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The presence of noise and artifacts often has a significant impact on electrocardiogram 

(ECG) data. Signal corruptions of this nature impact the precise interpretation of ECG 

signals, necessitating the removal of noise and artifacts during the preprocessing stage. 

The present paper provides a thorough pre-processing phase that removes motion 

distortions and noise before identifying and recovering entirely distorted ECG signal 

segments. The initial technique, referred to as the WLNH method, is created by 

employing Wavelet multiresolution analysis (MRA), the Lilliefors test, NLM, and a 

high pass filter. The second approach involves replacing the wavelet MRA 

decomposition with the variational mode decomposition (VMD), while keeping all 

other steps from the previous approach. The abbreviation VLWNH is used to represent 

this approach. The two proposed methods distinguish themselves from existing methods 

by initially employing the Lilliefors test to determine if a component exhibits white 

Gaussian noise characteristics, and subsequently use the High Pass Filter to remove any 

motion irregularities. The simulation results demonstrate the effectiveness of the 

proposed strategies, especially in addressing white Gaussian noise and baseline wander 

(BW) noise. 
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1. INTRODUCTION

Cardiovascular disease (CVD) can occur when there is any 

malfunction in the cardiovascular system, which is responsible 

for pumping blood throughout the circulatory system [1, 2]. In 

2019, 17.9 million CVD-related fatalities occurred worldwide, 

accounting for 32% of total deaths [3].  

According to statistics, coronary artery disease (CAD) was 

the leading cause of global mortality in 2019. It was 

responsible for around 16.6% of all fatalities. This indicates 

that CAD causes 27,624 deaths each day throughout the world 

[4]. 

Multiple studies and efforts in the literature have 

concentrated on early detection of cardiovascular diseases 

(CVDs) with the aim of decreasing mortality rates. There are 

several diagnostic procedures for cardiovascular disease 

(CVD) amongst which, three stand out: the blood sample 

method, cardiac magnetic resonance imaging, and 

echocardiography. 

The advantages and limitations of each approach are 

outlined below: 

(1) Blood sample method: Utilizing a conventional blood

test can facilitate the identification and assessment of certain 

diseases and disorders. The use of the protein "troponin" in a 

blood test provides a rapid and precise assessment of any heart 

muscle damage [5]. Nevertheless, the analysis of blood 

necessitates costly apparatus and the constant presence of a 

nurse or healthcare practitioner. Furthermore, blood tests have 

a limited duration of usefulness.  

(2) Cardiac magnetic resonance imaging method

(CMRI): The cardiac magnetic resonance imaging (CMRT) 

approach has several important advantages, as it allows 

accurate visualization of the function of the various 

components of the heart, such as the ventricles, atria, valves, 

muscles, and blood flow [6]. Unfortunately, CMRT is cost-

prohibitive and is also an uncomfortable test. Additionally, it 

can be invasive to use for long periods of time. 

(3) Echocardiography method: The electrocardiogram,

abbreviated as EKG or ECG, examines the electrical activity 

of the heartbeat by analyzing the recorded signal provided by 

the electrical activities [7]. This procedure is straightforward, 

safe, and inexpensive. Furthermore, ECG signals may be 

recorded using a variety of instruments, including medical 

equipment and smart watches, and they can be seen and 

interpreted in real time [8]. However, a clinician has to 

interpret the recorded ECG data. 

Out of the three possible test procedures, only the final one 

is applicable for achieving the purpose of continually 

monitoring the patient's heartbeat. 

Nowadays, we are witnessing rapid technological 

advancements in both hardware and software. Therefore, it is 

possible to find relatively small devices to record ECG signals 
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using surface electrodes in hardware. Unfortunately, most of 

the recorded ECG signals are corrupted by noise such as 

baseline wander (BW), muscle artifact (MA) as a result of 

periods of muscle contraction, instrumentation noise (IN), and 

powerline interference (PLI) from electrical activity, as well 

as artifacts.  

