
 
 
 

 
 

 
1. INTRODUCTION 

Now-a-days, consideration has been given to somewhat 

novel kind of flow circumferences that has been of the 

classical laminar boundary layer flows due to a stretching 

boundary is an important phenomenon because of its wide 

range of technological applications in polymer extrusion 

process. Several processes in chemical engineering such as, 

greasing up oils, multi-review oils, gypsum glues, printer 

inks, pottery, fluid cleansers, blood, paints, natural product 

juices, the rates of cooling and stretching highly influence the 

quality of the final product. of consistent strips, polymers 

extrusion process involved cooling of molten liquid being 

stretched into a cooling system, glass- fibers drawn through a 

quiescent electrically conducting liquid subject to a magnetic 

field, and the purification of molten metals from nonmetallic 

inclusions and change their viscosity or flow actions under 

stress and thus diverge from the conventional Newton’s law 

of viscosity. 

The investigation of steady laminar boundary flows, heat 

and mass exchange has gotten extensive considerations on 

account of its expanding mechanical applications furthermore, 

critical direction on a few mechanical procedures, for 

example, the production, the drawing of plastics and elastic 

sheets, the metal and polymer expulsion forms, the glass-

fiber, the paper creation, and the cooling of vast metallic 

sheets in a cooling bath. The streamlined expulsion of plastic 

sheets, the limit layer along a fluid film in buildup process 

and a polymer sheet or fiber expelled consistently from a 

pass on, or a long string going between a feed roll and a 

wind-up roll are the case of down to earth utilizations of a 

persistent level surface. 

Blasius (1908) firstly discovered the boundary layer flows 

on a flat plate via similarity transformation. Unique in 

relation to Blasius, Sakiadis (1961) considered the steady 

laminar boundary layer flow on a moving level plate in a 

calm liquid and got numerical arrangement of the issue, 

furthermore, later the work was reached out to the flow 

because of stretching of a sheet by Crane (1970). The flow of 

a viscous fluid past a linear stretching plate is a classical 

problem in laminar boundary layer flows. Crane (1970), first 

got an analytical solution to the laminar boundary layer 

equations for the problem of two-dimensional flow due to a 

linear stretching plate in a gentle incompressible liquid. 

The aim of the present article is to investigate the 

combined effect of heat source/sink and stress work on MHD 

Newtonian fluid flow over a stretching porous sheet. The 

problem is important in its applications to extrusion and 

stretching problems. The solution also belongs to the rare 

class of exact similarity solutions of the Navier–Stokes 

equations. 
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ABSTRACT 

 
The classical Crane 1970 and Pavlov 1974 problem of a stretching sheet in a Newtonian fluid is extended to 

effects of porosity, MHD, mass transfer and heat transfer. Analytical solution is obtained for velocity and 

temperature solutions of the subsequent linear non-homogenous ordinary differential is expressed in terms of 

confluent hypergeometric function, it is also known as Kummer’s function of first kind. Heat transfer analysis 

is classified into two types of boundary layer heating process, namely, prescribed surface temperature (PST) 

as well as  prescribed surface heat flux (PHF), both of which are thought to be quadratic functions of distance. 

The problem has industrial applications in extrusion process and such other allied areas. 
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2. MATHEMATICAL STATEMENT 

 
We consider two dimensional, laminar, steady, boundary 

layer flow of an incompressible, Newtonian, electrically 

conducting fluid over a stretching porous sheet in the 

presence of heat source/sink and stress work as shown in the 

figure 1.A homogeneous magnetic field apparently exists in 

the direction perpendicular to the sheet. It is assumed that the 

changes in the induced magnetic field and the external 

electric field of MHD because of the polarization of charges 

are negligible. Considering the above assumptions into 

account, the Navier-Stokes equations to the steady, laminar 

and Newtonian boundary layer fluid flow are: 

 

 
 

Figure1. Schematic diagram of the stretching boundary 

 

