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ABSTRACT 

  
 There are various applications running over the Internet which generates a huge amount of 

traffic. So, Transport Layer takes the responsibility to manage this traffic and provides 

reliable, connection-oriented, end-to-end packet delivery service. Transmission Control 

Protocol (TCP) is a Transport Layer protocol, which provides these services. Each TCP 

variant provides a solution for specific problems. Utilization of the available bandwidth of 

the path with respect to the received ACK remains a challenge in long delay network. This 

paper presents a delay based congestion control approach which tries to maintain the data 

transmission according to the available capacity of the path. Simulation results show that 

proposed approach provides better results in terms of packet loss, throughput and inter-

protocol fairness as compare to other protocol.  
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1. INTRODUCTION 

 

Transmission Control Protocol (TCP) [1] contributes a lot 

to the remarkable growth of the Internet. As a result, the data 

transmission rate increased significantly. TCP implements the 

window-based flow control mechanism for congestion 

control. It uses two state variables to maintain the transmission 

between sender and receiver are Congestion Window 

(CWND) and Slow Start Threshold (SSTHRESH). The sender 

starts sending data according to the minimum of CWND and 

AWND (receiver advertised window). 

The aim of CWND is to prevent the sender to send more 

than the network capacity in current load condition. Slow Start 

threshold provides a threshold value for congestion control 

mechanism. The objective of modifying the CWND is to adapt 

the current network status. This is to be done by using lost 

packet. The sender detects packet loss by Timeout mechanism 

or by duplicate acknowledgement. When the sender detects the 

packet loss, it retransmits the lost packet. Due to 

retransmission of the packet, the TCP sender assumes that 

there is congestion in the network. So, the TCP source 

modifies the CWND and SSTHRESH value according to the 

TCP protocol. Standard TCP [2] use additive increase and 

multiplicative decrease (AIMD) algorithm to adjust the 

CWND. This algorithm increases the CWND very slowly 

(Additive increase) and decreases it quickly (multiplicative 

decrease) according to acknowledgement (ACK) received by 

TCP source. In high-speed network condition, this algorithm 

is not able to fully utilize the available bandwidth of the 

network. A major challenge in such network condition is to 

quickly adapt the transmission rate according to the available 

bandwidth of the path.   

Internet of Things (IoT) is the global network platform 

which provides interconnection between different types of 

devices having capability to transmit data over the network. 

The devices can be a computing device link personal computer, 

mobile phone, tablet, any object, animals or human having 

unique identity (IP address) over the Internet. There are many 

types of application protocols supported by IoT to provide data 

transmission between different devices. The XMPP 

(Extensible Messaging and Presence Protocol) [3], RESTful 

HTTP [4], and MQTT (MQ Telemetry Transport) [5] are IoT 

application protocols which use the Transmission Control 

Protocol (TCP) to offers the data transmission between 

different devices. Thus, the role of TCP is very important in 

the growth of IoT. 

There are many types of popular TCP variants [6, 9, 22] 

available today to provide various types of congestion control 

mechanism. All the TCP variance deals with different TCP 

problems like efficiency, fairness, RTT fairness, stability, and 

reliability, and all the TCP variants achieved their respective 

objective. Utilization of the available bandwidth of the path 

with respect to the received ACK remains a challenge in the 

large delay network. Additionally, as number of devices 

increase over the internet, the network congestion also 

increases. Thus, this paper presents a new approach of 

congestion control to handle the large round trip delay and 

provide better bandwidth utilization as compared to other TCP 

variants. 

The rest of the paper organized as follows: Section 2 

presents literature reviews of various TCP variants while 

section 3 presents a new delay-based congestion control 

algorithm. The performance evaluation of the proposed 

algorithm is presented in section 4 while section 5 concludes 

the overall performance of proposed method.  

