
 

 
 
 

 
 

 
1. INTRODUCTION 

With the wide use of flexible fluid-filled containers in 
storage and transportation, water conservancy, aerospace and 
other fields, the impact response of flexible fluid-filled 
containers has also drawn the attention of a great number of 
researchers. The impact of flexible fluid-filled containers is 
not just a matter of structural mechanics, but rather is a 
nonlinear, complex liquid-solid coupling problem involving 
large deformations. Impact dynamic analysis must therefore 
consider not only the deformation of the flexible container, 
but also the effects of moving liquid loads on the container. 

M.Anghileri [1] et al. used a variety of numberical methods 
to simulate the process where a liquid-filled container is 
dropped onto the ground and compared the data with the test 
results, and in the end achieved satisfactory results. Reed P E 
[2] analyzed the dropping process of water-filled plastic 
containers and built an equivalent mass-spring model to 
predict the characteristic pulse time and pressure distribution 
on the container wall. Cao et al. [3] studied the interactions 
between the container and the fluid using the penalty 
function, and the results showed that the dynamic stress and 
deformation of a flexible liquid-filled container are 
proportional to the drop height. Li Zheng [4-6] completed a 
3D modeling of the drop impact of a large-deformation in a 
flexible fluid-filled container. Wang Hui [7-8] used four 
different numberical methods to simulated the process where 
a flexible liquid-filled container is dropped onto the ground 
and compared the advantages and disadvantages of these 

various methods. Li Qiang [9] completed the numerical 
simulation and calculation of the drop impact process of 
liquid storage PET bottles. Zhang Wei-wei [10] simulated 
and studied the process where flexible fluid-filled containers 
are dropped into water. Other people also have done some 
related research [11-12]. The above research has mainly 
focused on theoretical and numerical methods for 
determining the impacts on flexible fluid-filled containers, 
while little research has been conducted on the effects of the 
shape of the fluid-filled container on the impact response. 
This paper intends to study the effects of the container shape 
on the impact response. We used the multi-material ALE 
(Abitrary Lagrangian-Eulerian) modeling method and the 
penalty function to carry out a numerical simulation of the 
impact response process and compared the effects of 
cylindrical, truncated cone and drum shapes on the impact 
response of the containers. 

2. THEORIES AND METHODOLOGIES 

In large deformation fluid-solid coupling, the Lagrange 
method can easily cause distortion in describing the grid cells 
and makes it impossible to complete the calculation, while the 
Euler method is likely to cause problems in describing the 
cells such as increased computation space domain and 
difficulty in tracking the material contact boundary. ALE 
description is a kind of motion mode independent of the 
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material and space grid. It introduces a reference domain in 
addition to the material domain and the space domain and 
resolves on the reference grid, which avoids the serious 
deformation of the material under the Lagrange grid and 
eliminates the complex problems caused by the moving 
boundary under the Euler grid, providing a good method for 
solving the liquid-solid coupling problem [13-14]. In the 
ALE method, a third arbitrary reference coordinate, other 
than Lagrange and Euler coordinates, is introduced, and the 
material change rate associated with the reference coordinate 
can be described with the following equation: 
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where Xi is the Lagrange coordinate, xi is the Euler 

coordinate, and wi is the relative velocity between the moving 
velocity vi under the Lagrange coordinate and the moving 
velocity ui under the Euler coordinate; i.e., wi=vi-ui. 
Considering the substitutional relationship between the time 
derivative of material and the time derivative of the reference 
geometric configuration, the governing equation of the ALE 
algorithm governing the Newtonian fluid flow in the fixed 
domain can be obtained from the following conservation 
equations: 

Mass conservation equation: 
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Momentum conservation equation: 
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Energy conservation equation: 
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where σij is the Cauchy stress tensor, σij=-pδij+μ(vi,j+vj,i); ρ is 
the density; p is the pressure; μ is the coefficient of kinetic 
viscosity; δij is the Kronecker function; E is the energy per 
unit mass; bi is the fluid volume force.  

