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Geometallurgy is a comprehensive approach linking geology with mineral processing, 

addressing orebody variability and its impact on material quality. In Peru, the absence of 

predictive geometallurgical planning and real-time data poses challenges. This study 

aims to develop effective geometallurgical planning for Peruvian mining, optimizing 

mineral extraction and processing through advanced techniques like geostatistics and 

machine learning. Using a descriptive, non-experimental approach, the study focused on 

open-pit and underground mines. Methodology included detailed geological and 

metallurgical characterization, involving chemical analysis, mineralogical studies, and 

metallurgical tests. Geometallurgical models were implemented, integrating machine 

learning and geostatistics for data management and analysis. Results showed that 

geometallurgical planning allowed mining companies to better understand their deposits, 

optimizing extraction and processing. Specifically, detailed mineralogical 

characterization and geometallurgical domains reduced production variability by 15%. 

Advanced techniques improved accuracy in resource prediction by 20% and enhanced 

data management, enabling informed decisions-making. In conclusion, geometallurgy is 

crucial for optimizing mining production and reducing environmental impact. The study 

emphases the importance of technological innovations for sustainable practices in the 

Peruvian mining industry, highlighting that effective geometallurgical planning, can 

significantly improve operational efficiency and resource utilization.  
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1. INTRODUCTION

Geometallurgy is a comprehensive, multidisciplinary 

approach that has become increasingly relevant in the modern 

mining industry [1, 2]. This approach seeks to establish a 

bridge between geology and mineral processing, addressing 

the intrinsic variability of mineral deposits and its influence on 

the quality of the material processed in the plant [3-6]. 

Mineralogical characterization provides detailed information 

about the minerals present in the deposit, while metallurgical 

characterization focuses on the properties of the mineral to be 

processed [7, 8]. Complementing these studies with 

geostatistical analysis and the application of machine learning, 

the management and analysis of quantitative and descriptive 

data is allowed, adding significant value to the planning and 

management of mining resources, to optimize the extraction 

sequence, manage resources in a manner efficient and improve 

the quality and recovery of minerals, protecting the 

environment [9]. 

Mining 4.0, also known as smart mining, is revolutionizing 

the industry worldwide by incorporating advanced 

technologies such as the Internet of Things (IoT), artificial 

intelligence (AI), automation and advanced analytics [10, 11]. 

These innovations enable greater operational efficiency, better 

decision making, and a significant reduction in operating costs 

and environmental impact. In this context, geometallurgical 

planning becomes an essential component to integrate these 

technologies effectively in mining, ensuring that the data 

generated is used to improve mineral extraction and 

processing processes [12]. IoT-based PM monitoring systems 

collect data through measurement devices (sensors) and 

transmit it over the network, making them more efficient and 

reliable. Likewise, artificial intelligence (AI), automation, and 

advanced analytics, as seen in the paper [13], are tools that 

form the basis of AI today. Performance data is the foundation 

of data analysis, providing sufficient information for informed 

decision-making. 

In the field of Peruvian mining, we still face the absence of 

geometallurgical planning supported by predictive models 

based on quantifiable variables and the scarcity of data 

measured online [13-17]. The research will focus on open pit 

and underground mines, adopting a descriptive and non-

experimental approach. The cases analyzed demonstrate how 

the implementation of geometallurgical plans has allowed 
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mining companies a deeper understanding of their deposits, 

optimizing their mineral extraction and treatment processes. 

These actions have allowed strategic decisions to be made 

aimed at reducing variability, anticipating more favorable 

results that translate into notable improvements in production 

[9, 12]. 

This study aims to fill the research gap by focusing on the 

implementation of effective geometallurgical planning in 

open-pit and underground mines in Peru. By doing so, the 

research will demonstrate how the integration of these 

advanced techniques can lead to a deeper understanding of 

mineral deposits, optimized extraction and treatment 

processes, and strategic decision-making that reduces 

variability and improves production outcomes [9, 12]. 

Furthermore, the study emphasizes the importance of adopting 

technological innovations in mining, aligned with principles 

of green and digital mining, to move towards more efficient 

and sustainable practices [15]. Geometallurgy is seen as a 

paradigm shift in the mining industry from problem solving to 

holistic variability management and problem prevention. This 

shift has driven the inclusion in geometallurgy of a wide range 

of disciplines, namely spatial modelling, economic modelling 

and a dispersion of responsibilities among a wider range of 

actors. 