In order to interpret the ECG signals correctly, a 

preprocessing stage is required to eliminate the noise and 

artifacts. Several techniques appeared in the literature for 

denoising ECG signals, including low-pass filters [9], 

wavelets, empirical mode decomposition (EMD), least mean 

squares (LMS), Deep learning, etc. Most of these techniques 

are reviewed and detailed by Chatterjee et al. [10]. Recently, a 

new technique of signal denoising is proposed by Li et al. [11] 

based on the use of EMD and VMD jointly. 

Furthermore, some studies also focused on motion artifact 

elimination. In the study conducted by An et al. [12], an 

adaptive algorithm based on Recursive Learning Square (RLS) 

and low pass filter is proposed to eliminate the motion artifacts. 

By using VMD and Discrete Wavelet transform, a new method 

of motion artifact elimination is proposed by Singh and 

Pradhan [13]. 

To the best of our knowledge, all previous studies focused 

either on noise elimination or motion artifacts elimination. 

Few works were proposed to eliminate them jointly. 

There are several data sets of ECG signals in the literature, 

mostly can be found in the MIT-BIH Arrhythmia database. 

This research considers both the MIT-BIH Arrhythmia 

database [14] and the INCART public dataset from the St. 

Petersburg Institute of Cardiological Technics (Russia) [15]. 

This paper can be considered as an extension of the recent 

work conducted by Singh and Pradhan [13]. We exploit the 

idea of the presence of two categories of components located 

in low and high pass bands. After signal decomposition via 

wavelet MRA or VMD, we introduce in this paper the use of 

Lilliefors test in the first category of components located in a 

high frequency band to find out any component as white 

gaussian noise and we used a high pass filter in second 

category to eliminated and motion artifact located in very low 

frequency band. 

The remaining components from each category will be 

denoised via wavelet denoising with different levels. By the 

end, a nonlocal mean algorithm is used to enhance the results. 

The rest of this paper is organized as follows. Section II 

describes the analysis and reduction of ECG signal noise using 

four approaches, low pass filter, Wavelet, and VMD. In 

Section III, a complete description of the proposed methods is 

given. Each method aims to eliminate noise and artifacts. 

Results and Discussions are in Section IV that show and 

compare the performance of the proposed methods via 

different simulations and using different metrics. Finally, 

Conclusions and Recommendations are discussed in Section 

V. 
 

 

2. ANALYSIS AND ELIMINATION OF ECG SIGNAL 

NOISE 
 

2.1 Analysis of ECG signal noise 

 

Figure 1 shows that ECG signals have been distorted by a 

noise with quasi-harmonic behavior [16]. This observation is 

confirmed by its representation in the Frequency domain. The 

predominant energy of the noise is centered at a frequency of 

50Hz. 

 
 

Figure 1. An example of an ECG signal corrupted by noise 

in time and frequency domain 
 

There are several de-noising methods in the literature, 

including the low-pass filter, wavelet [17], EMD [18], VMD 

[11], LMS [19], and so on. 

In order to find the most efficient way for effectively 

reducing noise while conserving signal information, we 

examine and compare three signal denoising methods: low-

pass filter, wavelet, and VMD. 

 

2.2 Signal denoising based on low-pass filter 

 

Given the quasi-harmonic nature of the noise in the ECG 

signal, it is widely acknowledged that a low-pass filter with a 

cutoff frequency below Fc=50 Hz, which has modest 

computational requirements, is useful in decreasing the noise. 

 

 
 

Figure 2. Denoised ECG signal by using a low-pass filter 

with Fc=15 Hz in time and frequency domain 

 

We conducted several experiments and found that if the 

Fc=15 Hz, the noise is reduced, as seen in Figure 2. However, 

various amplitudes of the signals are attenuated, indicating that 

some information in the signal is damaged, and therefore the 

quality of information is reduced. To address this issue, we 

increased the frequency cutting to 40 Hz and found that less 

information is lost in the signal, although some noise occurs, 

as shown in Figure 3. 
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Figure 3. Denoised ECG signal by using a low-pass filter 

with Fc=40 Hz in time and frequency domain 

 

We conclude that it is difficult to achieve a good 

compromise between reducing noise while preserving signal 

information by using low-pass filters. 