The multi-material ALE description can contain multiple 
materials in a cell, and by tracking the boundaries of each 
material, it exchanges and transports materials between the 
corresponding cell, but it needs to effectively track the 
interfaces of each material. In this paper, we use the VOF 
(Volume of Fluid) method to track the locations of the 
material interfaces. This method determines the material 
interfaces using the function of material volume ratio in an 
ALE cell, rather than by tracking the movement of particles 
on the material surface. To solve the multi-material ALE 
equation, we use the separator splitting technique; that is, 
dividing the calculation at each step into two stages. First, we 
perform the Lagrange process, where the grid moves with the 
material. In this process, the equilibrium equations for the 
calculation speed and the internal energy variation caused by 
internal and external forces are as follows: 
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In the Lagrange process of calculation, as there is no 

material flowing across the cell boundary, the mass 
automatically remains conserved. The second stage of 
calculation, referred to as the convective term, calculates the 
mass transport, internal energy, and momentum across the 
cell boundary, which can be regarded as remapping the 
displacement grid of the Lagrange process back to its original 
position or any other position. 

Hourglass viscosity is used to control the zero energy mode 
of the grid. Impact viscosity with linear and quadratic terms is 
used to obtain the shock wave. To this end, the pressure term 
is added into the energy equation (the second one listed 
among the equilibrium equations). The central difference 
method is used to solve the equation based on time increment 
using the time-explicit method. The second-order Van Leer 
method is used to calculate the convective term. In this paper, 
both the simple average and equipotential average methods 
are used to calculate the smoothness of the grid. 

3. NUMERICAL SIMULATION AND 

EFFECTIVENESS VERIFICATION 

3.1 Numerical simulation 

Based on the multi-material ALE finite element method, 
we use the explicit finite element software LS-DYNA to carry 
out the numerical simulation. We built a finite element model 
according to the actual size of a cylindrical flexible fluid-
filled container and the experimental process. The model 
consists of a cylindrical flexible container, the water and air 
in the container and a concrete floor. The flexible fluid-filled 
container is modeled using the LagrangianBelytschko-Tsay 
(B-T) membrane element, which is a super-elastic material 
model. The water and air in the container are described with 
the hexahedral element and the null material model based on 
the multi-material ALE description. The Gruneisen equation 
is used as the state equation of water. The pressure is defined 
as below:  
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where C is the intercept of the us-up (shock wave velocity -
particle velocity) curve; S1, S2 and S3 are the slope 
coefficients of the us-up curve; γ0 is the Gruneisen parameter; 
α is the first-order volume correction value; E is the intrinsic 

energy of material; volume rate of change 0

= -1



 , where ρ 

is the current density and ρ0 is the initial density. The 
parameters for the material equation of state (EOS) are shown 
in Table 1. For the air, the linear polynomial state equation is 
used. The pressure is defined as a function of internal energy 
of per unit volume, E. The equation is defined as below: 
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where C0, C1, C2, C3, C4, C5 and C6 are constants. The 
parameters for the material EOS are shown in Table 2. The 
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physical parameters of the concrete floor are shown in Table 
3. The structural mechanical properties of the composite 
material of the outer container wall are the key to the 
numerical simulation. According to the woven form, the 
composite material can be regarded as the transversely 
isotropic material. In this paper, the mechanical properties of 
the material are calculated by the method proposed in 
Reference [15], as shown in Table 4. 
 

Table 1. Parameters for Water EOS 
 

ρ (g/cm3) C(m/s) S1 S2 S3 γ0 α 

0.998 1650 1.92 -0.096 0 0.35 0 

 

Table 2. Parameters for Air EOS (g-cm-μs) 
 

ρ (g/cm3) C0 C1 C2 C3 C4 C5 C6 E0 

1.29e-3 0 0 0 0 0.4 0.4 0 2.5e-06 

 

Table 3. Performance parameters of concrete material 

 

Density g/cm3 Elasticity modulus GPa Poisson's ratio 

ρ E ν 
2.665 40 0.3 

 

Table 4. Performance Parameters of Flexible Container Shell 
Material 

 
Elasticity 
modulus GPa 

E1 E2 E3 

1.535 1.535 1.070 

Shear modulus 
GPa 

G12 G23 G13 

0.389 0.267 0.267 

Poisson's ratio ν12 ν23 ν13 

0.163 0.379 0.379 

Yield stress 
GPa 

σy Density 
g/cm3 

ρ 

0.2 1.1 

 
A finite element model was built to simulate the process 

where a flexible fluid-filled container, filled to 50% of liquid 
storage capacity, falls from a height of 100m and hits the 
cement floor. This model has a total of 160178 cells and 
165344 nodes, and is shown in Figure 1. 