An electrically conducting fluid is penetrated by imposing 

a consistent field B0, which acts in the vertical direction.The 

Reynolds number is assumed to be negligibly small.Also, 

viscous and Ohmic dissipation terms as well as the Hall 

effect are neglected (see Mahabaleshwar 2008).In 

considerations of the above, the governing sets of equations 

are,  
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The corresponding boundary conditions are as follows:  
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Here, u is the velocity component along the x axis and v is 

the velocity component along y axis, tw is the temperature of 

the sheet,t is the temperature of the fluid, t∞ is the 

temperature of the fluid far away from the sheet,Q1 is the heat 

source/sink coefficient,  is the thermal conductivity, K is 

the permiabilty of the porous medium,  is the 

electricalconductivityofthefluid, C p is the specific heat at 

constant pressure,  is the density 1Q is the volumemetric 

rate of heat generation when 01Q  and heat absorbation 

when 01Q  . The axial and transverse velocities at the 

distances next to the normal surface Equation (3c) implies 

that the liquid has no lateral motion as y . As y 

in Eq.(3c), the stretching sheet does not incite dynamics into 

the flow at distances moving far away from the sheet.In the 

present case, the flow due to the stretching of the sheet, 

which is free from the stream velocity, and also the pressure 

gradient, is zero.Using the dimensionless variables  
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in Eqs. (1)-(3), the following transformed governing 

equation are obtained: 
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dissipation parameterand 
1

Da
K





  is the inverse 

Darcy number, 1
1

p

Q

C



  is the heat/source sink 

parameter 0
1
  .reduces the temperature in the fluid as the 

effect of source and 0
1
  enhance the temperature. The 

effective coolling of the sheet heat sink prefered. The 

boundary conditions become 
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Introducing the physical stream function  ,X Y to 

satisy the conservation of massin the dimensionless form (6) , 

we may write. 
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Using Eq.(10), Eqs. (7) and (8) , can be written as  
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The corresponding boundary condition (9) interms of the 

physical stream function takes in the fom 
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In order to to convert the system of nonlinear partial 

differential equations (11) and 12) into highly nonlinear 

ordinary differential equations the following similarity 

tranformation is used 
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Substitution of Eq. (14) and (15) in Eq. (11) and results in 

the following nonlinear ordinary differential equation with 

constant coefficient:  
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where the subsripts denotes differentiation with respect to the 

similar ity variable . The corresponding boundary conditions 

given by Eqs. (13) to be satisfied by f can be obtained for 

velocity in the form 
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In equation (16), the combined effect of Chandrasekhar 

number Q and the inverse Darcy number 
1

Da


results in the 

linear drag force, which acts against the flow of the fluid and 

this opposition due to porous medium and the MHD is 

known as Darcy drag and Lorentz Drag respectively.This 

drag force is of much advantageous as this reduces the effect 

of two parameters into one.We now, search the solution of 

the laminar boundary value problem (16) and (17) in the 

following closed analytical form, 
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where, 0   must satisfy the quadratic equation, 
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where, c
c

v
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 represents the suction/injection 

parameter(mass transpiration) and three cases arises 

depending on the choice of ,
c

V namely suction, impermeable 

and injection when 0V
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3. HEAT TRANSFER ANALYSIS 

 

Using Eq.(12) in Eq.(13), we get the following boundar 

value problems 
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PHF case 
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Figure 2a.Variation of horizontal velocity (f) for different 

values of the Chandrasekhar number(Q) and inverse Darcy 

number(Da-1) when Vc = 0.1. 

 

 

 

Figure 2b.Variation of axial velocity (fɳ) for different values 

of the Chandrasekhar number(Q) and inverse Darcy 

number(Da-1) when Vc = 0.1. 
 

 
 

Figure 3a.Variation of transverse velocity (f) for different 

values of the suction/injetion parametre VcwhenQ +Da-1=1. 
 

 

Figure 3b.Variation of axial velocity (fɳ)) for different values 

of the suction/injetion parametre Vc whenQ +Da-1 =1. 
 

