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Predicting the mechanical characteristics of Copper (Cu) -AA7075 nanocomposites 

produced by the powder metallurgy (PM) method was investigated using a machine-

learning (ML) strategy to speed up production and characterization while offering 

physical insights into the properties of the materials. To build prediction models, six 

methods are used, including chemical arrangement and the porosity of the composites 

serving as the defining characteristics. The outcome indicates that the Sequential 

minimum optimization support vector regression Puk kernel (SMO reg/Puk) model 

produced the most precise predictions. Indeed, among the six models, its forecasts had 

the maximum correlation coefficient (CC) and the slightest inaccuracy. Using the SMO 

reg/Puk model, authors could make predictions about the tensile strength (TS) and 

hardness (HB) of Cu-AA7075, and this information guided the composition design 

efforts. The desired chemical composition, including a porosity of around 12.3%, a 

tensile strength of more than 360 MPa, and hardness of HB (140-145), was achieved in 

a Cu with 14 wt% Al and 7 wt% Ni nanocomposites. Cu-14Al-7Ni nanocomposites 

with the targeted tensile strength (394 MPa) and hardness (HB 143) was developed 

using the SMO reg/Puk model as a roadmap. 
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1. INTRODUCTION

The high strength, hardness, wear resistance, and corrosion 

resistance [1, 2], copper alloys find widespread application in 

various applications, including pumps, bearings, propellers, 

engineering tools, dies, etc. [3, 4]. Its tensile strength and 

hardness best exemplify aluminium bronze's mechanical 

qualities [5, 6]. It is currently necessary to use destructive 

testing procedures that are both time-consuming and 

expensive to evaluate aluminium bronze's mechanical 

properties [7, 8]. Because of this, there is a pressing need for a 

reliable way of estimating aluminium bronze's mechanical 

qualities [9]. 

It has become increasingly common in recent years to 

employ machine learning methods to forecast the mechanical 

properties of materials [10]. The bending toughness and 

hardness of AMC could be accurately predicted using the 

back-propagation artificial neural network (BP-ANN) model 

developed by Pandya et al. [11] and Li et al. [12]. The 

researcher made predictions of Aluminium-Copper-

Magnesium-Silver alloy strength using support vector 

regression (SVR) [13]. This study demonstrated that the SVR 

model outperformed BP-ANN under identical training 

conditions [14, 15]. Niobium-Silicon alloy's UTS was 

predicted using a high-precision ANN model created by Shi et 

al. [16], Taşgın and Ergin [17]. They used the model to help 

them achieve their goal of increasing the sample's strength by 

altering its microstructure. To forecast the mechanical 

properties of A357 alloy, Hua et al. [18] and Kazemi-Navaee 

et al. [19] used an ANN model, and their findings indicate that 

the Back Propagation model was highly accurate. Supraja 

Reddy and Ram Gopal Reddy [20] used the Artificial Neural 

network model to forecast the HB of 18-5PH and optimize a 

temperature treatment procedure to attain the highest possible 

HB [21]. 

This study addresses a significant advance in the field of 

materials science and engineering by introducing a novel 

approach to predicting the mechanical properties of Cu-

AA7075 nanocomposites using machine learning (ML) 

algorithms. 

In the present research, a large dataset, including a 

comprehensive collection of 142 experimental tensile strength 
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data and 100 hardness data, is analysed to accurately model 

and predict the TS and HB of Cu-AA707 nanocomposites, 

exploiting the chemical composition and porosity of these 

composites as key characteristics, addressing the lack of 

predictive models in the existing literature and providing a 

data-driven basis for predicting the mechanical properties of 

copper alloys. This unprecedented data collection, which 

combines results from current laboratory experiments with 

data drawn from a wide range of publications, enables the 

development of much more refined and accurate predictive 

models than those available in previous studies. Six different 

ML algorithms were employed, including sophisticated 

models such as the Sequential Minimum Optimisation (SMO) 

algorithm for Support Vector Regression (SVR) with both 

normalised Poly Kernel and Puk kernel, the study 

demonstrates a versatile and nuanced approach to predictive 

modelling. This diverse application of multiple algorithms is a 

novel approach in the field of predicting the mechanical 

properties of Cu-AA7075 nanocomposites, which serves to 

identify the SMO algorithm for SVR with a Puk kernel as 

particularly effective. 

