

An Adaptive Congestion Control Algorithm

Lal Pratap Verma1*, Indradeep Verma2, Mahesh Kumar3

1 Moradabad Institute of Technology, Moradabad, Uttar Pradesh 244001, India
2 IIMT College of Engineering, Greater Noida, Uttar Pradesh 244001, India
3 Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India

Corresponding Author Email: er.lpverma1986@gmail.com

https://doi.org/10.18280/mmc_a.920105

Received: 25 October 2018

Accepted: 18 March 2019

ABSTRACT

 There are various applications running over the Internet which generates a huge amount of

traffic. So, Transport Layer takes the responsibility to manage this traffic and provides

reliable, connection-oriented, end-to-end packet delivery service. Transmission Control

Protocol (TCP) is a Transport Layer protocol, which provides these services. Each TCP

variant provides a solution for specific problems. Utilization of the available bandwidth of

the path with respect to the received ACK remains a challenge in long delay network. This

paper presents a delay based congestion control approach which tries to maintain the data

transmission according to the available capacity of the path. Simulation results show that

proposed approach provides better results in terms of packet loss, throughput and inter-

protocol fairness as compare to other protocol.

Keywords:

TCP, congestion control, CWND, RTT, RTO,

network, transport protocol, internet

1. INTRODUCTION

Transmission Control Protocol (TCP) [1] contributes a lot

to the remarkable growth of the Internet. As a result, the data

transmission rate increased significantly. TCP implements the

window-based flow control mechanism for congestion

control. It uses two state variables to maintain the transmission

between sender and receiver are Congestion Window

(CWND) and Slow Start Threshold (SSTHRESH). The sender

starts sending data according to the minimum of CWND and

AWND (receiver advertised window).

The aim of CWND is to prevent the sender to send more

than the network capacity in current load condition. Slow Start

threshold provides a threshold value for congestion control

mechanism. The objective of modifying the CWND is to adapt

the current network status. This is to be done by using lost

packet. The sender detects packet loss by Timeout mechanism

or by duplicate acknowledgement. When the sender detects the

packet loss, it retransmits the lost packet. Due to

retransmission of the packet, the TCP sender assumes that

there is congestion in the network. So, the TCP source

modifies the CWND and SSTHRESH value according to the

TCP protocol. Standard TCP [2] use additive increase and

multiplicative decrease (AIMD) algorithm to adjust the

CWND. This algorithm increases the CWND very slowly

(Additive increase) and decreases it quickly (multiplicative

decrease) according to acknowledgement (ACK) received by

TCP source. In high-speed network condition, this algorithm

is not able to fully utilize the available bandwidth of the

network. A major challenge in such network condition is to

quickly adapt the transmission rate according to the available

bandwidth of the path.

Internet of Things (IoT) is the global network platform

which provides interconnection between different types of

devices having capability to transmit data over the network.

The devices can be a computing device link personal computer,

mobile phone, tablet, any object, animals or human having

unique identity (IP address) over the Internet. There are many

types of application protocols supported by IoT to provide data

transmission between different devices. The XMPP

(Extensible Messaging and Presence Protocol) [3], RESTful

HTTP [4], and MQTT (MQ Telemetry Transport) [5] are IoT

application protocols which use the Transmission Control

Protocol (TCP) to offers the data transmission between

different devices. Thus, the role of TCP is very important in

the growth of IoT.

There are many types of popular TCP variants [6, 9, 22]

available today to provide various types of congestion control

mechanism. All the TCP variance deals with different TCP

problems like efficiency, fairness, RTT fairness, stability, and

reliability, and all the TCP variants achieved their respective

objective. Utilization of the available bandwidth of the path

with respect to the received ACK remains a challenge in the

large delay network. Additionally, as number of devices

increase over the internet, the network congestion also

increases. Thus, this paper presents a new approach of

congestion control to handle the large round trip delay and

provide better bandwidth utilization as compared to other TCP

variants.

The rest of the paper organized as follows: Section 2

presents literature reviews of various TCP variants while

section 3 presents a new delay-based congestion control

algorithm. The performance evaluation of the proposed

algorithm is presented in section 4 while section 5 concludes

the overall performance of proposed method.