 

2.3 Denoising signal based on wavelet 

 

The Wavelet decomposition technique, shown in Figure 4, 

involves the partitioning of a signal's frequency range into 

many sub-bands using two filters: a low pass filter and a high 

pass filter. At level 1, the signal is divided into two distinct 

bands: the high pass band and the low pass band. In the second 

level, the low pass band is divided into two independent bands: 

a low pass band and a high pass band. Each succeeding level 

involves splitting the low frequency band into two bands of 

equal size, as shown in Figure 4. The presence of down 

sampling after filtering ensures the transition from one level to 

the next [20]. As shown in Figure 4, the sequences for level k 

are derived from those sequences by employing low-pass 

filters h0 and h1, respectively, as: 

 

𝑦𝑖
𝑘(𝑛) = ∑ 𝑦𝑖

𝑘−1(𝑛)ℎ𝑖(2𝑙 − 𝑛)

𝑙

 (1) 

 

This decomposition approach effectively encircles and 

eliminates noise in a specific sub-band. As a result, the signal 

in this sub-band is disregarded throughout the reconstruction 

process to ensure that the final signal is free from any noise 

interference. The majority of the interference in 

electrocardiogram (ECG) signals is concentrated in the high-

frequency sub-bands, namely around 50 Hz in our recorded 

data. With a frequency sample of 360 Hz, we need to use a 

decomposition level of at least 3 in order to remove noise. As 

a result, ⅞ of the frequency band, namely the high frequency 

band, will be discarded. 

 

 
 

Figure 4. Process of decomposition and synthesis of signal 

by using discrete wavelet [20] 

2.4 Signal denoising based on VMD 

 

The most up to date signal processing technique is 

variational mode decomposition (VMD), which separates the 

input signal into several band-limited Intrinsic Mode 

Functions (IMFs). 

The approach, inspired by the EMD [21], suggests that the 

original signal s(t) is composed of many IMFs known as FM 

components [22]. That is: 

 

𝑠(𝑡) = ∑ 𝑢𝑘(𝑡)

𝑘

= ∑ 𝐴𝑘(𝑡)𝑐𝑜𝑠 (𝜙𝑘(𝑡))

𝑘

 (2) 

 

where, Ak(t) represents the instantaneous amplitude of uk(t) 

and ϕk(t) represents the instantaneous phase of uk(t). The IMF's 

center frequency wk(t) is presumed to be the correlating 

instantaneous frequency 𝑤𝑘(𝑡) = 𝜙𝑘
′ (𝑡). 

The decomposed VMDs, uk, are compact around the 

frequency center wk(t). In VMD, uk and wk are calculated by 

solving the constrained variational problem as follows: 

 

{∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝑤𝑘𝑡‖2

2

𝑘
} (3) 

 

The main advantage of this technique is that it is able to 

decompose the signal to different IMFs where each IMF has a 

specific frequency center and with a narrow band limited. 

This decomposition has many benefits such as denoising 

signals and artifacts removal and it can be used for feature 

extraction. 

We note that In Wavelet, the frequency band is divided into 

sub-bands where the size of each sub-band is related to a 

number of levels. From level to another, the size of the sub-

band is divided by 2 (see Figure 5). 

 

 
 

Figure 5. Frequency domain representation of the DWT 

 

 
 

Figure 6. Representation of 5 IMFs of ECG signal in time 

and frequency domains 
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Figure 7. Representation of clean ECG signal in time and 

frequency domains by using VMD and wavelet methods 

 

Therefore, the width of each sub-band in Wavelet is fixed 

and is determined by the chosen level number. On the other 

hand, VMD decomposes signals into different IMFs. Each 

IMF has a specific frequency center and narrow sub-band. 