 

 

2. METHODS AND MATERIALS 

 

Six different machine learning (ML) models were used for 

predicting the tensile strength (TS) and hardness (HB) of Cu-

AA7075 nanocomposites, providing a rationale for their 

selection based on the unique advantages and inherent 

limitations of each approach. The models selected include 

Sequential Minimum Optimization (SMO) algorithm for 

Support Vector Regression (SVR) with normalized Poly 

Kernel and Puk kernel, Standard Linear Regression (LR), 

Multilayer Perceptron (MLP), and SVR with poly kernel. 

 

2.1 Justification for model choice 

 
Sequential Minimum Optimization (SMO) for SVR with 

Puk kernel: Chosen for its efficient handling of non-linear data 

and its ability to produce high-quality predictions in cases 

where relationships between variables are complex. This 

model showed the best performance among all evaluated 

models, reflecting its superior capability in generalization and 

dealing with high-dimensional data spaces. The advantage of 

using the Puk kernel over traditional kernels lies in its 

flexibility and adaptability to the specifics of the dataset, 

potentially resulting in better prediction accuracy. 

SMO for SVR with normalized Poly Kernel: This variant of 

SVM is designed to manage the non-linearity of data by 

mapping the input features into a higher-dimensional space 

using a polynomial kernel. It's known for high accuracy in 

certain applications, although its performance can be sensitive 

to the choice of parameters and the scaling of input data. 

Standard Linear Regression (LR): A basic yet powerful 

model for understanding relationships between variables. Its 

inclusion allows for evaluating the potential linear association 

between the compositional and process variables with the 

mechanical properties of the nanocomposites. While it’s less 

capable of capturing complex non-linear patterns, it provides 

a benchmark for comparison and is computationally less 

intensive. 

Multilayer Perceptron (MLP): This neural network model is 

included for its strong capacity in approximating non-linear 

functions and interactions among variables. MLP can capture 

intricate patterns in the data through its layer(s) and neuron 

connections but requires careful tuning of its architecture and 

parameters to avoid overfitting. 

SVR with poly kernel: Similar to the SMO-reg variants, this 

model leverages the polynomial kernel for tackling non-linear 

relationships but is differentiated by its implementation 

through a different optimization approach. SVR models are 

particularly valued for their robustness and efficiency in 

handling high-dimensional spaces. 

SMO algorithm for SVR with Poly Kernel: This choice 

capitalizes on the optimization efficiency of the SMO 

algorithm, combined with the versatility of the poly kernel in 

modeling non-linear relationships. This combination aims to 

strike a balance between computational efficiency and 

predictive capability. 

 

2.2 Advantages and limitations 

 

Advantages: The diverse selection of models facilitates a 

comprehensive exploration of the data, allowing the study to 

capture a wide range of underlying patterns and relationships. 

From simple linear associations to complex non-linear 

behaviors, the chosen models offer a spectrum of 

computational techniques to best approximate the mechanical 

properties of Cu-AA7075 nanocomposites based on its 

chemical composition and process parameters. 

Limitations: While these models encompass a broad set of 

ML techniques, each comes with its considerations. For 

instance, SVM-based models (including SMO variations) can 

be computationally intensive and sensitive to parameter tuning. 

Conversely, linear regression, though less complex, might not 

capture all non-linear interactions within the data effectively. 

MLPs, while powerful, require extensive data for training to 

achieve generalization without overfitting. 

The distinction in model selection is meant to harness the 

strengths of each method while acknowledging their 

limitations, aiming to provide a balanced and comprehensive 

approach to predicting the mechanical properties of Cu-

AA7075 nanocomposites. Through their comparative analysis, 

the study seeks not only to identify the most accurate model 

but also to deepen the understanding of how different ML 

techniques interpret and learn from materials science data. 

 

2.3 Modeling process 

 

The three phases of constructing an ML model are 

Collecting data, modeling development, and Authentication of 

the model. 

 

2.3.1 Collecting data 

Three limitations were placed on the data collection process 

regarding the chemical components and processing technique. 

• First, the other alloying elements can't make up a 

more significant percentage of their total mass than Al does. 

• Cu-AA7075 nanocomposites were only prepared 

through casting and PM to limit the impact of process on 

material characteristics. 

• Third, only traditional alloying elements like 

Aluminium, Iron, Nickel, and Manganese were used because 

there was a shortage of data for additional features, which 

could have impacted the reliability of the data withdrawal. 