2. RELATED WORK

A congestion control algorithm for TCP is proposed by [6]

known as TCP-Tahoe introduces Slow Start, Congestion

Avoidance, and Fast Retransmission technique. But TCP-

Modelling, Measurement and Control A
Vol. 92, No. 1, March, 2019, pp. 30-36

Journal homepage: http://iieta.org/journals/mmc_a

30

Tahoe reduces the congestion window to one when packet loss

is detected and lead to significant throughput degradation. This

serious problem is identified by [2] and revised the original

Slow Start and Congestion Avoidance method by introducing

the major congestion event and minor congestion event. A

major congestion event is identified by Retransmission

Timeout (RTO) and a minor congestion event is identified by

three duplicate acknowledgements. When a TCP sender

receives three duplicate acknowledgements, it concludes that

the packet is lost. So, the TCP sender retransmits the lost

packet. Due to retransmission of the packet, the TCP sender

assumes that there is congestion in the network. So, the TCP

sender modifies the Cwnd and Ssthresh values by the half of

the current CWND. For optimization of Fast Retransmission

method of TCP-Tahoe, TCP-Reno uses Fast Recovery method.

In this method, TCP sender does not exit Fast Recovery mode

until it receives a non-duplicate acknowledgment. TCP Reno

improves the performance of TCP when minor congestion

detected.

TCP Reno differentiates the major and minor congestion

event in the network but it cannot identify that which type of

congestion event occurs when multiple packet loss occurs as a

single congestion event. TCP Reno reacts on such type of

congestion event as a heavily loaded network condition and

reduces the cwnd according to a number of packet drops. It

reduces the performance of TCP Reno significantly.

Floyd et al. [7, 8] identified this problem of TCP Reno and

proposed its revised version known as TCP New Reno. In this

TCP, Fast Recovery algorithm has been modified to overcome

this problem. It resolves this problem by restricting the current

Fast Recovery phase cannot change until all the

acknowledgement receives corresponding to current CWND.

For this purpose, TCP New Reno uses a new state variable that

records the sequence number of the last data packet sent before

starting the Fast Recovery phase. This state variable helps TCP

New Reno to identify the partial acknowledged and new

acknowledged data packet. After receiving a new

acknowledgement, TCP concludes that all data packets are

reaching to destination successfully. Now, its exit from the

Fast Recovery and start sending data packet according to

Congestion Avoidance phase. Recording the sequence number

before entering into Fast recovery phase is the solution of

unwanted CWND reduction. But in some cases, when the

timeout occurred during the Fast Recovery phase, then an

unnecessary CWND reduction may still occur. A solution of

the problem is that remember the highest sequence number

send after each timeout and discard all the duplicate

acknowledgement that is lower sequence number than the

highest sequence number.

So, TCP New Reno resolves the problem of multiple packet

loss as a single congestion event and improves the

performance. It also maintains fairness of the flow as TCP

Reno.

Another solution to multiple loss is proposed by Mathis et

al. [9] is called TCP SACK. This protocol provides the ability

for the receiver to report the number of successfully delivered

data packets. By using this information TCP sender can

calculate a block of the lost packet (gap in sequence number

of the acknowledgement) and retransmit it quickly.

Mathis and J. Mahdavi [10] proposed another technique

based on SACK with new congestion control mechanism.

FACK (forward acknowledgement) maintain three state

variables, H-highest sequence numbers, F-forwarded most

sequence number, and R- the number of retransmitted packets.

A relation of H-F+R can be utilized by the sender decides to

either send new data or not.

Brakmo and Peterson [11] proposed a new congestion

avoidance technique called TCP Vegas based on TCP Reno.

The main logic of the Vegas congestion control algorithm is

for estimation of the used buffer size of the bottleneck link of

the path by measuring RTT. TCP Vegas compute the

difference of the expected flow rate and Actual flow rate and

adjust the congestion window accordingly. When TCP Vegas

estimate the delay of the network path, TCP Vegas use

RTTmin. Hasegawa et al. [12] recognized this serious problem

of TCP Vegas and proposed another version of TCP is called

Vegas+. It assumes initially Vegas friendly environment and

applies bottleneck buffer size estimation to control the

congestion window. When Vegas+ detect an unfriendly

environment, it supports Reno algorithm.

Floyd [13, 14] proposed High-Speed TCP (HS-TCP) for

high-speed network. HS-TCP replace standard New Reno

increasing coefficient in Congestion Avoidance and decrease

factor detect minor loss during the Fast Recovery phase. HS-

TCP has the problem of fairness of RTT with a different flow.