 
 

Figure 4a.Variation of heat transfer PST ( )   for 

different values of the Q+ Da-1 when Vc = 0.1, 

Pr=1 andE= 0.1and 0.01
1
   

 
 

 
 

Figure 4b.Variation of heat transfer PHF ( )   for different 

values of the Q+ Da-1 when Vc = 0.1, Pr=1 andE= 0.1and 

0.01
1
   

 

The analytical solutions of equations (21) - (24) are 

obtained and the solutions are analyzed graphically for 

different values of Eckert number, Chandrasekhar number, 

inverse Darcy number, Prandtl number and mass 

transpiration parameter andinternal heat generation.Now, 

another type of heating process, namelyprescribed heat flux 

is considered as it is better suited for effective cooling of the 

stretching sheet.The results are shown graphically. 
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Figure 5a.Variation of heat transfer PST ( )   for different 

values of the Prwhen Vc = 0.1, Q+ Da-1=1 andE= 0.1and 

0.01
1
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Figure 5b.Variation of heat transfer PHF ( )   for different 

values of the Prwhen Vc = 0.1, Q+ Da-1=1 andE= 0.1 and 

0.01
1
  . 

 

 
 

Figure 6a.Variation of heat transfer PST ( )   for different 

values of the viscous dissipation parameter EQ+Da-1 = 

1when Vc = 0.1, Pr=1 and 0.01
1
   . 

 

 
 

Figure 6b.Variation of heat transfer PHF ( )   for different 

values of the viscous dissipation parameter EQ+Da-1 = 

1when Vc = 0.1, Pr=1 

4. CONCLUSIONS 

The outcomes from the exact analytical solutions of the 

velocity and temperature in the sheet are obtainable for all 

independent parameters of the Newtonian fluid over the plate, 

as unraveled by Eqs. (16), (17),(21),(22),(23) and (24).The 

variations of velocity components along and in the axial 

direction of the sheet aredisplayed at Figs. 2a and 2b for 

different combined of values ofQ+Da-1, the Chandrasekhar 

number and inverse Darcy number. 

Figures 2a,b and 3a,bdipicts the two velocity profile 

distributions, f and  f  i.e. the velocity components u and 

v at the axial and transversedirections, respectively, versus

for various values of theQ+Da-1abd mass transfer Vc.Since 

the present review is a speculation of the established works 

of Crane [7] and Pavlov (1974) their answers are likewise 

introduced in both figures. The present outcomes approach 

asymptotically the consequences of Crane (1970) as 

0Q  ,furthermore, the consequences of Pavlov (1974)

1
0Da


 and 

1
0Da


 Gupta and Gupta (1977). 

In addition, distributions of temperature are displayed at 

Figs. 4 to 6 for a range of values of Prandtl(Pr), Eckert E, the 

Prandtl, combined Chandrasekhar-Darcry (Q+Da-1) numbers 

are studied individually.Together to the flow components of 

the Newtonian liquid, heat transfer from the sheet is 

additionally vital.The main conclusions derived from the 

present investigation can be listed as follows: 

 The boundary layer decreases as the Q+Da-1 

parameter increases, temperaturedecreases as the 

Prandtl number Pr increases. 

 The PHF boundary condition is better suited for 

effective cooling of the stretching plate. 

 The temperature distributions of the PHF cases are 

qualitatively similar to that of the PST cases, but 

quantitatively have reduced magnitude. 

 The increase of the skin friction parameter can be 

observed with the increase of
1

Da Q

 . 

 When increasing suction/injection parameter Vc

results with the increase of the rate of the velocities 

(axial as well as transverse)on the surface of the 

sheet. 
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NOMENCLATURE 

 

c   constants rate of stretching (s-1) 

A, B, C  constants 

0B   magnetic field (T-Tesla) 

E  viscous dissipation  

Da-1 inverse Darcy number 

f  similarity function for velocity 

k  thermal conductivity 

Pr   Prandtl number 

Q  Chandrasekhar’s number 

1Q   internal heat generation 

t   fluid temperature  

 

u, v  velocity components along x&y-axis (m s-1) 

U, V  dimensionless velocity components along 

x and y-axis (m s-1) 

wv
  

mass transpiration parameter 

cV
  

dimensionless mass transpiration parameter 

x, y  axial and transverse axes (m) 

 

Greek letters 

 

   constant 

μ   viscosity (kg m-1s-1) 

   dimensionless temperature in PST case 

   dimensionless temperature in PHF case 

   density (kgm-3) 


  

electrical conductivity 

   kinematic viscosity,     (m2 s-1 ) 

  permeability parameter 
   physical stream function (m2 s-1 ) 

 

Subscripts 

 

0  pole 

w  wall condition 

   far from the sheet 

f   first order derivative with respect to   

f   second order derivative with respect to   

f
 

 third order derivative with respect to   
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