This research contributes to the existing body of knowledge 

by providing a framework for the effective implementation of 

geometallurgical planning in the Peruvian mining industry, 

promoting strategic decision-making and optimal resource 

utilization. 

However, significant challenges are identified that require 

attention during the implementation of geometallurgical plans. 

Among them, the need for precise quantification of 

mineralogy and the effective integration of geostatistical and 

machine learning techniques stands out [15]. In addition, 

emphasis is placed on the importance of adopting 

technological innovations in mining, aligned with the 

principles of green and digital mining. This panorama 

highlights the importance of moving towards more efficient 

and sustainable practices in the mining industry, taking 

advantage of cutting-edge tools and developing strategies that 

promote continuous improvement. 

Regarding the implementation of Mining 4.0 to improve 

mining efficiency, many cases of implementation in mining 

development projects are reported. Therefore, this sector is 

identified as the area that has the greatest potential for the 

integration of advanced technologies in the mining industry, 

through the precise determination of geometallurgical 

parameters and the optimization of production processes. 

This is how, in the mining industry, the study carried out by 

Psyuk and Polyanska [14], where it is analyzed that the 

achievements of Industry 4.0 are penetrating increasingly 

widely and deeply into various spheres of economic activity. 

This study discusses the directions of using artificial 

intelligence (AI) in solving development problems in mining 

companies. Methods have been determined to achieve results 

in various directions using AI. Based on the characteristics of 

the neural network formation components, the model of 

integration of neural networks in the information system of the 

mining company is determined, as well as the main 

components of this model, their connections and dependencies. 

The architecture of the proposed information system is 

described, which consists of four zones: the corporate zone, 

the operational zone, the control zone and the intermediate 

zone. It was highlighted that the operation of the operating 

system of this model depends on the sensors installed on the 

mining equipment in the company's operational area. It is 

noted that the number of such sensors depends on the amount 

of data accumulated due to the activity of the company's 

equipment and the efficiency of the construction and operation 

of neural networks. The factors that determine the 

effectiveness of the model and the precision of the neural 

networks in the activity of mining companies are based. It was 

established that the main criterion is the amount of information 

necessary to analyze the behavior of the object and the 

possibility of predicting it in the future. The dependence of the 

effectiveness of the application of AI technologies on the level 

of digitalization of the company was considered, and it was 

also proposed to determine the indicators of accuracy and 

efficiency of the functioning of neural networks in the 

company's information systems. 

On the other hand, there is the study of Szelążek et al. [16], 

where a steel manufacturing project was selected and quality 

management practices were evaluated in the context of 

Industry 4.0. Specifically, a novel proposal was formulated 

based on semantic data mining techniques as a step towards 

knowledge-based decision support and following the 

industrial approach of Six Sigma. Although the results of this 

application were positive, there are some limitations. 

Therefore, the addition of other indicators such as the behavior 

of the system in different operating conditions could be 

considered, which would allow establishing results of greater 

impact. This implementation was divided into three stages: 

diagnosis, implementation and control. In our research, we 

combine machine learning classifiers and explanation 

generation algorithms with the practice of Six Sigma to 

automate the quality assessment of steel products and 

determine the origin of their defects. After analyzing the 

results of this research, we can indicate that the combination 

of semantic data mining and Six Sigma techniques has a 

positive impact on quality management. In particular, the 

results of this research indicate that the implementation of 

these methodologies significantly improves the average values 

of product quality. On the other hand, the results indicated that 

this methodological combination produces a statistically 

significant reduction in the variability of the defects. Although 

the results of this application were positive, there are some 

limitations. Therefore, the addition of other indicators could 

be considered, such as the behavior of the system in different 

operating conditions, which would allow establishing results 

with greater impact. 

Likewise, the study of Monti et al. [17], who selected a 

project to implement digital technologies in industrial 

automation and evaluated the continuous evolution of these 

technologies in the context of Industry 4.0. Specifically, it was 

analyzed how business process management (BPM) can 

benefit from the availability of raw data from the Industrial 

Internet of Things (IoT) to obtain agile processes. This 

implementation was divided into three stages: diagnosis, 

implementation and control. In our research, we combine a 

top-down approach based on automated synthesis and a 

bottom-up approach based on data mining to manage, optimize 

and improve production processes. After analyzing the results 

of this research, we can indicate that the integration of BPM 

with IoT data has a positive impact on the agility of industrial 

processes. In particular, the results of this research indicate 

that the implementation of these approaches significantly 

improves the ability of processes to react quickly to 

interruptions and adapt to changes. On the other hand, the 
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results indicated that this methodological combination 

produces a statistically significant reduction in the variability 

of the processes. Although the results of this application were 

positive, there are some limitations. Therefore, the addition of 

other indicators such as efficiency in different operating 

conditions could be considered, which would allow 

establishing results with greater impact. 