Kelly [15] proposed a Scalable TCP (STCP) as a replacement

of HS-TCP to solve the effectiveness problem in high-speed

long delay network. STCP use MIMD concept to increase and

decrease the congestion window. STCP experience some

critical problem like enter-fairness and constant congestion.

Leith et al. [16, 17] proposed another congestion control

algorithm HTCP which remove the enter-fairness problem of

STCP and HS-TCP. The main idea of HTCP is that congestion

window increases in n steps in Congestion Avoidance phase.

Caini and Firrincieli [18] proposed another congestion

control algorithm called TCP Hybal. This technique resolves

RTT unfairness problem by introducing a modification of New

Reno's Slow Start and Congestion Avoidance phase. A scaling

factor is calculated by relation RTT/RTTref where RTTref is

the reference RTT has value 25ms. It provides better results in

terms of RTT friendliness, but it increases the aggressiveness

of the flow. Jin et al. [19, 20] introduce FAST TCP that

provide time-based congestion window update base on the

delay of the network. FAST-TCP defines a fixed rate

congestion window update. It provides a better result in terms

of inter-fairness, RTT fairness, stability, and scalability.

Baiocchi et al. [21] proposed another congestion control

algorithm called YeAH-TCP. It combines packet loss

detection and measurement of RTT. It improves the inter-

fairness and RTT fairness as compare to HS-TCP and STCP.

Ha et al. [22] proposed a TCP-CUBIC for congestion control

which is an enhanced version of BIC-TCP [23] TCP-CUBIC

grows its window to the midpoint between the last maximum

window size where the packet was lost and the last minimum

window size; it did not lose any packet. TCP-CUBIC has two

profiles concave and convex for window increase. It uses

RTT-independent growth function that maintains scalability,

RTT-fairness, and Intra-fairness, but it is not able to utilize

available network resources and suffers from a greater number

of packet losses. Wang et al. [24] plan to take the advantage of

FAST-TCP [19-20] and TCP-FIT [25], and proposed a new

congestion control algorithm called FAST-FIT. It uses the

FAST-TCP growth function to maintain data flow and uses a

TCP-FIT technique to adjust the CWND. It shows better

results in terms of inter-protocol fairness (with TCP-Reno),

high bandwidth utilization in wired and wireless environments.

Wang et al. [26] proposed Fair TCP that provides the initial

congestion window value based on network status. It increases

31

the congestion window on the basis of RTT. It provides better

results in terms of inter-protocol fairness, increases

transmission efficiency and RTT fairness. Sharma and Kumar

[27] suggested a new adaptive congestion control scheme in

mobile ad-hoc networks to adjust the transmission rate of path.

However, Verma and Kumar [28] suggested new adaptive data

chunk scheduling policy for concurrent multipath transfer

(CMT-SCTP).

During the analysis of these protocols, the authors identified

that TCP suffer from heavy packet loss in large delay network.

As a result, such variants [22, 25] suffer from unnecessary

timeout and CWND reduction. Such variants [22, 25] are not

able to utilize available bandwidth and also suffer from inter-

protocol fairness. Additionally, as numbers of device increases

over the Internet, network congestion also increases [29, 30].

Therefore, we need a congestion control policy which manage

the traffic according to availability of the bandwidth.

3. PROPOSED WORK

The path delay variation is an important factor in TCP

which reflect the correct network status. Let Pi be the paths

used for data transmissions and the round trip delay of path is

defined as Di. If delay Di of path Pi changes, it means that

bottleneck queue size of path Pi also changes. It means that

path traffic intensity also changes. Therefore, this paper

introduces a new delay-based TCP variant, which uses RTT

variation as congestion detection factor. The proposed

technique is the extension of TCP New Reno in terms of delay

based TCP. It uses all the policies of TCP New Reno with

some small change in fast recovery phase. Apart from TCP

New Reno policies, it has a new congestion detection method.

The RTT is in important factor used by all the TCP variants

to analyze the delay. It includes queuing delay, transmission

delay, and propagation delay.

𝑅𝑇𝑇𝑚𝑖𝑛 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑚𝑖𝑛 + 𝑃𝑟 (1)

𝑅𝑇𝑇𝑖 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑑 + 𝑃𝑟 (2)

where, RTTi is current RTT, RTTmin is a minimum RTT, Pd

is propagation delay, Td is a transmission delay, Pr is a

procession delay, Qd is a current queuing delay of the path,

and Qmin is a minimum queuing delay.

