios 

and gauge its ability to generalize within the context of ITS. A 

thorough analysis of the results was conducted, aiming to 

identify the model's weaknesses, limitations, and instances of 

superior performance. The performance evaluation 

encompassed a thorough examination of various key metrics 

to gauge the efficacy of v8n. Within this framework, precision, 

recall, mean Average Precision (mAP), and the F1 score were 

assessed. Beyond these fundamental metrics, the analysis also 

included an evaluation of the detection speed to assess how 

efficiently the algorithm processes and identifies motor 

vehicles. 

Figure 9 displays sample detection results illustrating 

instances where v8n faced challenges, made incorrect 

detections, or failed to detect certain vehicles. These results 

can be summarized as follows: i) The model erroneously 

identifies two roadside objects as motorcycles. Additionally, 

an object situated in the median between inbound and 

outbound lanes is misclassified as a motorcycle. This is 

attributed to the image being captured from a high altitude, 

where small vehicles like motorcycles can easily blend with 

the background. ii) In this image taken under low-light 

conditions, numerous vehicles elude detection by the model. 

Nevertheless, it successfully detects most of the vehicles in the 

image. iii) A motorcycle in the left lane remains undetected 

due to its compact size. Furthermore, the trams visible in the 

image, which were not part of the model's training data, are 

incorrectly classified as buses. iv) While small-scale vehicles 

present in this image may not be detected, the model 

encounters difficulty in identifying vans positioned along the 

roadside, partially obscured by trees and similar objects. v) In 

the image captured under low-light conditions, one car, despite 

its proximity relative to other vehicles, remains undetected. 

This highlights the significance of vehicle color in the 

detection criteria. vi) This daytime image exemplifies the 

model's performance in the presence of shadows cast on side 

streets. Many vehicles experiencing reduced visibility due to 

pronounced shadows go unnoticed by the model. vii) In this 

image portraying what could be considered heavy traffic, some 

vehicles, although adequately lit, evade detection due to their 

diminutive size. Moreover, an object situated by the roadside, 

unrelated to a vehicle, is mistakenly identified as a car. viii) In 

this instance, captured at a high altitude and under low lighting 
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conditions, a traffic sign on the road is inaccurately recognized 

as motorcycles. ix) Within an image taken under low-light 

conditions and an inclined camera angle, the model fails to 

detect two vehicles. Notably, despite the poor visibility of the 

darker vehicle, the other vehicle by the roadside also goes 

unnoticed. x) In the final example, two motorcycles in an 

image taken at a high altitude escape detection due to their 

diminutive size. Furthermore, an object unrelated to a vehicle 

by the roadside is erroneously identified as a car. 

Table 1 presents an overview of the model's performance 

measurements on the test dataset. The images, captured under 

varying conditions, were categorized to assess v8n's 

performance under each specific scenario. Under adequate 

lighting conditions, v8n exhibited notably successful 

outcomes in terms of precision (P), recall (R), mAP and F1 

scores. These high values, particularly in the detection of cars 

and buses, can be attributed to the distinct topological 

characteristics of these vehicle types. Conversely, metrics 

yielded relatively lower results for vans due to their diverse 

configurations. Trucks, on the other hand, displayed smaller 

performance metrics because of the wide range of trailer 

variations. Notably, in trucks with open trailers, the model 

occasionally made erroneous identifications, often mistaking 

the trailer's contents as part of the background. The detection 

of motorcycles and bicycles presented challenges for the 

model, given their smaller size compared to other vehicles. 