 

 

2. RELATED WORK 
 

A congestion control algorithm for TCP is proposed by [6] 

known as TCP-Tahoe introduces Slow Start, Congestion 

Avoidance, and Fast Retransmission technique. But TCP-
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Tahoe reduces the congestion window to one when packet loss 

is detected and lead to significant throughput degradation. This 

serious problem is identified by [2] and revised the original 

Slow Start and Congestion Avoidance method by introducing 

the major congestion event and minor congestion event. A 

major congestion event is identified by Retransmission 

Timeout (RTO) and a minor congestion event is identified by 

three duplicate acknowledgements. When a TCP sender 

receives three duplicate acknowledgements, it concludes that 

the packet is lost. So, the TCP sender retransmits the lost 

packet. Due to retransmission of the packet, the TCP sender 

assumes that there is congestion in the network. So, the TCP 

sender modifies the Cwnd and Ssthresh values by the half of 

the current CWND. For optimization of Fast Retransmission 

method of TCP-Tahoe, TCP-Reno uses Fast Recovery method. 

In this method, TCP sender does not exit Fast Recovery mode 

until it receives a non-duplicate acknowledgment. TCP Reno 

improves the performance of TCP when minor congestion 

detected. 

TCP Reno differentiates the major and minor congestion 

event in the network but it cannot identify that which type of 

congestion event occurs when multiple packet loss occurs as a 

single congestion event. TCP Reno reacts on such type of 

congestion event as a heavily loaded network condition and 

reduces the cwnd according to a number of packet drops. It 

reduces the performance of TCP Reno significantly. 

Floyd et al. [7, 8] identified this problem of TCP Reno and 

proposed its revised version known as TCP New Reno. In this 

TCP, Fast Recovery algorithm has been modified to overcome 

this problem. It resolves this problem by restricting the current 

Fast Recovery phase cannot change until all the 

acknowledgement receives corresponding to current CWND. 

For this purpose, TCP New Reno uses a new state variable that 

records the sequence number of the last data packet sent before 

starting the Fast Recovery phase. This state variable helps TCP 

New Reno to identify the partial acknowledged and new 

acknowledged data packet. After receiving a new 

acknowledgement, TCP concludes that all data packets are 

reaching to destination successfully. Now, its exit from the 

Fast Recovery and start sending data packet according to 

Congestion Avoidance phase. Recording the sequence number 

before entering into Fast recovery phase is the solution of 

unwanted CWND reduction. But in some cases, when the 

timeout occurred during the Fast Recovery phase, then an 

unnecessary CWND reduction may still occur. A solution of 

the problem is that remember the highest sequence number 

send after each timeout and discard all the duplicate 

acknowledgement that is lower sequence number than the 

highest sequence number.  

So, TCP New Reno resolves the problem of multiple packet 

loss as a single congestion event and improves the 

performance. It also maintains fairness of the flow as TCP 

Reno. 

Another solution to multiple loss is proposed by Mathis et 

al. [9] is called TCP SACK. This protocol provides the ability 

for the receiver to report the number of successfully delivered 

data packets. By using this information TCP sender can 

calculate a block of the lost packet (gap in sequence number 

of the acknowledgement) and retransmit it quickly.   

Mathis and J. Mahdavi [10] proposed another technique 

based on SACK with new congestion control mechanism. 

FACK (forward acknowledgement) maintain three state 

variables, H-highest sequence numbers, F-forwarded most 

sequence number, and R- the number of retransmitted packets. 

A relation of H-F+R can be utilized by the sender decides to 

either send new data or not. 

Brakmo and Peterson [11] proposed a new congestion 

avoidance technique called TCP Vegas based on TCP Reno. 

The main logic of the Vegas congestion control algorithm is 

for estimation of the used buffer size of the bottleneck link of 

the path by measuring RTT. TCP Vegas compute the 

difference of the expected flow rate and Actual flow rate and 

adjust the congestion window accordingly. When TCP Vegas 

estimate the delay of the network path, TCP Vegas use 

RTTmin. Hasegawa et al. [12] recognized this serious problem 

of TCP Vegas and proposed another version of TCP is called 

Vegas+. It assumes initially Vegas friendly environment and 

applies bottleneck buffer size estimation to control the 

congestion window. When Vegas+ detect an unfriendly 

environment, it supports Reno algorithm.  

Floyd [13, 14] proposed High-Speed TCP (HS-TCP) for 

high-speed network. HS-TCP replace standard New Reno 

increasing coefficient in Congestion Avoidance and decrease 

factor detect minor loss during the Fast Recovery phase. HS-

TCP has the problem of fairness of RTT with a different flow. 