 

 
 

Figure 1. Finite element model of the cylindrical fluid-filled 
container 

 
In case there is air resistance and in order to shorten the 

calculation time and save resources, the height of 100m is 
converted to a speed of 40m/s. The ground is treated as a 
rigid body. Ground base grid cells are fully constrained. The 
gravitational acceleration is 9.81m/s. The coupling between 
the container and the liquid and the collision between the 
container and the ground are realized by the penalty function. 
The numerical simulation takes into account the effect of the 

air inside the container. As we mainly analyze the maximum 
principal stress of the container, we regard the cover as a part 
of the shell in modeling. To ensure stability of calculation, 
the time step is subject to the minimum cell size of the model, 
the number of liquid-solid coupling points is set to 4, and the 
minimum volume parameter of coupling is set to 0.1. 

The numerical simulation results are shown in Figure 2 and 
3. Figure 2 is the nephogram for the principal stress of the 
cylindrical container at various moments. Figure 3 shows the 
form of the liquid in the container at various moments. 

 

    
1ms                     1.3ms 

    
2ms                          3ms 

    
4ms                        8ms 

     
16ms                       40ms 

 

Figure 2. Nephogram for the principal stress of the 
cylindrical container at different moment 

 

 
1ms              1.3ms 
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2ms                3ms 

 
4ms                 8ms 

 
16ms               40ms 

 

Figure 3. Form of the liquid in the container at different 
moments 

 
At the moment when the container hits the ground, the 

container stops moving, but the liquid continues to move 
downward due to the effect of inertia. The nature of the fluid 
causes the liquid to move to the surrounding areas at the 
container bottom and creates impact stress on the container 
wall. Under the stress, the container is deformed and a 
portion of the potential energy is converted into deformation 
energy. The deformed container also has a reaction to the 
fluid, which forces a change in the fluid velocity and 
acceleration. This is a liquid-solid coupling process. 

It can be seen from Figure 2 and Figure 3 that at the 
moment of 1.3ms, the stress reaches the maximum value in 
the whole impact process, and the bottom of the container 
wall experiences the maximum deformation. Meanwhile, the 
deformation energy of the container also reaches the 
maximum value. Then, under its own elastic effect, the 
container is gradually restored to its original state. At this 
moment, the fluid moves inward driven by the deformation 
force of the container, while in the vertical direction, under 
the rebound effect, the fluid begins to move upward, resulting 
in a cavity at the bottom and further reducing the pressure. 
Later, the cavity is gradually closed, and the pressure rises 
again. As time passes, the fluid continues to move upward 
and squeezes towards both sides, and with the liquid flowing 
upward, the upper air is compressed. The water inside the 
container splashes up and begins to surround the air. With the 
upper air compressed, its volume is reduced, and the cavity at 
the bottom continues to expand due to the upward movement 
of the fluid, and the pressure is reduced. 

Figure 4 shows the principal stress time-history curves of 
the three cells selected from the upper, middle, and lower 
parts in the outer wall of the container. It can be seen that the 
principal stress of each of the three parts reaches the 
maximum value in sequence of the lower, upper and middle 
parts. The lower part has the highest stress value, followed by 
the upper part and the middle part. This is also consistent 
with the results of container rebound deformation in the 
experiment. It can be seen that the maximum principal stress 
of the lower part of the container occurs before that of the 

upper part, with an amplitude greater than that of the latter. 
The maximum principal stress of each of the two cells 
reaches the peak and then rapidly falls and oscillates at a     
smaller amplitude, and gradually reaches a steady state. 
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Figure 4. Principal stress time-history curves of the three 

cells in the upper, middle and lower parts 
 

3.2 Effectiveness verification of numerical simulation 

In this paper, we verify the effectiveness of the numerical 
simulation mainly through experiments. A cylindrical flexible 
fluid-filled container mainly consists of a container body, a 
cover and ancillary devices, as shown in Figure 5. It has a 
height of 430cm and a diameter of 360cm. The body is 
reinforced with fabric, and the base is made of natural rubber 
with a thickness of 1.5cm. When the liquid storage amount is 
50%, 80% and 100% of capacity respectively, we drop the 
container from a height of 100m and with a high-speed 
camera film the dynamic response process of the container 
after being dropped. Then we process and analyze the data 
and obtain the relationship between the drop impact velocity 
and the deformation of the container. 