Even under adequate lighting conditions, the model 

occasionally struggled to detect them. In scenarios with 

reduced lighting, a predictable decrease in performance 

metrics was observed across all vehicle classes. These 

performance values remained consistent across different 

classes, maintaining self-consistency. Images captured at 

higher altitudes demonstrated a significant drop in 

performance, with motorcycles and bicycles exhibiting 

particularly pronounced reductions. However, it's noteworthy 

that, in the case of images taken from inclined angles, apart 

from cars, all other classes displayed the highest mAP and F1 

values. The elevated performance in such conditions can be 

attributed to several factors. Vans, at times, resemble either 

trucks or cars in bird's-eye views. However, in inclined images, 

they can be more distinctively differentiated from other 

vehicles. In the case of trucks, reduced trailer variety, where 

the trailer's interior isn't visible, contributed to enhanced 

detection capabilities. Buses maintained a detection rate 

similar to adequate lighting conditions, primarily due to their 

distinct topological features. The most substantial 

improvement in detection accuracy was observed for 

motorcycles and bicycles. This improvement stemmed from 

the clarity in distinguishing riders on these vehicles in images 

captured at inclined angles, mitigating uncertainty in bird's-

eye view or high-altitude images. However, it's worth noting 

that motorcycle and bicycle classes could sometimes be 

mistaken for each other. In addition to these, Figure 10 

presents the precision/recall curve, offering a comprehensive 

framework. 

 

 
 

Figure 9. Examples of cases where v8n faces detection challenges 

 

Table 1. Performance metrics of v8n for each object class 

 
Image 

Cathegory 

 Class 

Indicator Car Van Truck Bus Motor Bicycle 

Adequate 

Lightning 

P 92.6 71.7 72.5 85.2 68.8 47.3 

R 73.4 55.7 62.0 76.6 35.5 16.8 

mAP 87.4 65.5 67.3 83.1 62.7 43.6 

F1 81.9 62.7 66.8 80.6 46.8 24.8 

Low 

Lightning 

P 85.6 66.9 70.2 83.3 57.4 36.2 

R 67.5 54.3 56.7 70.6 31.2 14.0 

mAP 81.5 62.2 65.1 79.8 55.7 31.5 

F1 75.5 59.9 62.7 76.4 40.4 20.2 

High 

Altitude 

P 85.1 66.8 66.9 84.1 50.2 30.3 

R 64.8 51.9 61.3 73.7 28.0 10.1 

mAP 79.6 60.1 65.9 81.4 44.4 23.7 

F1 73.6 58.4 64.0 78.5 35.9 15.1 

Inclined 

P 88.7 72.4 79.8 86.4 70.0 63.3 

R 67.7 58.7 65.9 75.4 40.5 32.6 

mAP 83.3 67.5 74.8 83.4 68.4 59.9 

F1 76.8 64.8 72.1 80.5 51.3 43.0 
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Figure 10. Precision/recall curve for YOLOv8n 

 

 
 

Figure 11. Confusion matrix illustrating the detection 

accuracy of YOLOv8n across vehicle classes 

 

The success and misclassification rates for detecting vehicle 

classes are presented in greater detail within the confusion 

matrix depicted in Figure 11. In addition to the previously 

mentioned information, it's worth noting that the detection of 

cars exhibits a low misclassification rate, with only 11% going 

undetected. One notable observation is that 15% of vans are 

misclassified as cars, and they can also be erroneously 

categorized as trucks or buses depending on their specific 

configurations. The challenge of detecting trucks as 

background, due to the variability of their trailers, is evident 

with a misclassification rate of 17%. Furthermore, 11% of 

buses are misclassified as trucks despite their distinct 

geometry, indicating an area for potential improvement. The 

matrix values also highlight the difficulties in detecting 

motorcycles and bicycles, primarily because of their small size. 

Consequently, these classes are often incorrectly classified 

among themselves. 

 

 

4. DISCUSSION 

 

In particular, when compared to previous iterations of 

YOLO utilized in ITS studies, the superior performance of 

YOLOv8, particularly v8n, becomes apparent. The results 

demonstrate that v8n exhibits significant improvements over 

v3 in terms of accuracy and speed. While v3 introduced 

notable enhancements in object detection, v8n surpasses it 

with superior precision and recall rates, particularly under 

challenging conditions. Moreover, v8n showcases improved 

efficiency, enabling higher inference speeds without 

compromising accuracy. On the other hand, v8n demonstrates 

noteworthy advancements over v4 in both accuracy and 

efficiency. While v4 introduced cutting-edge features such as 

CSPDarknet53 and PANet, v8n further refines these 

innovations with its ELAN structure, resulting in higher 

detection accuracy and faster processing speeds. Additionally, 

v8n's optimized architecture and inference pipeline contribute 

to improved performance metrics compared to v4. 