The microstructure and characteristics of composites are 

primarily determined by its chemical composition [22, 23]. 

The chemical compositions are Silicon 0.08%, Iron 0.24%, 
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Copper 1.5%, Manganese 0.06%, Magnesium 2.4% 

Chromium 0.2%, Zinc 5.8% and balance aluminium. The 

percentage of aluminium in Cu-AA7075nanocomposites 

varies from 6% by weight to 15%, making aluminium a crucial 

alloying element. Only the phase is present for 

nanocomposites with Al contents below 9.5 wt%, resulting in 

low hardness and strength. When the percentage of Al in an 

alloy rises over 9.5 wt%, a mixture of the phase and the 2 phase 

forms, leading to increased hardness but diminished strength. 

The structure and qualities of an alloy can be modified by 

adding other alloying elements like Nickel, Iron, or 

Manganese [24]. The addition of iron can refine grains and 

enhance mechanical characteristics [25]. In contrast, the 

addition of nickel can expand the α-phase zone and grain 

refinement, and the addition of manganese can lower the 

conversion temperature [26]. 

The porous of sintered composite significantly affects its 

characteristics. As porosity increases, TS decreases; 

ductileness and abrasive resistance are very vulnerable to pore 

formation [27, 28]. Unlike sintered compacts, the penetrability 

of molding alloys is not nil. Consequently, porosity is also 

employed to distinguish between the two methods. 

The percentages of aluminium, Iron, Nickel, and 

Manganese by weight and the material's porosity were used to 

characterize the material in this investigation [29]. 

A total of 142 items of experimental data on tensile strength 

(TS) and 100 things of experimented data on hardness were 

gathered after the restrictions and descriptors were applied. 

Both current study laboratory experiments and previous 

studies' results from the literature [30-32] were used to 

compile the datasets. 

 

2.3.2 Modeling 

Data mining has seen the widespread application of neural 

networks and support vector machines (SVMs) [33]. The 

mathematical technique known as a neural network is 

nonlinear and can adapt to new data. It has proven adept at 

making predictions where precise descriptions are hard to get 

from numerical models [34]. However, under finite sample 

settings, an SVM's great generalization capacity allows it to 

handle the challenge of high-dimensional data model creation 

[35]. 

To construct a prediction, model six machine learning 

algorithms were used. They are: 

• Sequential Minimum Optimization (SMO) algorithm 

for SVR normalized Poly Kernel (SMOreg/ norpoly) 

• Standard linear regression (LR) 

• Multilayer perceptron (MLP) 

• SVR with poly kernel (SVR/poly) 

• SMO reg/Puk (sequential minimum optimization 

(SMO) algorithm for SVR (SMOreg) Puk kernel)  

• SMO algorithm for SVR with poly kernel (SMO 

reg/poly) 

Five rounds of cross-validation were performed for this 

paper. A total of five roughly equal parts of the dataset were 

extracted. The authors [36] utilized each subset once for 

testing purposes. It was decided that the other four parts would 

serve as training data whenever one part of the data 

represented the testing data [37]. The data presented here are 

the mean values from five separate tests. 

Figures 1 and 2 display the expected TS and HB range 

against the corresponding experiment results. The mechanical 

characteristics of the nanocomposites are accurately predicted 

by the model, as both the experimental and anticipated values 

are roughly on the line Y=X. The SMO algorithm for SVR 

with a Puk kernel model had the most refined fit throughout 

training, as seen in Figures 1 and 2. 

The accuracy of the forecast models developed using the six 

algorithms was measured using the correlation coefficient 

(CC), the mean absolute error (MAE), and the root-mean-

squared error (RMSE) [38, 39]. 
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Figure 1. Evaluation of tensile strength prediction value 

using six ML algorithms on a training dataset 

 

The values of the correlation coefficient, the root-mean-

squared error, and the mean absolute error for the six ML 

models are shown in Figure 3. The best performance is 

demonstrated by the SMO algorithm for the SVR Puk kernel, 

with CC values of 0.9215 and 0.9416 for the TS model and the 

HB model respectively. Tensile strength predictions from the 

SMO algorithm for the SVR Puk kernel model have a mean 

absolute error (MAE) of 53.2486 MPa, and a root means 

square error (RMSE) of 74.7712 MPa, whereas SMOreg/Puk 

model hardness predictions have a MAE of HB 17.9264 and 

an RMSE of HB 27.2981. These numbers are less than 

predicted by competing models. Because of this, the 

Sequential minimum optimization SVR Puk model was 

chosen to estimate the material hardness and tensile strength. 
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Figure 2. Evaluation of Hardness prediction value using six machine learning algorithms on a training dataset 