Kelly [15] proposed a Scalable TCP (STCP) as a replacement 

of HS-TCP to solve the effectiveness problem in high-speed 

long delay network. STCP use MIMD concept to increase and 

decrease the congestion window. STCP experience some 

critical problem like enter-fairness and constant congestion. 

Leith et al. [16, 17] proposed another congestion control 

algorithm HTCP which remove the enter-fairness problem of 

STCP and HS-TCP. The main idea of HTCP is that congestion 

window increases in n steps in Congestion Avoidance phase. 

Caini and Firrincieli [18] proposed another congestion 

control algorithm called TCP Hybal. This technique resolves 

RTT unfairness problem by introducing a modification of New 

Reno's Slow Start and Congestion Avoidance phase. A scaling 

factor is calculated by relation RTT/RTTref where RTTref is 

the reference RTT has value 25ms. It provides better results in 

terms of RTT friendliness, but it increases the aggressiveness 

of the flow. Jin et al. [19, 20] introduce FAST TCP that 

provide time-based congestion window update base on the 

delay of the network. FAST-TCP defines a fixed rate 

congestion window update. It provides a better result in terms 

of inter-fairness, RTT fairness, stability, and scalability. 

Baiocchi et al. [21] proposed another congestion control 

algorithm called YeAH-TCP. It combines packet loss 

detection and measurement of RTT. It improves the inter-

fairness and RTT fairness as compare to HS-TCP and STCP. 

Ha et al. [22] proposed a TCP-CUBIC for congestion control 

which is an enhanced version of BIC-TCP [23] TCP-CUBIC 

grows its window to the midpoint between the last maximum 

window size where the packet was lost and the last minimum 

window size; it did not lose any packet. TCP-CUBIC has two 

profiles concave and convex for window increase. It uses 

RTT-independent growth function that maintains scalability, 

RTT-fairness, and Intra-fairness, but it is not able to utilize 

available network resources and suffers from a greater number 

of packet losses. Wang et al. [24] plan to take the advantage of 

FAST-TCP [19-20] and TCP-FIT [25], and proposed a new 

congestion control algorithm called FAST-FIT. It uses the 

FAST-TCP growth function to maintain data flow and uses a 

TCP-FIT technique to adjust the CWND. It shows better 

results in terms of inter-protocol fairness (with TCP-Reno), 

high bandwidth utilization in wired and wireless environments. 

Wang et al. [26] proposed Fair TCP that provides the initial 

congestion window value based on network status. It increases 
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the congestion window on the basis of RTT. It provides better 

results in terms of inter-protocol fairness, increases 

transmission efficiency and RTT fairness. Sharma and Kumar 

[27] suggested a new adaptive congestion control scheme in 

mobile ad-hoc networks to adjust the transmission rate of path. 

However, Verma and Kumar [28] suggested new adaptive data 

chunk scheduling policy for concurrent multipath transfer 

(CMT-SCTP).   

During the analysis of these protocols, the authors identified 

that TCP suffer from heavy packet loss in large delay network. 

As a result, such variants [22, 25] suffer from unnecessary 

timeout and CWND reduction. Such variants [22, 25] are not 

able to utilize available bandwidth and also suffer from inter-

protocol fairness. Additionally, as numbers of device increases 

over the Internet, network congestion also increases [29, 30]. 

Therefore, we need a congestion control policy which manage 

the traffic according to availability of the bandwidth. 

 

 

3. PROPOSED WORK 
 

The path delay variation is an important factor in TCP 

which reflect the correct network status. Let Pi be the paths 

used for data transmissions and the round trip delay of path is 

defined as Di. If delay Di of path Pi changes, it means that 

bottleneck queue size of path Pi also changes. It means that 

path traffic intensity also changes. Therefore, this paper 

introduces a new delay-based TCP variant, which uses RTT 

variation as congestion detection factor. The proposed 

technique is the extension of TCP New Reno in terms of delay 

based TCP. It uses all the policies of TCP New Reno with 

some small change in fast recovery phase. Apart from TCP 

New Reno policies, it has a new congestion detection method.  