This offers more degrees of freedom to explore the frequency 

band of the signal. 

Figure 6 clearly shows that each IMF has a distinct 

frequency center and a limited sub-band. Furthermore, 

harmonic noise appeared in the first IMF with frequency 

center of 50 Hz. 

From Figure 7, we can observe that the denoising outcomes 

for the two approaches are almost similar. However, we see 

less interference between sub-bands in VMD compared to 

Wavelet. Due to the low computational complexity of Wavelet 

compared to VMD (adaptive algorithm that requires many 

iterations), Wavelet is more suitable for denoising ECG 

signals than VMD. 

 

 

3. MOTION ARTIFACTS DETECTION AND 

ELIMINATION IN ECG SIGNALS 

 

 
 

Figure 8. ECG signal with only motion artifact 

 

By observing multiple ECG signal recording segments, we 

noted that in addition to the presence of noise, two types of 

motion artifacts can be observed. The first one acts on the ECG 

by moving segments of the ECG without deforming or 

changing the shape of the segments. This type of artifact can 

be easily observed in Figures 8 and 9. 

 

 
 

Figure 9. ECG signal contains two types of artifacts among 

them one is a non-stationary artifact signal 

 

Figure 9 demonstrates that some of the ECG signal 

segments are contaminated, and their forms are altered by the 

second kind of artifact. This artifact often manifests when 

movement is executed by a jump. 

 

3.1 Analysis of ECG signals corrupted by noise and 

artifacts 

 

Based on the analysis of the ECG signal seen in Figure 8, 

we express this signal in the following form: 

 

𝑠(𝑡) = 𝑠𝑐(𝑡) + 𝑎(𝑡) + 𝑛(𝑡) (4) 

 

where, sc(t) represents the clean signal without artifacts and 

noise, n(t) and a(t) represent the noise and artifact signal, 

respectively. 

It was observed that in the frequency domain, the artifact 

signal is located in a very low-frequency band. 

There are several methods for extracting this signal from the 

original ECG signals, including Wavelet, VMD and regression 

methods such as linear regression, robust linear regression, 

quadratic regression, Robust quadratic regression, etc. 

Considering that Wavelet and VMD have previously been 

used for denoising purposes, we will further investigate them 

to effectively remove motion artifacts. 

Before introducing the proposed methods for ECG signal 

denoising and artifacts eliminations. 

We briefly describe Lilliefors Test and non-local means 

algorithms. Both techniques will be used in the proposed 

methods. 

 

3.2 Lilliefors test 

 

Lilliefors [23] presented a table for validating normality 

using the Kolmogorov-Smirnov statistic in cases where the 

mean and variance of the population are not known. His 

statistic is: 

 

𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥∀𝑥|𝑆(𝑥) − 𝐹∗(𝑥)| (5) 

 

where, S(x) is the sample distribution function and F*(x) is the 

cumulative normal distribution, whose mean and variance are 
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determined by the sample. 

The null hypothesis that the sample is normally distributed 

is rejected if the computed statistic test Dmax exceeds the 

critical value for the chosen significance level. 

 

3.3 Nonlocal means algorithm 

 

Non-local means (NLM) denoising for signals entails 

calculating weighted averages of signal samples based on their 

similarity to other signals.  

 

Let 𝑥(𝑛) = 𝑢(𝑛) + 𝑣(𝑛) 

 

where, u(n), and v(n) represent the clean signal and the noise, 

respectively. Any sample u(m), can be estimated as follows: 

 

�̂�(𝑚) =
1

𝑇(𝑚)
∑ 𝑤(𝑚, 𝑛) 𝑥(𝑛)

 

𝑛∈𝑁(𝑚)

  (6) 

 

where, w(m, n) is the weight associated with n-th search 

sample and m-th desired sample in a search window N(m) and 

𝑇(𝑚) = ∑ 𝑤(𝑚, 𝑛)𝑛 . The weight is given by: 

 

𝑤(𝑚, 𝑛) = 𝑒𝑥𝑝 (
∑ (𝑥(𝑚 + 𝛥) − 𝑥(𝑛 + 𝛥))2 

𝛥∈ 𝛿  

2𝑃𝛿𝑘2
) (7) 

 

where, k, δ are the bandwidth parameter and local patch of 

sample surrounding the m-th desired sample containing Pδ 

samples. 