Based on the background studied in this study, a 

geometallurgy implementation project was selected in the 

Peruvian mining industry and its effects on the variability of 

the mineral deposits and the quality of the material processed 

in the plant were evaluated. This implementation was divided 

into three stages: diagnosis, implementation and control. After 

analyzing the results of this research, we can conclude that 

geometallurgy is a comprehensive and multidisciplinary 

approach that plays a crucial role in the modern mining 

industry. In particular, the results of this research indicate that 

mineralogical and metallurgical characterization, together 

with geostatistical studies and the application of machine 

learning, allow the management and analysis of quantitative 

and descriptive data, which adds significant value to the 

planning and management of mining resources. 

On the other hand, the results indicated that the 

implementation of geometallurgical domains, based on 

mineralogical composition and other properties, is essential to 

optimize mineral processing and reduce variability in 

production. Although the results of this application were 

positive, there are some limitations. It has been shown that 

geometallurgical planning can be applied at all stages of the 

mining operation, from pre-project exploration to the 

configuration of the processing plant, helping to optimize 

production and reduce environmental impact. However, the 

great challenge is the integration of geostatistics and machine 

learning, according to data and digital mining, to further 

improve results and reduce variability in project performance. 

Based on these findings, it is recommended to continue 

researching and developing new methodologies that integrate 

advanced data analysis and predictive modeling techniques, to 

ensure greater efficiency and sustainability in mining 

operations. Likewise, collaboration between academic 

institutions and companies in the sector can be crucial for the 

successful implementation of these approaches, providing a 

solid basis for strategic decision making and optimization of 

available resources in the mining industry. 

 

 

2. MATERIALS AND METHODS 

 

Below, the methodology used in each section of the article 

is detailed to obtain precise and valuable results, highlighting 

the scientific rigor and the innovative approach applied. 

 

2.1 Geometallurgy as a comprehensive approach 

 

The geological characteristics of a mineral deposit present 

intrinsic variability, associated with its formation, which can 

influence the quality of the minerals that will be processed [18], 

the benefit obtained from the exploitation of the deposit 

depends ore grade and efficient recovery compared to 

operating costs [19]. 

Under these conditions, geometallurgy arises, which seeks 

to be a bridge between geological understanding and mineral 

processing, playing a crucial role in the modern mining 

industry by reducing risks and improving economic efficiency 

[20]. 

 

2.1.1 Implementation of geometallurgical domains to optimize 

mineral processing 

Geological variability can be understood and quantified 

with the definition of geological domains that describe 

mineralogy and lithology [18, 20]. 

Geometallurgical domains help limit variability in 

processing by identifying units with similar characteristics; 

they can be defined through chemical analysis, mineralogical 

characterization [18], and metallurgical testing as seen in 

Figure 1.  
 

 
 

Figure 1. Approach to defining geometallurgical domains, comparing the traditional workflow (black lines), with the approach 

that considers geological data (blue lines) [18] 
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The geometallurgical domains must be implemented in 

production, in conjunction with the standardization of data 

communication and adaptation to new raw material 

management trends [20], applying it at different levels of the 

operation to the link mineral yield with the beneficiation 

process in the block model [21], reducing uncertainty when 

processing the mineral. 

 

2.2 Key parameters of geometallurgical characterization 

 

2.2.1 Mineralogical characterization 

Within the mineralogical characterization, considers: 

• Visual Logging: Describes on a macroscopic scale 

the sample, type of rock, mineralized zone, 

alteration, structures and textures present, to obtain 

the geological parameters of the deposit as seen in 

Figure 2. 

 

 
 

Figure 2. Drill holes with massive texture, bands of 

chalcopyrite and amphibolite 

 

• Compositional Mineralogical Study: Shortwave 

infrared spectrometry (SWIR) and X-ray 

diffraction can be used, as seen in Figure 3. 