 

 
 

Figure 5. Cylindrical flexible fluid-filled container 

 
We verify the effectiveness of the numerical simulation 

results mainly by analyzing whether the relationships between 
the deformation of the container and the time are consistent in 
the impact processes respectively in the experiment and 
numerical simulation. If the numerical simulation is the same 
as or similar to the experiment result, the numerical 
simulation results are considered acceptable. Specifically 
speaking, we select several points on the outer wall of the 
container, and then analyze whether the displacement 
variations of the points with time are consistent with those in 
the simulation to determine the correctness of the simulation. 
As shown in Figure 6, Δd is the variation in the distance 
between a point on the outer wall of the container and the 
center of the container; d is the distance between the point 
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and the center line of the container (cylindrical tank) at 
different moments during the impact process; r is the 
instantaneous radius of the cylindrical fluid-filled container 
contacting the ground; t0 is the moment when the container 
drops and touches the ground. If the change rule of Δd over 
time is consistent with the numerical simulation, then we 
consider the simulation results to be accurate. The expression 
of Δd is as follows: 
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Figure 6. Verification method for the effectiveness of the 
numerical simulation 

 
Figure 7 shows the comparison between the variations in 

the distances from the three points in the upper, middle and 
lower parts to the centerline and the numerical simulation 
results. It is found that the numerical simulation results 
deviate a little from the physical experiment results, with the 
maximum deviation being 6%. This is probably because the 
numerical simulation model has simplified the process. But if 
this simulation is used to analyze the impact responses of 
flexible containers of different shapes, such deviations are 
still acceptable. It can accurately reflect the actual drop 
impact process of the container. 

 

0 2 4 6 8 10
-2

-1

0

1

2

3

4

5

6

7

 

 

D
is

ta
n

c
e
（

m
m
）

Time（ms）

 upper point simulation

 upper point experiment

 middle point simulation

 middle point experiment

 lower point simulation

 lower point experiment

 
 

Figure 7. Comparison between test results and numerical 
simulation results 

4. ANALYSIS OF THE EFFECTS OF CONTAINER 

SHAPES ON THE IMPACT RESPONSE OF FLEXIBLE 

CONTAINERS 

We built the 3D finite element models for truncated cone-
shaped and drum-shaped flexible fluid-filled containers 

respectively so as to compare them with the cylindrical 
container. The three kinds of containers have the same liquid 
capacity and are made of the same material, and we assume 
they have no cover or accessory. Calculation results show that 
the mass of the three differently-shaped containers with the 
same volume differs by no more than 9% and that the mass of 
an empty container accounts for no more than 6% of the total 
mass of a container containing a liquid storage amount at 
50% of capacity. For convenience of comparison, we ignore 
the response result errors caused by the differences in 
container mass. The finite element models built, shown in 
Figure 8, are used to carry out the numerical simulation of the 
drop impact process of the above three kinds of containers 
with a liquid storage amount at 50%, 80% and 100% of 
capacity respectively. 

 

 
 

      
 

Figure 8. Finite element models for three container shapes 

 

4.1 Comparison of three different container shapes under 

different liquid storage conditions 
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Figure 9. Time-history curves of maximum principal stress 
elements under different liquid storage conditions 

 
Figure 9 shows the time-history curves of the maximum 

principal stress elements in the three containers under 
different liquid storage conditions. It can be seen that 
regardless of whether the liquid storage amount is at 50%, 
80% or 100% of capacity, the maximum impact stress of the 
drum-shaped container is the smallest, indicating that the 
drum-shaped container has better resistance to impact than 
the other two container shapes. This is mainly because in the 
impact process, the container is deformed under the fluid load 
and in turn it reacts on the fluid. Figure 10(a) shows the 
reaction force of the drum-shaped container against the fluid. 
In this figure, the reaction force F of the container on the fluid 
is inwardly vertical to the container wall, which can be 
decomposed into the vertical force F1 and the horizontal force 
F2. Due to the symmetrical structure of the container, the 
reaction forces in the horizontal direction cancel each other 
out, and the component force in the vertical direction can 
partially offset the vertical impact load from the upper liquid, 
thereby reducing the impact force on the container. 
Meanwhile, as the structure of the drum-shaped container 
upwardly opens up, there is more space for the liquid that is 
rebounded upwards, reducing the pressure and dispersing the 
rebound impact pressure. In contrast, the structure of the 
truncated cone-shaped container is completely different, as 
shown in Fig. 10 (b). The fluid impact load and the reaction 
force of the container on the fluid are superposed, increasing 
the impact force on the container. 