 

 
(a)                                                                                                         (b) 

 

Figure 3. Correlation coefficient, Root Mean Square Error, and Mean Absolute Error of six ML models functional to the data of 

training: (a) Tensile Strength (TS); (b) Hardness (HB) 
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(a)                                                                                              (b) 

 

Figure 4. SMO algorithm for SVR Puk kernel model predictions for (a) TS and (b) HB on the authentication dataset related to 

the equivalent experimented results 

 

2.3.3 Authentication of model 

Researchers validated the SMO reg/Puk prediction model 

by comparing its predictions of tensile strength and hardness 

to experimental values from evaluation data (Figure 4). 

Authentication datasets were gathered from several sources, 

including tests and scholarly researchers [40-43], in addition 

to the training dataset. The lists of validation datasets can be 

found in Table 1. Validation dataset predictions for TS and HB 

are consistent with experimental results. The highest deviation 

in TS is only 31.52 MPa (Figure 4(a)), while the maximal 

deviation is only HB 9.1 (Figure 4(b)). 

 

Table 1. Model authentication data for the SMO algorithm SVR Puk kernel forecast 

 
S. 

No. 
Aluminum/wt% Nickel/wt% Iron/wt% Manganese/wt% Porosity/% TS/MPa Hardness/HB References 

1 10.31 5.50 4.94 1.20 0.00 697.00 178.00 [44] 

2 10.42 6.96 5.09 1.21 0.00 657.00 - [44] 

3 10.66 8.94 5.05 1.21 0.00 592.00 184.00 [44] 

4 11.5 6.00 5.60 1.00 0.00 645.00 - Current project 

5 12.0 5.70 5.20 1.28 0.00 654.00 189.60 Current project 

6 12.4 5.31 5.33 3.05 0.00 634.00 - [45] 

7 13.2 0.00 5.10 0.00 12.4 309.00 157.00 Current project 

8 14.0 0.00 0.00 5.00 11.80 351.00 160.00 Current project 

9 11.10 5.30 5.00 0.00 13.04 223.60 102.00 Current project 

10 9.84 0.00 0.91 0.00 0.00 - 138.00 [46] 

11 14.10 0.35 4.00 1.25 0.00 - 299.00 [47] 

12 12.20 6.00 6.00 0.00 11.55 - 138.00 Current project 

2.4 Model application 
 

The Cu-AA7075 composition was designed with the SMO 

algorithm for the SVR Puk kernel model to ensure the desired 

mechanical qualities would be achieved. This compositional 

study aimed to develop a novel high-strength Cu-AA7075 

composite with a porous of around 12.3%, a tensile strength of 

more than 360 MPa, and hardness of HB 140-145. With its 

high strength and excellent self-lubricating properties, the Cu-

AA7075 nanocomposites is ideal for use as a bearing material. 

The structure's pores accommodate either a solid lubricant like 

graphite or MoS2 or a liquid lubricant like lubricating oil. 

Figure 5 and Figure 6 illustrate a distribution map of the TS 

and HB with the change of each descriptor, based on the values 

forecast employing the SMO algorithm SVR Puk kernel 

algorithm for the Cu-AA7075. As can be shown in Figure 5, 

the Cu-AA7075 nanocomposites reaches a tensile strength of 

360 MPa when the porosity is 12.3%. The TS of the 

nanocomposite is maximized between 11.5 and 12.0 wt% 

aluminium. The TS of the nanocomposite is maximized 

between 6.6 and 7.1 wt% Nickel. A nanocomposite strength 

generally improves as manganese concentration increases 

from 0% to 3.3-3.8 wt%. However, as Iron content rises, 

tensile strength falls. 

As shown in Figure 6, the desired level of nanocomposite 

hardness is achieved when the porosity is less than 13.0%. The 

hardness of the nanocomposite rises linearly with the amount 

of aluminium present [48]. The desired level of alloy hardness 

is achieved at an aluminium concentration of more than 14.1%. 