 

3.4 Noise and motion artifact removal based on wavelet, 

Lilliefors test, NLM and high-pass filter (WLNH method) 

 

We presented a novel method based on Wavelet multi-

resolution analysis (MRA) to simultaneously eliminate motion 

artifacts and noise. Afterwards, the ECG signal is broken down 

into its component parts. There is a set bandwidth for each 

component. 

According to Figure 10, we set the number of wavelet levels 

to 10. Consequently, we acquired a total of 11 components: the 

first 10 components are referred to as details, while the last 

component represents the estimated signal at level 10. 

 

 
 

Figure 10. An example of MRA wavelet at level 10 of ECG 

signal 

We categorize the components into two distinct groups. The 

first category comprises the initial 5 components that are 

tainted by noise. As seen in Figure 11, these components are 

in high frequency ranges, and they cover more than 95% of the 

frequency spectrum (precisely 96.88%). The second group has 

components numbered 6 to 11. This group is distinguished by 

the scarcity of sounds. We also see the occurrence of motion 

artifacts in the final components in several instances.  

 

 
 

Figure 11. Spectrum of the first 5 signal details and the 

spectrum of the sum of last 5 signal details with signal 

approximation at level 10 

 

Based on aforementioned information, we propose the 

following 6-stages algorithm, whose block diagram is shown 

in Figure 12. 

 

 
 

Figure 12. Flowchart of the proposed method 1 (WLHN 

method) 

 

Proposed method (WLNH method): 

Stage 1: Decompose the ECG signal into 11 components 

using multiresolution Discrete Wavelet (10 levels). 

Stage 2: Apply the Lilliefors test [23] to each of the first five 

components. The Lilliefors test determines whether the noise 

is white Gaussian or not. If the test results are positive for any 

component, that component will be deleted. 

Stage 3: The remaining components from the five 

components will be combined to create a signal. We utilize a 

DWT to denoise this signal at a somewhat higher level.  

Stage 4: As seen in Figure 12, the total of the final six 

components includes a little amount of noise. To denoise this 

signal, we employ DWT at low levels. 
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Stage 5: The total of the noised 5 components is added to 

the sum of the last denoised components, and the resulting 

signal is filtered via a high pass filter to eliminate motion 

artifacts. 

Stage 6: Finally, we apply the NLM algorithm to the filtered 

signal to increase the quality of the denoised signal while 

removing artifacts. 

The flowchart in Figure 12 depicts the many processes 

employed in the suggested technique. 

 

3.5 Noise and motion artifact removal based on VMD 

Lilliefors test, wavelet, high pass filter and NLM (VLWNH) 

 

Variational mode decomposition offers a new alternative to 

decompose the signal in many components called IMfs where 

each IMF has a specific central frequency with a narrow 

bandwidth. 

 

 
 

Figure 13. An example VMD decomposition result for ECG 

signal when the mode is 10 

 

 
 

Figure 14. Spectrum of the sum of the first 5 IMFs and the 

spectrum of the sum of the last 5 IMFs 

 

Figures 13 and 14 illustrate that VMD and MRA Wavelet 

decompositions have roughly identical components, as well as 

signal partitioning in the frequency domain. It is obvious that 

the sum of the first five IMFs filled the biggest signal spectrum 

range, but the final five IMFs occupied a relatively tight low 

frequency band. 

Furthermore, we note that most of the noise is concentrated 

in the initial IMFs. 

We then presented a novel method, similar to the one 

described in the preceding section (section III. 3), by simply 

substituting MRA wavelet with VMD. The following Figure 

15 depicts the several processes in this method. 