Furthermore, v8n surpasses v5, which has been extensively 

adopted in ITS studies, in terms of adaptability. While v5 

presents advancements in model architecture and training 

techniques, v8n builds upon these foundations to achieve even 

higher precision and recall rates. Moreover, v8n's specialized 

optimizations for real-time vehicle detection within ITS 

applications demonstrate superior performance in challenging 

scenarios, especially concerning inference time. Similarly, 

v8n demonstrates superiority over v6 in accuracy, speed, and 

scalability. While v6 introduces improvements in model 

efficiency and training strategies, v8n advances these 

enhancements to achieve faster processing speeds. 

Additionally, v8n's architecture offers scalability and 

adaptability for various ITS applications. Finally, v8n exhibits 

superiority over v7 in terms of detection accuracy and overall 

efficiency. Its streamlined architecture and improved 

inference pipeline enable faster processing speeds and higher 

detection accuracy in real-time applications compared to v7. 

While the study utilized a drone to gather vehicle images for 

real-time detection using v8n, it's essential to acknowledge 

potential biases in the dataset. It's probable that the dataset 

doesn't fully encompass all conceivable scenarios and 

variations encountered in real-world settings. For instance, 

certain vehicle types, colors, or orientations might be 

disproportionately represented, leading to bias in the 

algorithm's performance. Given that the images were captured 

from specific points in the city center, they may lack 

comprehensive coverage of all vehicle types. For example, 

while buses may be abundant in urban areas, the number of 

trucks could be limited, a distribution that might differ if the 

images were obtained from a highway. Additionally, 

environmental factors potentially influence UAV operation 

and consequently affect the quality of the collected data in 

specific instances. Variables such as weather conditions (e.g., 

wind, rain, fog), lighting conditions (e.g., bright sunlight, low 

light), and terrain variability (e.g., urban versus rural areas) 

can impact the UAV's stability, image quality, and 

maneuverability. These environmental factors introduce 

variability and uncertainty into the dataset, potentially 

influencing the vehicle detection algorithm's performance. 

While these factors were considered during data collection, 

variations in the dataset could arise due to diverse 

environmental conditions in different locations. For instance, 

collecting images with drones in urban areas may face 

constraints such as bridges and tall buildings along the flight 

path. Conversely, wind might pose limitations in rural areas 

due to open spaces, depending on the location. Additionally, 

since urban images typically feature more complex 

backgrounds compared to rural settings, the algorithm may 

encounter difficulties in vehicle detection. Moreover, despite 

tests demonstrating v8n's robustness and effectiveness as an 

object detection algorithm, it has inherent limitations. v8n, like 

its counterparts, may encounter challenges such as occlusions, 
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varying scales, and complex backgrounds. Furthermore, v8n's 

performance is directly influenced by factors such as image 

resolution, input size, and the quality of training data. 

YOLOv8n presents a promising solution for numerous ITS 

applications, including traffic monitoring and surveillance, 

traffic flow optimization, infrastructure monitoring, and 

pedestrian and cyclist safety. Firstly, v8n can revolutionize 

traffic monitoring and surveillance by enabling real-time 

detection, tracking, and classification of vehicles on roadways. 

This capability facilitates the identification of traffic violations, 

monitoring of congestion levels, and enhancement of overall 

road safety through proactive incident detection and response. 

Furthermore, v8n's robust performance in object detection 

allows for accurate and efficient traffic flow optimization. By 

providing real-time data on vehicle movement patterns and 

identifying congestion hotspots, v8n can assist traffic 

management authorities in making informed decisions to 

alleviate traffic congestion and improve traffic efficiency. 