The RTT is in important factor used by all the TCP variants 

to analyze the delay. It includes queuing delay, transmission 

delay, and propagation delay. 

 

𝑅𝑇𝑇𝑚𝑖𝑛 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑚𝑖𝑛 + 𝑃𝑟       (1) 

 

𝑅𝑇𝑇𝑖 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑑 + 𝑃𝑟               (2) 

 

where, RTTi is current RTT, RTTmin is a minimum RTT, Pd 

is propagation delay, Td is a transmission delay, Pr is a 

procession delay, Qd is a current queuing delay of the path, 

and Qmin is a minimum queuing delay. 

The propagation delay, processing delay and transmission 

delay remain almost same for all conditions, but the queuing 

delay change when the queue size changes. When, queuing 

delay changes RTT also changes correspondingly. If the 

authors adjust the transmission rate of the TCP with respect to 

RTT change, then it will quickly adopt the network condition 

and improve the available bandwidth utilization and reduce the 

number of packet loss. Therefore, the authors are introducing 

a threshold calculation method for RTT, which provide 

information about when TCP change the transmission rate. 

RTTmax is the maximum round trip time, which is 

estimated by TCP source. RTTmax is estimated when a packet 

drop occurred. It means that when the bottleneck queue is full, 

then it drops the packet (maximum packet gets dropped due to 

queue over flow). When packet drops from bottleneck queue, 

at that time queue is full and queuing delay is maximum.  

 

𝑅𝑇𝑇𝑚𝑎𝑥 = 𝑃𝑑 + 𝑇𝑑 + 𝑄𝑑_𝑚𝑎𝑥 + 𝑃𝑟     (3) 

where, Qd_max is maximum queuing delay. Thus, the 

threshold for RTT can be calculated based on RTTmax, 

RTTmin, and RTTi with a scaling factor of τ. Value of τ is 

determined by performing a number of experiments and set it 

to 2.5. The threshold for RTT is calculated on each received 

ACK at TCP source as: 

 

𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ =
𝑅𝑇𝑇𝑚𝑎𝑥+𝑅𝑇𝑇𝑚𝑖𝑛+𝑅𝑇𝑇𝑖

𝜏
             (4) 

 

where, RTTthresh is a threshold for RTT and τ is scaling factor. 

Now, proposed method adapts path traffic as well as delay 

variation based on RTTthresh threshold estimated by TCP 

source. The proposed method may not change the traffic rate 

when current RTT is greater than RTTthresh. However, it 

increases the CWND when current RTT is less than RTTthresh. 

The authors are introducing the functioning of the proposed 

TCP as: 

Initially, TCP starts with TCP New Reno policy like slow 

start and congestion avoidance. For each receive ACK, TCP 

calculate the RTTmax, RTTmin, and RTTi. After calculation 

of the TCP factors, it compares RTTi with RTTthresh. If RTTi 

is greater than the RTTthresh, then stop increasing cwnd. Else, 

if RTTi less than RTTthresh, then cwnd increase according to 

following equation. 

 

𝜕 =
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

1+𝑒𝑐𝑤𝑛𝑑                                      (5) 

 

𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖 + 𝜕 +
1

𝑐𝑤𝑛𝑑𝑖
       (6) 

 

This approach worked in congestion avoidance phase only. 

 

Algorithm 1: Delay-based congestion control 

1. For each ACK 

2. Begin 

3.          If 𝐴𝐶𝐾 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

4.             𝑅𝑇𝑇 𝑖 =  𝑁𝑜𝑤 −  𝑃𝑎𝑐𝑘𝑒𝑡_𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 

5.             If 𝑅𝑇𝑇𝑖  <  𝑅𝑇𝑇𝑚𝑖𝑛 

6.                 𝑅𝑇𝑇𝑚𝑖𝑛 = 𝑅𝑇𝑇𝑖 

7.            End If 

8.             If 𝑅𝑇𝑇𝑖 >  𝑅𝑇𝑇𝑚𝑎𝑥  

9.                 𝑅𝑇𝑇𝑚𝑎𝑥 = 𝑅𝑇𝑇𝑖  

10.            End If   

11.          𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ =
𝑅𝑇𝑇𝑚𝑎𝑥+𝑅𝑇𝑇𝑖+𝑅𝑇𝑇𝑚𝑖𝑛