The hardness drops as the Ni or Mn content rises. For the 

desired hardness level in a nanocomposite, the Ni 

concentration must be less than 7.2 wt%. All of the 

nanocomposites may achieve the desired hardness within the 

range of the measured Mn concentration [49]. Hardness, 

however, increases with Fe content before decreasing again. 

The nanocomposite can achieve the desired hardness if the Fe 
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percentage is below 4.1wt percent. In this situation, the 

element content range chosen for hardness also encompasses 

the element content range selected for TS. 

TS and HB were estimated by employing the Sequential 

minimum optimization support vector regression Puk kernel 

model for the following composition ranges based on the 

findings above: Cu-(13.6-14.1)Al, Cu-(13.6-14.1)Al-(6.6-

7.1)Ni, Cu-(13.6-14.1)Al-(6.6-7.1)Ni-(3.3-3.8)Mn, and Cu-

(13.6-14.1)Al-(3.3-3.8)Mn are all examples of alloys with 

these percentages of Al, Ni, Fe, and Mn. Changes in chemical 

will occur in 0.1 wt% increments. The mechanical 

characteristics of the nanocomposite, such as its TS and HB, 

were found to achieve target values upon the study of the 

prediction findings when the chemical composition was near 

to Copper-14Al-7Ni. 

 

 

 

 

 
 

Figure 5. SMOreg/Puk model-obtained tensile 

strength distribution of the nanocomposite as a function of 

porosity and composition 
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Figure 6. SMOreg/Puk model-obtained hardness 

distribution of the nanocomposite as a function of porosity 

and composition 

 

2.5 Experimental methods 

 

From a review of the available literature [50, 51], the 

authors settled on a target porosity of 12.3% for the Cu-

AA7075 nanocomposites and determined the following 

process parameters for its fabrication. The raw materials were 

the powdered elements copper, aluminum, and nickel. There 

are three separate numbers in Table 2 labelled "D15," "D55," 

and "D95" that correspond to the particle size distribution's 

cumulative mass at the locations where it reaches 15%, 55%, 

and 95% from the small-particle-diameter side, respectively. 

Three hours were spent in a tube mixer combining Cu powder 

with 14 wt% Al and 7 wt% Ni. At 550 MPa, discs of the 

blended powder measuring 20 mm in diameter were 

compacted. The green compact was heated in an H2 

environment to 1000℃ for 1 hour at a heating rate of 5℃/min 

in a furnace. 

 

Table 2. Features of the experimented powders 

 

Powders 

Particle-Size 

Distribution (μm) 
Purity 

(wt%) 

Method of 

Manufacture 
D15 D55 D95 

Copper 13.1 24.2 43.6 99.9 Electrolytic 

Nickel 5.6 13.2 29.4 99.8 
Carbonylation 

method 

Aluminum 11.2 18.2 29.3 99.7 Argonatomized 

 

An optical microscope (RX50M) and a scanning electron 

microscope (JSM-7001F) were used to examine the materials' 

microscopic structure, before SEM analysis the specimen was 

subjected to polishing using emery sheet. Energy-dispersive 

spectroscopy (EDS) was used on a scanning electron 

microscope (SEM) to explore the elemental distributions. The 

samples were analyzed by X-ray diffraction (XRD) with the 

help of a diffractometer. Hardness was assessed with a Brinell 

sclerometer (model HB3000), and TS was evaluated with an 

Instron 5569 UTM equipment. 

Using Archimedes' equation, authors determined the 

compacts' sintered density, (ρs) and the authors determined the 

specimen's porosity (ε) using the subsequent Eqs. (1) and (2): 

 

𝜌a = 1/(𝑥1/𝜌1 + 𝑥2/𝜌2 + ⋯ + 𝑥𝑛/𝜌𝑛) (1) 

 

𝜀 = 1 − 𝜌s/𝜌a (2) 

 

where, ρa: theoretic density; ρn: the density of 𝑛th element; xn: 

mass of nth element. 

 

 

3. RESULTS AND DISCUSSIONS 

 

The significance of the MAE and RMSE as shown in Figure 

7 values lies in their capacity to quantify the average 

magnitude of the errors in predictions made by the machine 

learning models, without considering their direction. The 

MAE gives a straightforward measure of prediction error 

magnitude, while RMSE gives a sense of the prediction error 

in the same units as the original measurements, with more 

weight to larger errors due to its quadratic scoring. 