 

 
 

Figure 15. Flowchart of the proposed method 2 (VWHN 

method) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Test databases 

 

To compare the performance of the proposed approaches to 

those in the literature, we used three reference signals from the 

MIT-BIH Arrhythmia database. The signals are 100, 103, and 

105. Each recording lasts 30 minutes and uses a sample rate of 

360 Hz. We also employed three kinds of noise. The first is 

white Gaussian noise (WGN), while the others are base-line 

wander (BW) and muscle artifacts (MA) from the MIT-BIH 

Noise Stress Test Database.  

 

4.2 Performance metrics 

 

To compare various denoising approaches, four standard 

metrics are employed. 

a) Mean Square Error (MSE) is calculated as the average of 

the squared differences between the denoised ECG signal 

�̂�(𝑛) with size N and the original clean ECG signal x(n) with 

the same size. The MSE is given by: 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑥(𝑛) − �̂�(𝑛))

2
𝑁−1

𝑛=0

 (8) 

 

b) Root Mean Square Error (RMSE) is the square root of 

MSE defined as: 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (9) 

 

The approach with the lowest MSE/RMSE value achieves 

the highest performance. 

c) Percentage-Root-mean-square Difference (PRD) 

calculates the percentage of overall distortion in the signal 

after denoising. A lower PRD indicates a denoised signal with 

higher quality. 

2114



 

𝑃𝑅𝐷 = √
∑ (�̂�(𝑛) − 𝑥(𝑛))2𝑁−1

𝑛=0

∑ (𝑥(𝑛))
2𝑁−1

𝑛=0

× 100% (10) 

 

d) Improved signal-to-noise ratio (SNRimp) 

The term "improved signal-to-noise ratio" (SNR_imp) 

refers to an improvement in signal quality when noise 

reduction methods are employed. It measures how much better 

the signal is than the noise after processing. 

 

𝑆𝑁𝑅𝑖𝑚𝑝 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 (11) 

 

where,  

𝑆𝑁𝑅𝑖𝑛 = 10 × log10 (√
∑ (𝑥(𝑛))

2𝑁−1
𝑛=0

∑ (�̃�(𝑛)−𝑥(𝑛))2𝑁−1
𝑛=0

),  

𝑆𝑁𝑅𝑜𝑢𝑡 = 10 × log10 (√
∑ (𝑥(𝑛))

2𝑁−1
𝑛=0

∑ (𝑥(𝑛)−𝑥(𝑛))2𝑁−1
𝑛=0

). 

 

4.3 Performance evaluation of the proposed methods 

 

To demonstrate the effectiveness of our proposed methods, 

we analyzed their performance under various noise and artifact 

settings. 

We used three forms of noise: additive white Gaussian noise 

(AWGN), base-line wander (BW), muscle artifacts and (MA).  

To ensure accurate results, the proposed methods are 

evaluated for each 10-second ECG segment, which consists of 

3600 samples. The final results are calculated by taking the 

average of the results from 180 segments, with a total duration 

of 30 minutes. 

The Lilliefors test [23] is employed in each ECG segment 

in order to determine whether a component is white Gaussian 

noise or not. The test is conducted with a significance level of 

5%. We employ an infinite impulse response (IIR) filter and a 

high pass filter with a frequency reduction of 3 Hz, as outlined 

in the proposed methods. 

In Wavelet MRA, we used 10 levels. The wavelet mother 

“Fk14 “is used in both Wavelet MRA decomposition and also 

in wavelet denoising algorithm. Different levels of wavelet 

denoising are used in the first 5 components and in the last 

components.  

a) Performance Evaluation in the presence of AWGN on 

MIT-BIH databases 

In the presence of white Gaussian noise, it was revealed that 

the first five wavelet MRA components (also known as the 

first five IMFs) have at least one Gaussian white noise 

component.  

We demonstrate that both the wavelet MRA and VMD are 

capable of separating some white Gaussian noise from the 

noisy data. Figure 16 clearly shows that the probability plot of 

the first component corresponds perfectly to the typical 

probability plot.  