 

 
 

Figure 3. Two-dimensional CT - X-ray sectional slice from 

3D high-speed computed tomography data for coal particles 

[22] 

 

• Textural Analysis: It focuses on the influence of 

factors such as the genesis of minerals for 

geometallurgical purposes as seen in Figure 4.  

 

 
 

Figure 4. Textural patterns of drill cores identified at Mont-

Wright (a) Massive (Ms); (b) Banded (BBd) 

 

- Optical Microscopy of Reflected and 

Transmitted Light: Allows petrographic, 

mineragraphic and petromineragraphic studies to 

be carried out.  

- Degree of Release (P80): From the mineralogical 

perspective, knowing the distribution of particles 

based on the degree of release allows predicting 

the distribution of the release from the texture of 

the mineral.  

- Scanning Electron Microscopy (SEM): Allows 

the quantitative or semi-quantitative determination 

of the chemical composition, using the EDS 

detector, complemented by the backscattered 

electron detector. 

 
2.2.2 Metallurgical characterization 

It is based on the information obtained from the description 

of the properties of the mineral to be processed. The tests that 

can be performed are: 

- Determination of humidity and specific gravity of 

a mineral (pulps) 

- Radio-reduction tests 

- Comminution tests 

- Flotation tests  

- Acid leaching 

- Basic leaching (Cyanidation) 

- Solvent extraction 

- Electrodispersion tests 

- Sulfide roasting tests 

 
2.2.3 Chemical analysis 

Parian et al. [23] point out that the result of the analysis is 

the chemical composition of each sample, among these tests 

we can consider: 

- X-ray fluorescence spectroscopy (XRF). In this 

sense, in the study by Comelli et al. [7], these tests 

give us the scope that they accurately, results of 

their composition from the metallographic analysis 

of the treated material 

- Dissolution + Atomic Absorption Spectroscopy 

(AAS) 

- Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES) 

- Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) 

 
2.2.4 Physical-mechanical characterization 

The geomechanical studies allow an adequate 

characterization of the rock mass for the adequate design and 

support that will be used, it is made up of: 

- Uniaxial tests 

- Triaxial compression tests 

- Classification of rock massifs 

 
2.2.5 Environmental studies 

The geometallurgical model must incorporate the 

characterization of the extracted material through 

environmental tests, to achieve an effective design of the mine 

components using materials that do not generate acid drainage 

for the work carried out.  

 
2.2.6 Statistical analysis, geostatistics and machine learning 

Statistics involves data management, but in the analysis of 
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geometallurgical data, quantitative and descriptive data are 

considered (hardness, lithology and other aspects related to 

mineralogy), Figures 5, 6 and 7 are presented below, which 

outlines the process of analysis. 
 

 
 

Figure 5. Information collected in geometallurgical programs 
 

 
 

Figure 6. CRISP-DM statistical analysis methodology flowchart [24] 
 

 
 

Figure 7. Value chain for generation of geostatistical models [24] 
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2.3 Geometallurgical planning: A comprehensive 

perspective 

 
As a mine enters production, deposit data collection 

becomes more detailed, allowing geometallurgical models to 

be optimized, managing resources efficiently and decreasing 

environmental impact and increasing confidence in the 

mineral production plan [18, 20]. 

The geometallurgical planning and its high value as a 

management resource in mining are manifested in multiple 

contexts: 

- In the pre-project exploration stages 

- During the extraction of minerals in the deposit 

- As a basis for the configuration of the plant in the 

metallurgical process selected according to the 

nature of the deposit. 

Performing this analysis mitigates uncertainty during 

processing, being crucial to develop different operation plans 

based on the geometallurgical model [20].  
In this perspective, the document by Monti et al. [17], gives 

the scope to allow linking the main techniques of process 

mining are discovery and conformity verification. The 

discovery starts from an event log and automatically produces 

a process model that explains the different behaviors observed 

in the log, without assuming any prior knowledge about the 

process. Today, while a large number of process discovery 

solutions have been successfully developed and employed in 

various application domains, existing techniques are suitable 

for discovering processes that do not have a data perspective 

built into them. 

For the geometallurgical campaign to be successful, it is 

necessary to design it on experimental and practical bases. 

- Experimental design: involves understanding the data 

analysis options from the beginning and planning to 

eliminate technical limitations, taking statistical 

technical bases to collect meaningful data, establishing 

achievable objectives to develop meaningful predictive 

relationships, this process is outlined in Figure 8.  
 