𝜏
 

12.          If   𝑐𝑤𝑛𝑑𝑖 > 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ 

13.                  If  𝑅𝑇𝑇𝑖 > 𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ   

14.                         𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖 

15.                   Else If 𝑅𝑇𝑇𝑖 < 𝑅𝑇𝑇𝑡ℎ𝑟𝑒𝑠ℎ         

16.                                        𝜕 =
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ

1+𝑒𝑐𝑤𝑛𝑑 

17.                                      𝑐𝑤𝑛𝑑𝑖+1 = 𝑐𝑤𝑛𝑑𝑖 + 𝜕 +
1

𝑐𝑤𝑛𝑑𝑖
                     

18.                    Else  𝑐𝑤𝑛𝑑𝑖 ≤ 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ 

19.                         𝑁𝑒𝑤 𝑅𝑒𝑛𝑜 𝑆𝑙𝑜𝑤 𝑠𝑡𝑎𝑟𝑡  
20.                   End If 

21.             End If 

22.          End If 

23. End 

 

The advantage of proposed congestion control approach is 

that the proposed approach adapts the network conditions 

(congestion or congestion free) quickly and transmit data 

accordingly. Therefore, proposed approach achieves better 

performance as compared to other TCP variants. However, if 
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delay variation of the path changes without congestion then 

this may cause wrong delay estimation and interpretation. But, 

in most of the cases delay of the path varies due to congestion. 

Therefore, such condition is very rear and it may not arise 

when everything is normal except traffic rate. 

 

 

4. PERFORMANCE ANALYSIS  

 

This section describes the experimental setup and results 

obtained for proposed algorithm using NS2 (Network 

Simulator2) [31]. The simulation topology (dabbled topology) 

has 8 nodes as shown in Figure 1. The nodes S1, S2 and S3 

have been configured to act as sources for TCP or UDP based 

applications. D1, D2 and D3 are the destinations for 

aforementioned sources. The network has seven links with 

different characteristics. Link S1-R1, S2-R1, S3-R2, R1-D3, 

R2-D1 and R2-D2 are configured to have 10Mbps bandwidth 

and link R1-R2 has 1.5Mbps. The queue size of each link is 

kept 50. Propagation delay of the link varies according to 

simulation requirement. The performance of the proposed 

TCP is compared with TCP Reni, New Reno, TCP Cubic and 

TCP Fast-Fit. 

 

 
 

Figure 1. Simulation topology 

 

 
 

Figure 2. RTT Vs throughput 

 

The authors first analyze the performance of the proposed 

TCP in variable RTT conditions. During the simulation, queue 

size of the bottleneck is kept 50 packets, propagation delay 

varies from 100ms to 200ms, source S1 use CBR traffic on the 

top of UDP, source S2 use FTP traffic on the top of TCP and 

the source S3 use CBR traffic in the reverse direction from S1 

and S2. Figure 2 shows the throughput variation of TCP 

variants with respect to RTT. It shows that as the RTT 

increases, throughput of TCP variants shows variable trends. 

TCP Reno and TCP Newreno achieves lower throughput as 

compared to other TCP variants. However, TCP Fast-fit and 

TCP Cubic show better throughput as compared to TCP Reno 

and TCP Newreno. Meanwhile, proposed method achieves 

better throughput as compared to other TCP variants. The 

proposed method achieves better throughput due to it delay-

based transmission rate adaptation policy. As a result, 

proposed method suffers from a smaller number of packet 

losses, which directly affect the available bandwidth 

utilization. Hence, proposed TCP achieves higher throughput 

than other TCP variants in all RTT variation.    

 

 
 

Figure 3. Average throughput with confidence interval 

 

The authors also calculate the average throughput 

improvement and confidence interval of proposed method, 

Cubic, Fast-Fit, Newreno and TCP Reno. Figure 3 shows the 

average throughput and confidence interval (using error bar). 