Using the Lilliefors test, any component indicating white 

Gaussian noise is suppressed, resulting in reduced noise 

quality in the noisy ECG signal. 

This research used the MIT-BIH arrhythmia database's 

dataset of ECG record 100 for qualitative analysis. The 

addition of white noise to an existing ECG signal makes it loud. 

The noisy ECG signal's signal-to-noise ratio (SNR) remains at 

0 dB.  

Figure 17 indicates that the proposed method successfully 

denoised the ECG signal, which retains crucial morphological 

information from the original signal and achieves a high 

degree of similarity to the clean ECG signal. 

The proposed methods in this paper can be looked at as an 

important extension of the proposed method [13]. 

In order to assess the quantitative performance of the 

proposed methods, we used Table 5 [13] to compare our 

findings with other current methods such as VMD-NLM [13], 

EMD-wavelet [24], NLM-MEMD [25], and NLM-DWT [26]. 

We limit benchmarking to ECG recording MIT-BIH 

arrhythmia database 100, 103, 105. 

The ECG signal with a signal-to-noise ratio (SNR) of 0 dB 

is also displayed in Figure 17, along with its noise. 

 

 
 

Figure 16. First wavelet MRA component and its normal 

probability plot 

 

 
 

Figure 17. Comparison between the denoised and clean ECG 

signals 
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Table 1. Performance of the proposed methods and explored methods on the test dataset ECG 100 at input SNR level of 10 dB 

 
ECG Measure WLNH VLWNH VMD-NLM EMD-Wavelet NLM-MEMD NLM-DWT 

100 

MSE×10-4 2.3 2.5 3.0 9 8.0 3.9 

PRD % 4.67 4.37 5.28 9.23 8.11 5.5 

SNRimp 26.59 26.12 8.92 7.34 5.21 8.58 

103 

MSE×10-4 1.8 1.8 8.0 25 1.7 8.9 

PRD % 5.02 5.04 7.63 13.43 10.89 7.75 

SNRimp 27.29 27.4 8.56 7.64 7.54 8.58 

105 

MSE×10-4 7.2 7.1 18.0 22 20.0 11.0 

PRD % 5.76 6.18 8.69 8.87 12.05 8.87 

SNRimp 22.57 22.64 8.3 8.16 5.51 8.16 
 

Table 1 shows the performance of the denoising algorithms 

on the test datasets ECG 100, 103, and 105 at an input SNR 

level of 10 dB in terms of MSE, PRD, and SNRimp. We 

definitely observed that the proposed strategies outperformed 

current methods for all three records in terms of MSE, PRD, 

and SNRimp. As example, the MSE of proposed methods in 

record 105 is 7.1×10-4 and the best method in the literature has 

11×10-4. 

All recordings show a significant change, particularly 

records 103 and 105.  

We also observe that the performance of the two suggested 

methods, WLNH and VLWNH, are almost identical, with 

minimal benefit to VLWNH. 

b) Performance evaluation in the presence of BW noise on 

MIT-BIH databases 

We evaluate the performance of the proposed methods in 

the presence of base-line wander (BW) at two distinct SNR 

levels of 0 and 5 dB. We compare the performance of the 

suggested strategy to other methods described in Table 1 [10].  

As demonstrated in Table 2, the proposed strategies 

outperform the current conventional methods including 

Wavelet Transform (WT) [27] and also for some approach 

based on deep learning as stacked DAE [28], improve DAE 

[29]. The only approach based on deep learning GAN [30] 

outperforms the offered techniques, although our findings are 

comparable. We also emphasize that every deep learning 

approach has a high computational cost.  

Thus, we may conclude that the offered approaches provide 

the optimal trade-off between performance and computational 

complexity. We also observe that the suggested methods' 

performance is pretty similar to each other. So, for the next 

cases, we will only evaluate the WNH approach due to its 

lower complexity compared to VWNH. 

c) Performance of various methodologies in the presence of 

MA on MIT-BIH databases 

Table 3 compares the performance of several approaches for 

ECG signal denoising and artifact elimination when muscular 

artifacts (MA) noise is present at SNR values of 0dB and 5dB.  
 