 
 

Figure 8. The development of objectives and purposes of the 

geometallurgical campaign 
 

In a geometallurgy campaign, drill core samples are 

collected and integrated with other existing data (geophysics 

and geotechnics) and analyzed into a data matrix as seen in 

Figure 9. 

 

 
 

Figure 9. Development of a data set that will be the basis of the geometallurgical data set 
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2.3.1 Development of geometallurgical planning programs 

We reviewed 25 geometallurgical programs from different 

mining companies around the world and developed a 

classification system to understand how geometallurgy is used 

and what methods are applied. Table 1 is presented below as 

an instrument, which will organize the classification of 

geometallurgical programs according to approach and 

application, and Figure 10, which outlines the definition of a 

geometallurgical program. 

 

Table 1. Classification of geometallurgical programs based on approach and application 

 
CLASSIFICATION SYSTEM: Try to answer the following questions: 

What type of data is used (approach)? How is the data used (application)? 

GEOMETALLURGICAL APPROACH Defined by the type of data use in the geometallurgical program. 

Traditional 

- Chemical tests form the basis of the program. 

- The metallurgical response is calculated based on the chemical 

composition of the mineral. 

- The recovery of the metal is based on the chemical 

composition of the mineral. 

- They work on ore minerals with a good degree of release. 

- Common in the pre-feasibility stage. 

Indirect 

- Uses semiquantitative geometallurgical tests to characterize 

metallurgical behavior. 

- Collect information about mineral variability. 

Mineralogical 

- The geometallurgical model is built based on mineralogy. 

- Needs quantitative mineralogical data from the entire site. 

- Links the geological model and the process model. 

APPLICATIONS 
It is defined by how geometallurgical data is used in production 

management. 

Passive 

Geometallurgy 

0: None 

They do not collect geometallurgical data, there are no 

geometallurgical programs, they do not use a geometallurgical 

model. 

1: Data collection 
Geometallurgical data systematically collected, but not used in 

production planning. 

2: Display 
Geometallurgical variability is visualized and studied based on the 

geometallurgical data collected. 

3: Identification of 

production constraints 

Geometallurgical data is used to identify quality constraints of the 

material that feeds production. 

Active 

Geometallurgy 

4: Prediction 

prediction 
Geometallurgical data is used to forecast production. 

5: Changes based on 

the quality of the Feed 

Mineral 

Geometallurgy is used to plan changes in the process based on 

variations in the mineral that feeds the plant. 

6: Production 

Planning 

The mining production plan is made taking into consideration the 

geometallurgical data. 

7: Simulation of 

production scenarios 

Investment decision making, selection of uses of alternative 

techniques, production flow based on the application of 

geometallurgical data. 
Fountain: Adapted from Andrade et al. [24]. 

 

 
 

Figure 10. Definition of a geometallurgical program 

1. Define process behavior based 
on mineralogy.

2. Define the most effective 
process for plant design.

3. Ideal optimization cycle

4. Mitigate risk
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To implement a geometallurgical program, the following 

steps must be considered: 

The behavior of the process based on mineralogy considers: 

- Efficiency based on measurements of each 

individual process in a context of textural 

mineralogical assemblages. 

- Different metallurgical responses based on the 

type of mineral processed, which conditions the 

recovery of the ore mineral. 

- Allows monitoring of the behavior of the process 

based on the type of mineral present in the deposit. 

- Considers degrees of alteration and mineralogical 

domains in a geological model. 

The integrated approach involves linking geometallurgy to 

characterize the reservoir and circuit simulation to predict 

metallurgical performance.  

 

 
3. RESULTS 

 

3.1 Application of geometallurgical studies in mining 

operations in Peru 

 

Geometallurgy allows for a better understanding of deposits 

and more precise decision making in mining operations. In this 

context, various examples of the application of 

geometallurgical studies in mining operations in Peru are 

presented in Table 2, which highlights the importance of the 

characterization of geological and metallurgical properties to 

implement a geometallurgical plan that maximizes efficiency 

and profitability in the extraction and processing of minerals. 

 
3.1.1 Challenges of operational geometallurgy in Cerro 

Corona, Cajamarca, Peru (Copper-Gold Porphyry) 

The geometallurgical classification of the Cerro Corona 

mining deposit is a relevant factor to anticipate how 

metallurgy will behave in processing and its main objective is 

to maximize economic benefits, which is achieved through the 

creation of Geometallurgical Units (UGM) based on criteria 

such as the composition of the rocks, their alteration, structural 

characteristics, types of minerals present and metallurgical 

data.  