It shows that proposed method has better average throughput 

improvement as compared to other TCP variants. Meanwhile, 

confidence interval of all TCP variants also confirms that 

proposed method has better confidence that throughput lies 

between 1443-1467 Kbps, while other TCP variants have less 

confidence interval for throughput as compared to proposed 

method. 

 

 
 

Figure 4. RTT Vs packet drops 

 

 
 

Figure 5. Average packet drops with confidence interval 
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Now, Figure 4 shows the number of packets drops in 

variable RTT conditions. It shows that as RTT increases 

number of packet drops decreases. Figure 4 shows that Fast-

Fit has highest number of packets drops in all conditions while 

proposed TCP has the less number of packet drops as 

compared to TCP Cubic and Fast-fit, TCP Reno, and TCP 

Newreno. Figure 5 shows the average packet drops with 

confidence interval (using error bar). It also confirms that 

proposed method has less average packet loss as compared to 

other TCP variants. While, confidence interval also shows that 

proposed method has better confidence that the packet loss lies 

between 2-5 while other variant has large confidence that 

proposed method. 

Now, another simulation has been performed to analyze the 

performance of proposed TCP in different background traffic 

environment. In this simulation setup, queue size of the 

bottleneck is 50, propagation delay is 50ms, and simulation 

time is 150sec. Figure 6 shows the throughput variation of 

TCP variants with different background traffic. It shows that 

as traffic rate increases, throughput of all TCP variants 

decreases. TCP Reno shows the least utilization for the entire 

traffic rate while proposed TCP achieves better throughput as 

compared to other TCP variants. Average throughput and 

confidence interval of all TCP variants are also shown in 

Figure 7. This figure shows that proposed method has better 

average throughput as compared to other TCP variants while 

confidence interval of proposed method also confirms that it 

has better confidence interval lies between 930-1330 Kbps.  

  

 
 

Figure 6. Background traffic Vs throughput 

 

 
 

Figure 7. Average throughput with confidence interval 

 

Figure 8 shows the number of packets drops while 

background traffic varies from 500-1000Kbps.It shows that as 

traffic rate increases packet drop also increases. Figure 8 

shows that Fast-Fit suffers from highest number of packets 

drops while proposed method shows least number of packets 

drops as compared to other TCP variants. Figure 9 shows the 

average packet drops and confidence interval of all TCP 

variants. It also confirms that proposed method achieves less 

numbers of packet drops and has better confidence interval 

compared to TCP Reno, TCP Newreno, Cubic, and Fast-Fit. 

 

 
 

Figure 8. Background traffic Vs Packet drops 

 

 
 

Figure 9. Average packet drops with confidence interval 

 

 
 

Figure 10. Bandwidth utilization among the competing 

traffic 

 

The inter-protocol fairness is another important issue with 

TCP. Therefore, another simulation has been performed to 

analyze inter-protocol fairness of proposed TCP. In this 

simulation setup, queue size of the bottleneck is 50, 

propagation delay is 50ms, and simulation time is 150sec. 

Figure 10 shows the fairness property of TCP with three TCP 

Reno flow and one other flow (Proposed TCP, TCP Reno, 

TCP Newreno, TCP Cubic and Fast-Fit) in terms of available 

bandwidth utilization. In this figure, first 3 different blocks 

show the TCP Reno flow share and last block shows the other 

TCP variants (Proposed TCP, TCP Reno, TCP Newreno, TCP 

Cubic and Fast-Fit). It shows that the proposed TCP share all 

most equal bandwidth with each flow, and has better 

bandwidth utilization than other TCP variants. It concludes 

that the proposed method has similar inter-protocol fairness 

lick other TCP variants. 
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5. CONCLUSION 

 

This paper presents new delay-based TCP variants which 

uses RTT as a congestion detection factor. It uses the RTT 

variation as an indicator of congestion. The proposed TCP 

adapts the network traffic condition quickly to adjust the 

transmission rate. As a result, it achieves better performance. 

The simulation results show that the proposed TCP reduces the 

number of packet drops, improved the bandwidth utilization in 

variable RTT conditions as well as variable background traffic 

conditions. It also shows better inter-protocol fairness with 

standard TCP Reno. In future, this proposed congestion 

control approach can further extend to test the performance 

with available IoT application protocols.   
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