The propagation delay, processing delay and transmission

delay remain almost same for all conditions, but the queuing

delay change when the queue size changes. When, queuing

delay changes RTT also changes correspondingly. If the

authors adjust the transmission rate of the TCP with respect to

RTT change, then it will quickly adopt the network condition

and improve the available bandwidth utilization and reduce the

number of packet loss. Therefore, the authors are introducing

a threshold calculation method for RTT, which provide

information about when TCP change the transmission rate.

RTTmax is the maximum round trip time, which is

estimated by TCP source. RTTmax is estimated when a packet

drop occurred. It means that when the bottleneck queue is full,

then it drops the packet (maximum packet gets dropped due to

queue over flow). When packet drops from bottleneck queue,

at that time queue is full and queuing delay is maximum.

𝑅𝑇𝑇𝑚𝑎𝑥 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑑_𝑚𝑎𝑥 + 𝑃𝑟 (3)

where, Qd_max is maximum queuing delay. Thus, the

threshold for RTT can be calculated based on RTTmax,

RTTmin, and RTTi with a scaling factor of τ. Value of τ is

determined by performing a number of experiments and set it

to 2.5. The threshold for RTT is calculated on each received

ACK at TCP source as:

𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ =
𝑅𝑇𝑇𝑚𝑎𝑥+𝑅𝑇𝑇𝑚𝑖𝑛+𝑅𝑇𝑇𝑖

𝜏
 (4)

where, RTTthresh is a threshold for RTT and τ is scaling factor.

Now, proposed method adapts path traffic as well as delay

variation based on RTTthresh threshold estimated by TCP

source. The proposed method may not change the traffic rate

when current RTT is greater than RTTthresh. However, it

increases the CWND when current RTT is less than RTTthresh.

The authors are introducing the functioning of the proposed

TCP as:

Initially, TCP starts with TCP New Reno policy like slow

start and congestion avoidance. For each receive ACK, TCP

calculate the RTTmax, RTTmin, and RTTi. After calculation

of the TCP factors, it compares RTTi with RTTthresh. If RTTi

is greater than the RTTthresh, then stop increasing cwnd. Else,

if RTTi less than RTTthresh, then cwnd increase according to

following equation.

𝜕 =
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

1+𝑒𝑐𝑤𝑛𝑑 (5)

𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖 + 𝜕 +
1

𝑐𝑤𝑛𝑑𝑖
 (6)

This approach worked in congestion avoidance phase only.

Algorithm 1: Delay-based congestion control

1. For each ACK

2. Begin

3. If 𝐴𝐶𝐾 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

4. 𝑅𝑇𝑇 𝑖 = 𝑁𝑜𝑤 − 𝑃𝑎𝑐𝑘𝑒𝑡_𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒

5. If 𝑅𝑇𝑇𝑖 < 𝑅𝑇𝑇𝑚𝑖𝑛

6. 𝑅𝑇𝑇𝑚𝑖𝑛 = 𝑅𝑇𝑇𝑖

7. End If

8. If 𝑅𝑇𝑇𝑖 > 𝑅𝑇𝑇𝑚𝑎𝑥

9. 𝑅𝑇𝑇𝑚𝑎𝑥 = 𝑅𝑇𝑇𝑖

10. End If

11. 𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ =
𝑅𝑇𝑇𝑚𝑎𝑥+𝑅𝑇𝑇𝑖+𝑅𝑇𝑇𝑚𝑖𝑛

𝜏

12. If 𝑐𝑤𝑛𝑑𝑖 > 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

13. If 𝑅𝑇𝑇𝑖 > 𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ

14. 𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖

15. Else If 𝑅𝑇𝑇𝑖 < 𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ

16. 𝜕 =
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

1+𝑒𝑐𝑤𝑛𝑑

17. 𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖 + 𝜕 +
1

𝑐𝑤𝑛𝑑𝑖

18. Else 𝑐𝑤𝑛𝑑𝑖 ≤ 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

19. 𝑁𝑒𝑤 𝑅𝑒𝑛𝑜 𝑆𝑙𝑜𝑤 𝑠𝑡𝑎𝑟𝑡
20. End If

21. End If

22. End If

23. End

The advantage of proposed congestion control approach is

that the proposed approach adapts the network conditions

(congestion or congestion free) quickly and transmit data

accordingly. Therefore, proposed approach achieves better

performance as compared to other TCP variants. However, if

32

delay variation of the path changes without congestion then

this may cause wrong delay estimation and interpretation. But,

in most of the cases delay of the path varies due to congestion.