These UGMs allow forecasts to be made on aspects such as 

mineral recoveries, the amount of material processed, the 

concentration of contaminating elements and the number of 

reagents used, as shown in Figure 11. The implementation of 

production strategies based on geometallurgical models 

benefits the company by improving mine planning, 

maintenance, impurity reduction and process optimization.  

 

Table 2. Geometallurgical studies in mining operations 

 
Application of Geometallurgical Studies in Mining Operations 

Location Deposit Type Optimization plan 

Cerro Corona, Cajamarca Copper-Gold Porphyry 

Implementing production strategies based on geometallurgical models 

benefits the company by improving mine planning, maintenance, 

impurity reduction, and process optimization. 

Cerro Lindo Mining Unit, Ica 
Volcanogenic Mass – 

VMS 

Identify, zone and characterize these resources through diamond 

drilling, which will allow geometallurgical studies to be carried out to 

evaluate the viability of exploitation of the deposit. 

Ferrobamba and Chalcobamba-Las 

Bambas, Apurímac 
Skarn 

Identify Geometallurgical Units (UGMs) known as End Members, to 

adjust the operating parameters of the metallurgical plant for the 

treatment of different materials that reach it, considering the lithological 

variations within Ferrobamba. 

Cuajone, Moquegua Copper Porphyry 

Implementing a geometallurgical evaluation, three main factors that 

affect copper recovery were identified: the work index, the abundance of 

micas and clays, and the chalcopyrite grain size. 

Huarón Mining Unit, Pasco 

Silver, Zinc, Lead and 

Copper Polymetallic 

Deposit 

Implement a geometallurgical characterization in the northern zone 

veins where lead and copper metallurgy is deficient due to the 

lead/copper head association. Silver recovery is strongly affected by 

gangue inclusions and the presence of class 5 sphalerite. 

 
 

Figure 11. Distribution of the UGMs in Cerro Corona 

3.1.2 Geometallurgy study of secondary coppers and impacts 

on resources and production of the Cerro Lindo mining unit 

(Vulcanogenic Mass Deposit – VMS) 

In the geometallurgical study, carried out by Navarra et al. 

[20], they have identified that the mineral compound has 

moderate hardness and abrasiveness due to its high massive 

sulfur content, which makes it suitable for processing in a 

conventional concentrator plant. It is identified that the higher 

the soluble copper content, the lower the zinc recovery 

obtained. The quality of zinc and copper is affected by the 

difficulty of mechanically separating covellite from sphalerite. 

To address this situation, it is proposed to identify, zone and 

characterize these resources through diamond drilling, which 

will allow geometallurgical studies to be carried out to 

evaluate the viability of exploitation of the deposit. The 

importance of considering a geometallurgical plan from the 

deposit exploration stages is emphasized, as shown in Figure 

12. 
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Figure 12. Distribution of soluble copper (A) and copper in 

the samples (B) 

 

3.1.3 Geometallurgy of the ferrobamba and chalcobamba 

deposits, Las Bambas Mining Project (Skarn Copper) 

Fabián-Salvador et al. [8] carried out a study where 

Geometallurgical Units (UGMs) known as End Members are 

identified, based on lithological and mineralogical criteria in 

the context of copper mining in the areas of Ferrobamba and 

Chalcobamba. The presence of a better developed mixed zone 

in Ferrobamba (called SKOX) compared to Chalcobamba 

stands out. The main focus is copper mining, with an emphasis 

on primary sulfides (bornite and chalcopyrite) as the primary 

ores. 

They determine that the metallurgical recovery method for 

the future Las Bambas plant will be flotation due to the 

predominance of primary copper sulfides. Characterization 

and variability tests are carried out, both in comminution and 

flotation, in order to represent the common characteristics of 

an End and highlight the differences within them. These data 

will be used to adjust the operating parameters of the 

metallurgical plant for the treatment of the different materials 

that arrive at it, considering the lithological variations within 

Ferrobamba as can be seen in Figure 13. 