For the tensile strength (TS) predictions, the SMO 

algorithm for the SVR with a Puk kernel demonstrated the 

lowest MAE of 53.2486 MPa and RMSE of 74.7712 MPa. 

This indicates not just a tighter clustering of predicted values 

around the actual values but also fewer and less significant 

outliers in predictions as compared to other models. Similarly, 

for the hardness (HB) predictions, the SMOreg/PUK model 

achieved an MAE of 17.9264 and an RMSE of 27.2981, 

underscoring its superior prediction accuracy and consistency 

relative to competing models. 

Figure 8 shows optical micrographic image of the copper-

14Al-7Ni alloy. All the alloys had a microstructure that 

included a -Cu matrix phase (the yellowish areas), a NiAl 

phase (the brownish regions), and an Al4Cu9 phase (the gray 

areas), as well as many pores. Figure 9 shows the Scanning 

Electron Microscope image of Cu-14Al-7Ni and Table 3 

illustrates the EDS phase analysis results broken down by 
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element. At the interface among the -Cu phase and the Al4Cu9 

phase, as well as within the -Cu phase, a large no of granular 

Nickel-Aluminium phases precipitated. In contrast, the 

Al4Cu9 stage exhibited an uneven morphology. In Figure 10, 

the X-ray Diffraction pattern of the nanocomposite correlates 

well with the EDS analysis results. 

 

 
 

Figure 7. SEM images of powders: (a) Copper, (b) 

Aluminium and (c) Nickel 

 

 
 

Figure 8. Optical image of the Copper–14Al–7Ni 

nanocomposite 

 

 
 

Figure 9. Scanning electron microscopic image of the 

Copper –14Al–7Ninanocomposite 

 

Table 3. An EDS study of the Cu-14Al-7Ni nanocomposite 

various phases 

 
Phase Copper (Cu) Aluminum (Al) Nickel (Ni) 

α–Cu 79.81 19.26 1.33 

Ni-Al 13.26 46.63 42.51 

Al4Cu9 62.33 33.41 6.62 

 

Based on the published literature, the Cu-14Al-7Ni vertical 

section was depicted and shown in Figure 11 [52]. On cooling, 

the -Cu phase first formed near the boundary of -AlCu3. This 

eutectoid reaction happened when the temperature dropped to 

the eutectoid reaction temperature for -AlCu3 -Cu + NiAl. The 

distribution of the NiAl phase at the grain boundaries of the 

copper phase efficiently stymied the development of the 

copper phase. The second eutectoid reaction (-AlCu3 -Cu + 

NiAl + Al4Cu9) occurred at around 510℃. Since the -AlCu3 

stage was depleted during the first eutectoid reaction, the 

Al4Cu9 phase fraction was significantly reduced by the smaller 

number of products formed during the second eutectoid 

reaction. Due to the delayed furnace cooling procedure, 

martensite was not found in the present investigation. 
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Figure 10. X-ray diffraction pattern of the Copper–14Al–

7Ni nanocomposite 
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Figure 11. Vertical section of Cu-14Al-xNi [49] 
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Figure 12. Cu-14Al-7Ni nanocomposite hardness, tensile 

strength, and porosity 
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Figure 12 summarizes the nanocomposite permeability, 

tensile strength, and hardness. The sintered samples had a 

porosity of 11.31%, which is 0.28% lower than the design goal. 

About 394 MPa is the tensile strength, which is 40 MPa higher 

than the target value and 10 MPa more elevated than the 

SMOreg/Puk model anticipated. The SMOreg/Puk model 

predicted a value of HB 142 for the hardness. However, the 

actual value is HB 143. That's why the authors saw an 

agreement between predicted and observed values in the 

experiments. Due to the nanocomposite's improved -Cu phase, 

fine-grain reinforcement was achieved. In addition, the 

strength of the nanocomposite was enhanced by the presence 

of several granular NiAl phases. 

All of this evidence suggests that the SMO reg/Puk model 

is a valuable tool for predicting the characteristics of Cu-

AA7075 nanocomposites and designing their chemical make-

up. The SMO algorithm is commonly employed to predict the 

mechanical aspects of structural materials due to its fast 

training and good generalization performance [53]. The Puk 

kernel's superior mapping capabilities mean it excels at 

solving a wide range of mapping challenges. The SMO 

algorithm's generalization performance can be enhanced by 

the Puk kernel. 