Therefore, such condition is very rear and it may not arise

when everything is normal except traffic rate.

4. PERFORMANCE ANALYSIS

This section describes the experimental setup and results

obtained for proposed algorithm using NS2 (Network

Simulator2) [31]. The simulation topology (dabbled topology)

has 8 nodes as shown in Figure 1. The nodes S1, S2 and S3

have been configured to act as sources for TCP or UDP based

applications. D1, D2 and D3 are the destinations for

aforementioned sources. The network has seven links with

different characteristics. Link S1-R1, S2-R1, S3-R2, R1-D3,

R2-D1 and R2-D2 are configured to have 10Mbps bandwidth

and link R1-R2 has 1.5Mbps. The queue size of each link is

kept 50. Propagation delay of the link varies according to

simulation requirement. The performance of the proposed

TCP is compared with TCP Reni, New Reno, TCP Cubic and

TCP Fast-Fit.

Figure 1. Simulation topology

Figure 2. RTT Vs throughput

The authors first analyze the performance of the proposed

TCP in variable RTT conditions. During the simulation, queue

size of the bottleneck is kept 50 packets, propagation delay

varies from 100ms to 200ms, source S1 use CBR traffic on the

top of UDP, source S2 use FTP traffic on the top of TCP and

the source S3 use CBR traffic in the reverse direction from S1

and S2. Figure 2 shows the throughput variation of TCP

variants with respect to RTT. It shows that as the RTT

increases, throughput of TCP variants shows variable trends.

TCP Reno and TCP Newreno achieves lower throughput as

compared to other TCP variants. However, TCP Fast-fit and

TCP Cubic show better throughput as compared to TCP Reno

and TCP Newreno. Meanwhile, proposed method achieves

better throughput as compared to other TCP variants. The

proposed method achieves better throughput due to it delay-

based transmission rate adaptation policy. As a result,

proposed method suffers from a smaller number of packet

losses, which directly affect the available bandwidth

utilization. Hence, proposed TCP achieves higher throughput

than other TCP variants in all RTT variation.

Figure 3. Average throughput with confidence interval

The authors also calculate the average throughput

improvement and confidence interval of proposed method,

Cubic, Fast-Fit, Newreno and TCP Reno. Figure 3 shows the

average throughput and confidence interval (using error bar).

It shows that proposed method has better average throughput

improvement as compared to other TCP variants. Meanwhile,

confidence interval of all TCP variants also confirms that

proposed method has better confidence that throughput lies

between 1443-1467 Kbps, while other TCP variants have less

confidence interval for throughput as compared to proposed

method.

Figure 4. RTT Vs packet drops

Figure 5. Average packet drops with confidence interval

33

Now, Figure 4 shows the number of packets drops in

variable RTT conditions. It shows that as RTT increases

number of packet drops decreases. Figure 4 shows that Fast-

Fit has highest number of packets drops in all conditions while

proposed TCP has the less number of packet drops as

compared to TCP Cubic and Fast-fit, TCP Reno, and TCP

Newreno. Figure 5 shows the average packet drops with

confidence interval (using error bar). It also confirms that

proposed method has less average packet loss as compared to

other TCP variants. While, confidence interval also shows that

proposed method has better confidence that the packet loss lies

between 2-5 while other variant has large confidence that

proposed method.

Now, another simulation has been performed to analyze the

performance of proposed TCP in different background traffic

environment. In this simulation setup, queue size of the

bottleneck is 50, propagation delay is 50ms, and simulation

time is 150sec. Figure 6 shows the throughput variation of

TCP variants with different background traffic. It shows that

as traffic rate increases, throughput of all TCP variants

decreases. TCP Reno shows the least utilization for the entire

traffic rate while proposed TCP achieves better throughput as

compared to other TCP variants. Average throughput and

confidence interval of all TCP variants are also shown in

Figure 7. This figure shows that proposed method has better

average throughput as compared to other TCP variants while

confidence interval of proposed method also confirms that it

has better confidence interval lies between 930-1330 Kbps.

Figure 6. Background traffic Vs throughput

Figure 7. Average throughput with confidence interval

Figure 8 shows the number of packets drops while

background traffic varies from 500-1000Kbps.It shows that as

traffic rate increases packet drop also increases. Figure 8

shows that Fast-Fit suffers from highest number of packets

drops while proposed method shows least number of packets

drops as compared to other TCP variants. Figure 9 shows the

average packet drops and confidence interval of all TCP

variants. It also confirms that proposed method achieves less

numbers of packet drops and has better confidence interval

compared to TCP Reno, TCP Newreno, Cubic, and Fast-Fit.