 

 
 

Figure 13. QEMSCAN image of the modal mineralogy for 

the different end members in Chalcobamba 

3.1.4 Petromineragraphic-textural and geochemical 

characterization of the geological units of mineralized 

lithological units in the Cuajone copper porphyry 

Koch and Rosenkranz [21] present a geometallurgical 

analysis of 9 samples of mineralized lithological units at the 

Cuajone mine, as shown in Figure 14 where they identified 

three main factors affecting copper recovery: work rate, 

abundance of micas and clays, and the grain size of 

chalcopyrite, concluding that the energy necessary to crush a 

rock is linked to the energy between the minerals of the rock, 

where the intercrystalline energy decreases when the crystals 

develop properly, resulting in a lower index of work. On the 

contrary, a rock with abundant matrix and chaotic growth of 

minerals will have a higher work rate. 

 

 
 

Figure 14. Photomicrographs of rocks from the Cuajone 

Mine  
D: LP PTK; F: BA PTK. The variation of the Work index according to 

the texture is shown. 

 

 
 

Figure 15. Mixed particle of silver sulfosalts and pyrite 

(SFAg/py) in yellow circle and mixed particle of sphalerite 

and pyrite (ef/py) in the blue circle 

 

3.1.5 Geometallurgical characterization in the veins of the 

north zone Huarón mining unit (Silver, Zinc, Lead and Copper 

Polymetallic Deposit) 

In research by Merrill-Cifuentes et al. [19], they carried out 

the geometallurgical characterization of two veins: 

− Pozo D Vein Branch Labor sublevel (SN) 200B: 

It has high contents of silver (Ag), regular content 

of zinc (Zn), low grade of lead (Pb) and copper 

(Cu), and low content of iron (Fe), with a high 

Work Index (Wi), which indicates considerably 

high hardness. Mineralogy shows the presence of 

silver and sphalerite sulfosalts in the gangue, 

which affects silver and zinc recoveries. Zinc 
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flotation tests show acceptable performance in 

Figure 15, but silver displaces zinc due to type 5 

sphalerite and its relationship to pyrite. Lead 

metallurgy has low quality due to the low quality 

of the head. 

− Llacsacocha Vein Pit 251: It has a high content of 

silver and zinc, a regular content of copper and lead, 

and a high content of iron. It has a low Work Index, 

indicative of low hardness. Mineralogy shows a 

shift of zinc and silver into the tailings due to 

inclusions of silver sulphosalts and mixtures of 

sphalerite with pyrite, affecting recoveries. 

Although zinc flotation tests are acceptable, lead 

and copper metallurgy are poor due to the 

association of lead and copper heads. The recovery 

of silver is influenced by gangue inclusions and the 

presence of class 5 sphalerite as seen in Figure 16. 

 

 
 

Figure 16. Impact of ganga and sphalerite on silver recove 
Particle composed of silver and gray copper sulfosalts (SFAg/CuGRs) in the 

yellow circle and small particles of silver and pyrite sulfosalts with 

inclusions. Presence of galena (gn) as free particles in the concentrate. 

 

3.2 Challenges and opportunities in the implementation of 

geometallurgical planning in Perú 

 

In the implementation of geometallurgical planning in Peru, 

significant challenges arise due to the complexity of the 

mineralogy in deposits. The lack of precise mineralogical 

information is an obstacle. To address this, we will consider 

the following aspects: 

 

3.2.1 Quantification of mineralogy and its influence on 

mineral processing 

In deposits with complicated mineralogy, geometallurgy 

plays a fundamental role in evaluating projects, since this 

information helps design extraction plans and configure 

concentration plants to address challenges of recovering 

valuable minerals [19]; With the proper categorization of 

minerals, there is a greater understanding of the entire mineral 

valuation process [21], however, this represents a challenge 

because mineralogical information is scarce [18]. The use of 

automated mineralogy techniques and chemical analysis at the 

particle and concentrate level is essential to determine the 

grinding conditions, the ideal release degree and other 

properties that influence the recovery process [23]. A clear 

example is the study in Sweden [18], where UGMs are 

classified in a way that allows their mineralogical 

classification and influence on the process. Problematic 

minerals can be mixed with other types of minerals to improve 

their recovery or avoid penalties. 

The textural characterization of minerals should be 

quantitative and provide information about the particles that 

form during comminution and their composition (distribution 

of mineralization and degree of release) [23]. 

There is the study of Dominy et al. [6], where the textures 

of the ore influence its beneficiation and flotation performance, 

the quality of the concentrate and provide an indication of the 

characteristics of the tailings. A common understanding of the 

term "texture" relates to the size of the grain, which can be 

coarse, medium, or fine-grained, with varying grain. 