 

 
(a)                                        (b) 

 

Figure 10. Diagram for the reaction force of the container on 
the fluid 

 
In terms of the response time of the maximum principal 

stress, whether the liquid storage amount is at 50%, 80% or 
100% of capacity, the cylindrical container responds the 
fastest, the drum-shaped container responds the slowest at the 
storage amount of 50% and 80% of capacity and the 
truncated cone-shaped container responds the slowest at the 
storage amount of 100% of capacity. Such differences in the 
response time may have something to do with the container 
shape, a question which merits further studies. 

4.2 Comparison of containers of the same shape but 

under different liquid storage amounts 
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Figure 11. Time-history curves of the maximum principal 
stress elements in containers of different shapes 

 
Figure 11 shows the stress time-history curves of the 

maximum principal stress elements in containers of different 
shapes. It can be seen from the figure that the maximum 
principal stress of each container increases with an increase in 
the liquid storage amount, and the maximum principal stress 
element reaches the stable stress value faster when the storage 
amount is increased. When the liquid storage amount is at 
100% of capacity, the stable stress values of the cylindrical 
and truncated cone-shaped containers are smaller than those 
with a liquid storage amount at 50% and 80% of capacity, 
while that of the drum-shaped container with a liquid storage 
amount at 100% of capacity is roughly similar to those with a 
liquid storage amount at 50% and 80% of capacity. 

 

 
 

Figure 12. Maximum principal stress and response time by 
container shape and liquid storage amount 

 
Figure12 shows the maximum principal stress and response 

time by container shape and liquid storage amount. From 
Figure 12, we can see that when the liquid storage amount 
changes from 50% to 80% and 100% of capacity, the 
maximum principal stress of the containers of different 
shapes also respond at different speeds. The response rateof 
the cylindrical container becomes gradually faster, that of the 
truncated cone-shaped container does not change 

144



 

significantly, and that of the drum-shaped container first gets 
higher and then rapidly decreases. The maximum stresses of 
the containers of different shapes also change at different 
rates. The maximum principal impact stress of the cylindrical 
container and the truncated cone-shaped container gradually 
increase with an increase in the liquid storage amount, while 
that of the drum-shaped container does not change much 
when the liquid storage amount is at 50% and 80% of 
capacity. Changes in the maximum principal impact stress 
amplitudes of the cylindrical and the truncated cone-shaped 
containers are not significantly different. When the liquid 
storage amount changes from 50% to 100% of capacity, 
changes in the maximum principal impact stress amplitudes 
of the cylindrical, truncated cone-shaped and drum-shaped 
containers are 50.8MPa, 49.5MPa and 43.4MPa respectively. 
The question of why the changes for the cylindrical and 
truncated cone-shaped containers are quite similar merits 
further studies. 
 

4.3 Position of the maximum principal stress 

 

 
 

50% liquid storage amount 
 

 

 
80% liquid storage amount 

 

 

 
100% liquid storage amount 

 

Figure 13. Stress nephogram at the maximum principal stress 
time by liquid storage amount and container shape 

 
Figure 13 reveals that the position of the maximum 

principal stress in the cylindrical container basically remains 
the same, and the distribution range of the maximum 
principal stress in the cylindrical container takes the shape of 
"Λ" , and is distributed most widely when the liquid storage 
amount is 80% of capacity.The position of the maximum 
principal stress in the truncated cone-shaped container 
gradually rises vertically with an increase in the liquid storage 
amount, and the distribution range does not change much.For 
the drum-shaped container, when the liquid storage amount is 
at 50% or 80% of capacity, the maximum principal stress is 
located at the bottom edge of the container, while when the 
storage amount is at 100% capacity, the maximum stress is in 
the lower outer part of the container, with the widest 
distribution. 

 
 

5. CONCLUSIONS 

(1) Under the same liquid storage condition, containers of 
different shapes have significantly different maximum 
principal impact stresses and maximum principal stress 
response times. Under all the three liquid storage amount 
conditions, the drum-shaped container has the smallest 
maximum principal stress, and the cylindrical container 
requires the shortest maximum principal stress response time. 

(2) The maximum principal stresses of all the three 
container shapes increase with an increase in the liquid 
storage amount, but at different speeds. 

(3) In the same container shape, under different liquid 
storage conditions, the position of the maximum principal 
stress is different. 
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