Figure 8. Background traffic Vs Packet drops

Figure 9. Average packet drops with confidence interval

Figure 10. Bandwidth utilization among the competing

traffic

The inter-protocol fairness is another important issue with

TCP. Therefore, another simulation has been performed to

analyze inter-protocol fairness of proposed TCP. In this

simulation setup, queue size of the bottleneck is 50,

propagation delay is 50ms, and simulation time is 150sec.

Figure 10 shows the fairness property of TCP with three TCP

Reno flow and one other flow (Proposed TCP, TCP Reno,

TCP Newreno, TCP Cubic and Fast-Fit) in terms of available

bandwidth utilization. In this figure, first 3 different blocks

show the TCP Reno flow share and last block shows the other

TCP variants (Proposed TCP, TCP Reno, TCP Newreno, TCP

Cubic and Fast-Fit). It shows that the proposed TCP share all

most equal bandwidth with each flow, and has better

bandwidth utilization than other TCP variants. It concludes

that the proposed method has similar inter-protocol fairness

lick other TCP variants.

34

5. CONCLUSION

This paper presents new delay-based TCP variants which

uses RTT as a congestion detection factor. It uses the RTT

variation as an indicator of congestion. The proposed TCP

adapts the network traffic condition quickly to adjust the

transmission rate. As a result, it achieves better performance.

The simulation results show that the proposed TCP reduces the

number of packet drops, improved the bandwidth utilization in

variable RTT conditions as well as variable background traffic

conditions. It also shows better inter-protocol fairness with

standard TCP Reno. In future, this proposed congestion

control approach can further extend to test the performance

with available IoT application protocols.

REFERENCES

[1] Postel, J. (1981). RFC793-Transmission Control

Protocol. Internet Engineering Task Force. From

https://www.ietf.org/rfc/rfc793.txt.

[2] Allman, M., Paxson, V., Stevens, W. (1999). RFC2581-

TCP congestion control. Internet Engineering Task Force.

From https://tools.ietf.org/html/rfc2581.

[3] Saint-Andre, P. (2011) RFC6120-Extensible Messaging

and Presence Protocol (XMPP): Core, Internet

Engineering Task Force. From

https://tools.ietf.org/html/rfc6120.

[4] Fielding, R.T. (2000) Architectural styles and the design

of network-based software architectures. Doctoral

dissertation, University of California, Irvine.

[5] Banks, A., Gupta, R. (2015) MQTT (MQ Telemetry

Transport) http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-

errata01-os.html.

[6] Jacobson, V. (1988). Congestion avoidance and control.

ACM SIGCOMM, 18(4): 314–329.

https://doi.org/10.1145/52325.52356

[7] Floyd, S., Henderson, T. (1999). RFC2582-the NewReno

modification to TCP’s fast recovery algorithm. Internet

Engineering Task Force. From

https://tools.ietf.org/html/rfc2582.

[8] Floyd, S., Henderson, T., Gurtov, A. (2004). RFC3782—

the NewReno modification to TCP’s fast recovery

algorithm. Internet Engineering Task Force. From

http://tools.ietf.org/html/rfc3782.

[9] Mathis, M., Mahdavi, J., Floyd, S., Romanov, A. (1996).

RFC2018—TCP selective acknowledgment options.

Internet Engineering Task Force. From

https://tools.ietf.org/html/rfc2018.

[10] Mathis, M., Mahdavi, J. (1996). Forward

acknowledgement: Refining TCP congestion control.

SIGCOMM Computer Communications Review, 26(4):

281-291. https://doi.org/10.1145/248157.248181

[11] Brakmo, L., Peterson, L. (1995). TCP Vegas: end to end

congestion avoidance on a global Internet. IEEE J. Sel.

Areas Communication, 13(8): 1465-1480.

https://doi.org/10.1109/49.464716

[12] Hasegawa, G., Kurata, K., Murata, M. (2000). Analysis

and improvement of fairness between TCP Reno and

Vegas for deployment of TCP Vegas to the Internet. In

Proc. IEEE ICNP, pp. 177-186.

https://doi.org/10.1109/ICNP.2000.896302

[13] Floyd, S. (2003). RFC3649—HighSpeed TCP for large

congestion windows. Internet Engineering Task Force.