Table 2. Performance of the proposed methods and explored methods on the test dataset ECG 103 and 105 at input SNR level 0 

dB and 5dB of base-line wander (BW) noise 
 

ECG SNR Performance Measure WNH VWNH GAN Stacked DAE Improved DAE WT 

103 

0dB 

RMSE×10-3 6 5.9 3.2 38 26 74 

PRD 1.31 1.39 0.97 9.75 6.47 18.05 

SNRimp 37.41 37.31 40.26 20.38 23.78 14.87 

5dB 

RMSE×10-3 4.5 4.4 2.7 37 25 74 

PRD 1.13 1.09 0.83 9.15 6.39 17.99 

SNRimp 37.75 37.89 41.60 15.77 18.89 9.9 

105 

0dB 

RMSE×10-3 12.6 1.33 3.5 29 28 14 

PRD 2.3 2.42 1.06 5.69 5.37 2.65 

SNRimp 32.1 31.44 39.49 24.9 25.4 31.53 

5dB 

RMSE×10-3 9.5 9.6 3.4 27 27 12 

PRD 1.5768 1.51 0.094 5.33 5.34 2.31 

SNRimp 32.77 32.49 40.56 20.47 20.45 27.71 
 

Table 3. Performance of the proposed methods and explored methods on the test dataset ECG 103 and 105 at input SNR level 0 

dB and 5dB of by muscle artefacts (MA) noise 
 

ECG Record SNR Performance Measure WLNH GA Stacked DAE DAE WT 

103 

0dB 

RMSE 0.022 0.004 0.046 0.034 0.044 

PRD 6.36 0.86 11.32 8.53 10.4 

SNRimp 25.77 41.36 18.92 21.38 19.66 

5dB 

RMSE 0.016 0.003 0.044 0.027 0.067 

PRD 3.98 0.69 10.83 6.82 16.24 

SNRimp 27.16 38.24 14.31 18.33 10.79 

105 

0dB 

RMSE 0.0436 0.007 0.036 0.03 0.04 

PRD 8.84 1.5 7.1 5.81 7.86 

SNRimp 21.6219 36.49 22.97 24.72 22.09 

5dB 

RMSE 0.031 0.005 0.032 0.028 0.032 

PRD 7.4772 1.05 6.22 5.54 6.23 

SNRimp 22.3689 34.55 19.12 20.13 19.11 
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The GAN [30] approach, based on deep learning, still 

produces the best results. Except for the GAN approach, all 

methods perform similarly owing to the non-stationary 

partitioning of noise in the ECG signal. In reality, certain ECG 

segments are much noisier than the rest of the signal. 

Figure 18 illustrates the variation of the noise from segment 

to another. These situations open the door for the possibility of 

new improvement of the proposed algorithms in order to take 

into account the variation of noise in short duration. 

 

 
 

Figure 18. An example of noisy ECG record 105 corrupted 

by muscle artefacts (MA) noise 

 

 

5. CONCLUSIONS 

 

In this study, we presented two novel methods for denoising 

and artifact removal in ECG signals. 

The proposed methods incorporate a variety of signal 

processing and statistical techniques. In fact, we used Wavelet 

MRA/VMD for signal decomposition, Lilliefors test, high 

pass filter, wavelet denoising, and the nonlocal mean 

algorithm to improve the performance of the proposed 

approaches.  

The performances of the new methods are illustrated and 

compared to existing ones. In reality, the proposed approaches 

perform well when the noise is additive white gaussian noise, 

as well as when there are base-line wander artifacts.  

However, due to the presence of noise with varying levels 

in the same segment of ECG signals (for example, MA noise), 

the performance of the suggested approaches can be enhanced 

to take this into account. A new challenge has been established 

to improve the proposed methods by considering this context. 
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