 

3.2.2 Integration of geostatistics and machine learning for the 

creation of geometallurgical programs 

Traditional geostatistical techniques consider a single 

geological scenario (ordinary kriging, simple griging, etc.) for 

long-term production planning, therefore, they do not measure 

the confidence of net present value (NPV) estimates, under 

variability geological [24]. 

Geostatistical techniques, as explained in the report of 

Huang et al. [9], give us scope of populations and directions 

by categories of population variabilities, in such a proposal 

this study finds univariate Bayesian geostatistical models for 

the continuous or categorical form of each continuous 

predictor and chooses the form with the minimum log score 

being the best functional form. Second, it uses the backward 

elimination method to identify the best set of fixed effects 

covariates for the final model. This assessment of geostatistics 

is correct, as mentioned in the article [20]. Two-stage 

optimization algorithms can be used to evaluate alternative 

operating modes, and therefore different plant configurations, 

under conditions of geological uncertainty. However, the 

implementation of these algorithms requires specialized data 

structures and is an area of ongoing research. Innovative data 

structures enable more detailed representation of mineral 

processing operations while maintaining the computational 

efficiency of the algorithms. The current framework is now 

capable of supporting geometallurgical models in terms of 

different modes of operation and processing capabilities as can 

be seen in Figure 17. 

 

 
 

Figure 17. Kriging and optimization in mining planning 

 

In contrast, current stochastic approaches produce more 

adaptive mining plans as shown in Figure 18, increasing the 

expected NPV of mining operations by more than 20%, which 

can correspond to millions of dollars.  

 

 
 

Figure 18. Stochastic optimization and conditional 

simulation in long-term mine planning 
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3.2.3 Implementation of innovation techniques in the mining 

industry 

In the future, mineral deposits will be more complex and, In 

the future, mineral deposits will be more complex and 

challenging, in this context, geometallurgy is a crucial tool to 

integrate uncertainty, variability and external factors that will 

be crucial in evaluating the profitability and sustainability of 

mining projects [20]. 

Prediction of metallurgical [19] and environmental 

parameters can have a profound impact on the final economic, 

social and environmental outcomes of mine exploration, 

operation and closure. For example, in the early stages of the 

business, geometallurgy can allow better estimation of the 

value of a project, particularly for deposits with complex 

mineralogy, where, for example, for an acceptable grade of a 

valuable species, recovery may be difficult. This type of 

information can improve the design of the mine extraction plan, 

the circuits and equipment of the concentrator plant. 

Technological innovation in mining helps to improve 

efficiency, sustainability and productivity in the mining sector, 

as seen in Figure 19. In these terms, the advance of the digital 

era and the implementation of artificial intelligence allows the 

generation of more advanced geometallurgical models, 

allowing us to anticipate possible problems that the mineral 

entering the plant may have [20]. 

 

 
 

Figure 19. Computational methods and strategies for 

geometallurgy complete workflow in geometallurgy [20] 

 

 

4. CONCLUSIONS 

 

- Geometallurgy is a comprehensive and 

multidisciplinary approach that plays a crucial role in 

the modern mining industry, addressing the intrinsic 

variability of mineral deposits and its influence on the 

quality of the material processed in the plant. 

- Mineralogical and metallurgical characterization, 

together with geostatistical studies and the application 

of machine learning, allow the management and 

analysis of quantitative and descriptive data, which adds 

significant value to the planning and management of 

mining resources. 

- The implementation of geometallurgical domains, based 

on mineralogical composition and other properties, is 

essential to optimize mineral processing and reduce 

variability in production. The analysis of 

geometallurgical [24]. data in the field of mining is of 

utmost importance, because it allows generating 

behavior patterns that can result in trends that benefit the 

mining-metallurgical business. 

- Geometallurgical planning can be applied at all stages 

of the mining operation, from pre-project exploration to 

processing plant configuration, helping to optimize 

production and reduce environmental impact. Of course, 

the great challenge is integration by applying 

geostatistics and machine learning, according to data 

and digital mining. 
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NOMENCLATURE 

 

SWIR 

XRF 

Shortwave Infrared Spectrometry  

X-ray Fluorescence 

ICP-OES  Inductively Coupled Plasma Optical Emission 

Spectrometry  
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