From https://tools.ietf.org/html/rfc3649.

[14] Floyd, S. (2003). HighSpeed TCP and Quick-Start for

Fast Long-Distance networks (slides). TSVWG, IETF.

[15] Kelly, T. (2003). Scalable TCP: Improving performance

in highspeed wide area networks. Computer

Communications Review, 32(2).

https://doi.org/10.1145/956981.956989

[16] Leith, D., Shorten, R. (2004). H-TCP: TCP for high-

speed and long-distance networks. In Proc. of PFLDnet.

[17] Leith, D. (2008). H-TCP: TCP congestion control for

high bandwidth-delay product paths. IETF Internet Draft,

From http://tools.ietf.org/html/draf-tleith-tcp-htcp-06.

[18] Caini, C., Firrincieli, R. (2004). TCP Hybla: A TCP

enhancement for heterogeneous networks. International

J. Satellite Communications and Networking, 22: 547-

566. https://doi.org/10.1002/sat.799

[19] Jin, C., Wei, D., Low, S., Buhrmaster, G., Bunn, J., Choe,

D., Cottrel, R., Doyle, J., Feng, W., Martin, O., Newman,

H., Paganini, F., Ravot, S., Singh, S. (2005). FAST TCP:

from theory to experiments. IEEE Network, 19(1): 4-11.

https://doi.org/10.1109/MNET.2005.1383434

[20] Wei, D.X., Jin, C., Low, S.H., Hegde. (2006). FAST TCP:

Motivation, architecture, algorithms, performance.

IEEE/ACM Transaction Networking, 14(6): 1246-1259.

https://doi.org/10.1109/TNET.2006.886335

[21] Baiocchi, A., Castellani, A.P., Vacirca, F. (2007).

YeAH-TCP: Yet another highspeed TCP. In Proc.

PFLDnet, ISI, Marina Del Rey (Los Angeles), California,

February 2007.

[22] Ha, S., Rhee, I., Xu, L. (2008). CUBIC: A new TCP-

friendly high-speed TCP variant. ACM SIGOPS

Operating Systems Rev., 42(5): 64-74.

https://doi.org/10.1145/1400097.1400105

[23] Xu, L., Harfoush, K., Rhee, I. (2004). Binary increase

congestion control for fast long distance networks. In

Proc. IEEE INFOCOM, 4: 2514–2524.

https://doi.org/10.1109/INFCOM.2004.1354672

[24] Wang, J., Wen, J., Han, Y., Zhang, J., Li, C., Xiong, Z.

(2014). Achieving high throughput and TCP Reno

fairness in delay-based TCP over large network.

Frontiers of Computer Science, 8(3): 426-439.

https://doi.org/10.1007/s11704-014-3443-9

[25] Wang, J., Wen, J., Zhang, J., Han, Y. (2010). CP-FIT: An

improved TCP congestion control algorithm and its

performance. In Proc. of IEEE International Conference

on Computer Communication, pp. 2133-2137.

https://doi.org/10.1109/INFCOM.2011.5935128

[26] Wang, G., Ren, Y., Li, J. (2014). An effective approach

to alleviating the challenges of transmission control

protocol. IET Communication, 8(6): 860-869.

https://doi.org/10.1049/iet-com.2013.0154

[27] Sharma, V.K., Kumar, M. (2017). Adaptive congestion

control scheme in mobile ad-hoc networks. Peer-to-Peer

Networking and Applications, 10(3): 633-657.

https://doi.org/10.1007/s12083-016-0507-7

[28] Verma, L.P., Kumar, M. (2017). An adaptive data chunk

scheduling for concurrent multipath transfer. Computer

Standards & Interfaces, 52: 97-104.

https://doi.org/10.1016/j.csi.2017.02.001

[29] Mishra, N., Verma, L.P., Srivastava, P.K., Gupta, A.

(2018). An analysis of IOT congestion control policies.

35

Procedia Computer Science, 132: 444-450.

https://doi.org/10.1016/j.procs.2018.05.158

[30] Arunmozhi, S, Nagarajan, G. (2018). Quadrature spatial

modulation on full duplex and half duplex relaying

network. Modelling, Measurement and Control A.

91(4):168-174.

[31] NS Project. (2011). The Network Simulator: ns-2.

http://www.isi.edu/nsnam/ns, accessed on June 2017.

36