 

3.1 Comparison between measured and SMOreg/Puk-

predicted values 

 

The optimized composition of the Cu-AA7075 

nanocomposite, aimed at achieving a tensile strength of more 

than 360 MPa and a hardness of 140-145 HB, was 

experimentally achieved with an actual composition close to 

Copper-14Al-7Ni. The experimental results exhibited a tensile 

strength of 394 MPa and a hardness of 143 HB. According to 

the SMOreg/Puk model predictions, for this composition, the 

tensile strength and hardness were anticipated to be in the 

proximity of 390 MPa and 140 HB, respectively. 

 

3.2 Results-based implementation 

 

The achieved tensile strength (TS) of 394 MPa and hardness 

(HB) of 143 for the developed Cu-14Al-7Ni nanocomposites 

represent noteworthy achievements when comparing these 

properties to those of common bearing materials. Traditional 

bearing materials, such as 52100 bearing steel, exhibit higher 

hardness (approximately 700 HB) and tensile strength (around 

860-1200 MPa) due to their fully martensitic microstructure 

following heat treatment. Bronze bearings, on the other hand, 

show lower TS and HB, with values around 276 MPa for 

tensile strength and 60-100 HB for hardness, which highlights 

the Cu-14Al-7Ni composite's competitive placement in the 

spectrum of bearing material properties. It provides a balanced 

blend of strength and wear resistance, positioning it as a 

potential candidate for applications where traditional materials 

either exceed necessary specifications or fail to meet specific 

requirements. 

 

 

4. CONCLUSIONS 

 

This research provides an in-depth insight into the 

relationship between the chemical composition, porosity and 

mechanical properties of Cu-AA7075 nanocomposites. It 

expands current knowledge on how alloying elements such as 

aluminium, nickel, iron and manganese, as well as porosity, 

affect tensile strength and toughness, offering valuable 

guidelines for future alloy development. 

This research introduces new methodologies and analytical 

frameworks that significantly improve the predictability and 

understanding of the mechanical properties of Cu-AA7075 

nanocomposites. It extends the application of machine 

learning algorithms beyond theoretical exploration, providing 

practical insights and tools for materials scientists and 

engineers to design materials with optimal properties. 

Machine learning was employed in this study to make 

predictions about the TS and HB of Cu-AA7075 

nanocomposite and to suggest how best to design their 

compositions to attain these targets. Chemical arrangement 

and porosity were used as the primary defining characteristics 

for the six algorithms employed to build the prediction models. 

This study's datasets were culled from several experiments and 

published studies. Here is a quick rundown of the key findings: 

·SMO reg/Puk model had the highest accuracy rate out of 

the six models tested. It was the most accurate and showed the 

strongest correlation. TS and HB errors in the sequential 

minimum optimization algorithm SVR Puk model are lesser 

than 31.52 MPa and 9.1 HB, correspondingly, which is in good 

agreement with the experimental data. 

·The desired chemical composition, including a porosity of 

around 12.3%, the tensile strength of more than 360 MPa, and 

hardness of HB (140-145), was achieved in a Cu with 14 wt% 

Al and 7 wt% Ni nanocomposites. After that, the powder 

metallurgy method was employed to manufacture the 

nanocomposite, which yielded desirable results in terms of TS 

(394 MPa), hardness (HB 143), and porosity (11.31%). 

The study achieves a breakthrough in predictive accuracy, 

evidenced by the high correlation coefficients (CC) of 0.9215 

for tensile strength and 0.9416 for hardness predictions using 

the SMO algorithm for SVR with a Puk kernel. These levels 

of accuracy surpass those reported in previous studies, 

marking a significant step forward in the reliable prediction of 

material properties. 

Future studies could explore a broader range of 

compositions and include additional alloying elements to 

further enhance the material properties of Cu-AA7075 

nanocomposites. Integrating machine learning predictions 

with detailed thermodynamic modeling could provide deeper 

insights into the phase transformations and their impact on 

properties. 

Future studies could explore the relationship between 

processing conditions (e.g., sintering temperature, pressure, 

and time) and the mechanical properties of the 

nanocomposites could yield novel insights into optimizing 

manufacturing procedures for enhanced material performance. 

Future studies could examine the environmental impact and 

sustainability of the production process for Cu-AA7075 

nanocomposites, including the lifecycle assessment from raw 

material procurement to product end-of-life, could provide a 

pathway towards greener manufacturing practices. 
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