Moreover, v8n can play a crucial role in infrastructure 

monitoring by detecting anomalies and potential hazards in 

transportation infrastructure, such as bridges, tunnels, and 

roadways. By continuously monitoring infrastructure integrity, 

it contributes to proactive maintenance planning and ensures 

the safety and reliability of transportation networks. 

Additionally, v8n's capabilities extend to enhancing pedestrian 

and cyclist safety by detecting and alerting drivers to the 

presence of vulnerable road users at intersections, crosswalks, 

and bike lanes. Integrating v8n into existing ITS frameworks 

allows for the leveraging of its advanced object detection 

capabilities to create safer and more efficient urban 

environments for all road users. 

 

 

5. CONCLUSION 

 

After a comprehensive examination of all the sub-models 

within the YOLOv8 series, it has become evident that 

YOLOv8n is the most suitable model for traffic monitoring 

applications within Intelligent Transportation Systems (ITS). 

In this context, a series of performance tests were conducted 

to assess the processing speed of YOLOv8n and its 

dependence on input image size. While YOLOv8n's detection 

success may not reach the levels achieved by larger-scale 

models like YOLOv8l and YOLOv8x, it stands out as the only 

model capable of meeting the real-time requirement with its 

high-speed detection capabilities. However, it's important to 

acknowledge certain drawbacks associated with model size, 

especially concerning specific object detection. While 

vehicles with standard geometries like cars or buses can be 

relatively easily detected, the challenges intensify when it 

comes to vans and trucks, which can have varying 

configurations. Moreover, motorcycles and bicycles, due to 

their small size, pose difficulties in detection. Additionally, 

detecting vehicles partially obscured by various objects such 

as traffic signs and trees can be problematic. 

The results of the performance tests affirm that YOLOv8n 

performs admirably in real-time applications. The algorithm 

demonstrates a high detection success rate in scenarios with 

adequate lighting but exhibits relatively lower performance in 

images captured in low-light conditions or at high altitudes. 

Notably, it excels in high-level detection of various vehicle 

classes, except for cars, particularly in images taken at medium 

and low altitudes and in inclined situations where the camera 

is positioned between 30 and 50 degrees. This success can be 

attributed to the enhanced visibility of vehicle characteristics 

at this altitude and inclined perspective. The algorithm, 

boasting an impressive average detection speed of just 12 

milliseconds, attains a detection accuracy exceeding 80% in 

scenarios with ample lighting conditions. This remarkable 

performance firmly establishes it as a leading contender 

among the existing object detection algorithms employed in 

real-time traffic imaging applications. 

One of the key advancements in YOLOv8 seems to stem 

from the inclusion of the C2f module, which enhances the 

structural design to optimize data propagation through 

YOLOv8. This integration of the ELAN concept with the C3 

module appears to enhance detection capabilities, resulting in 

an increased gradient information flow. Furthermore, the 

decoupled head structure in v8 shows potential for attaining 

superior precision in detection. By partitioning confidence and 

regression data, the model's efficacy in object localization and 

classification is bolstered, resulting in heightened accuracy 

and refined predictions. 

Potential avenues for future research involving YOLOv8n 

could include further enhancing its accuracy and efficiency. It 

is imperative to explore methods that can advance the overall 

detection performance of v8n for real-time vehicle detection, 

particularly in complex urban environments and adverse 

weather conditions. Additionally, there are opportunities to 

investigate the integration of v8n with other sensor modalities 

like LiDAR and radar, aiming to enhance object detection 

performance and robustness across diverse traffic scenarios. 

Techniques for adapting v8n to dynamic traffic environments, 

characterized by fluctuating conditions such as construction 

zones, temporary road closures, and special events, warrant 

examination. Furthermore, addressing privacy and ethical 

concerns associated with the deployment of AI-based 

surveillance systems in public spaces is essential. Various 

strategies can be proposed to ensure the responsible and 

transparent utilization of v8n in ITS applications. By 

integrating these enhancements, a more comprehensive 

discussion on the potential ITS applications of v8n can be 

presented. 
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