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The objective of this study is to solve Linear Volterra-Fredholm Integral Equations of 

the second kind numerically using Hermite polynomials. We will present an 

approximate solution as a series that converges towards the exact solution. Several 

examples are provided to illustrate the numerical results, specifically comparing the 

exact and numerical solutions. These comparisons are shown in tables, demonstrating 

that the error between the exact and numerical solutions is negligible. Additionally, 

diagrams highlight how closely the numerical solution matches the exact solution, 

underscoring the accuracy of the grouping method used to solve the Volterra-Fredholm 

Integral Equation with the MATLAB program. This method is noted for its simplicity, 

speed, and high accuracy in obtaining numerical results. 
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1. INTRODUCTION

The integral equations form the basis of several 

mathematical models in many scientific domains, such as 

engineering, mathematics, and chemistry. Numerous areas in 

engineering and applied mathematics are connected to integral 

equations as defined in the study conducted by Wazwaz [1] 

and Semenova et al. [2]. 

The Volterra-Fredholm Integral Equations have played a 

major role in developing many crucial in applied mathematics, 

engineering, and physics [3], and have found extensive 

application in various scientific fields. The Volterra and 

Fredholm integral equations are combined to create these 

integral equations. 

We define the Linear Volterra-Fredholm Integral Equations 

of the second kind (LVFIES for short) as follows [3-5]: 
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In the case where f(τ), h1(τ, ν) and h2(τ, ν) are functions. The 

function λ(τ) is the unknown function that must be determined. 

There are many techniques for properly effectively resolving 

such problems [6, 7], such as Adomian's method [8, 9], 

Chebyshev polynomials [10-12], They serviced the Volterra 

Friedolm integral equation using a Chebychev polynomial 

with summation points. Then they proposed a new summation 

method to solve the Volterra Fredholm equation, Euler series 

to solve the Fredholm integral equation [13], Laplace 

transform method [14, 15]. 

In this context, Salman Mustfaf [16] presented an 

innovative method for solving linear fractional Volterra-

Fredholm Integro-Differential Equations (LFVFIDEs) with 

fractional derivatives in the Caputo sense. To validate the 

effectiveness of this new approach, it is compared with 

existing techniques, demonstrating its superior performance in 

addressing these complex problems. Varol et al. [17] analyzed 

the application of Laguerre polynomials in constructing a 

numerical approximation method for solving fractional linear 

integral-differential equations (IDEs) of the Fredholm-

Volterra type. 

Negarchi and Nouri [18], and Nemati [19] discussed 

solutions to the integral equation using the Legendre 

polynomial. 

In our work, we use Hermite polynomials to solve the 

Volterra-Fredholm equation integral. In the context of 

numerical methods, convergence analysis is crucial to ensure 

that the method reliably approximates the exact solution as the 

number of terms increases. 

The paper’s structure is: introductory section contains an 

introduction to the LVFIES, in the second one, we demonstrate 

the existence and the uniqueness of the solution of the LVFIES, 

and then we introduce definitions about the Hermite 

polynomials, which is the basis of our work in the third section. 

In the fourth one, we put the description of the collocation 

Hermite method to solve LVFIES we search for an 

approximate solution in the form of series. In the fifth section, 

numerical examples are presented to demonstrate the accuracy 

and efficiency of the current method. Finally, the conclusions 

of this work are summarized. 

2. EXISTENCE AND UNIQUENESS OF LVFIES

SOLUTIONS

There are multiple theorems that demonstrate the existence 

and unicity of the LVFIES solutions, we present one of them 

Theorem suppose the Eq. (1), such that: 
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Under the continuity conditions above suppose that there is 

a constant C>0 such that: 
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Then the Eq. (1) has a unique solution λ∈C(-1, 1] and this 

solution can be obtained by the successive approximation 

method. 

Proof 

Let the integral operator ζ: C([-1, 1]→C([-1, 1]) defined by: 
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We have: 
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Consequently: 
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for every t∈[-1, 1]: 

So: 
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We conclude that the operator ζ is Lipschitzian with 

constant: 
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The assumed condition guarantees that ζ is a contraction. So, 

the operator ζ has a unique solution which is the solution of Eq. 

(1). 

3. HERMITE POLYNOMIALS 

 

Hermite polynomials are a series of orthogonal polynomials 

that appear in probability theory, physics, and numerical 

analysis.  

Hermite polynomials are defined by its general form [20, 

21]: 
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The first seven Hermite polynomials are: 
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There is orthogonality in the polynomials Htn(τ) with 

respect to the weight function 𝑆(𝜏) = 𝑒−
𝜏2

2  with the following 

condition: 
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δn,m denoted the Kronecker delta. 

Let: 
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4. METHOD OF APPROXIMATE SOLUTION OF 

LVFIES BY HERMITE COLLOCATION METHOD 
 

The Hermite collocation method is a numerical technique 

that approximates solutions to Linear Volterra-Fredholm 

Integral Equations of the second kind (LVFIEs) using Hermite 

polynomials. Consider the LVFIES: 

 

 = −− −−
1

1 )()(),(
2

)(),(
1

)( 1 


 fdhdh  

 

2228

https://en.wikipedia.org/wiki/Kronecker_delta


 

Now, we use the collocation method [22-24] to the Eq. (1), 

we approximate the unknown function λ(τ), in the form of 

finite sum as follows: 
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where, ωk is Hermite polynomials of degree k, ak are unknown 

parameters, after substituting expression (5) in Eq. (1), it 

results: 
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The Eq. (6) is transformed into a system of linear equations. 
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where, the conjugate matrix of (3) is written as follows: 
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Such that: 
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For all i=0, 1, …, N, j=0, 1, …, N. The vectors A and F are 

given by: 
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computing the coefficients ak so that the interval [-1, 1] 

satisfies Eq. (6). The equidistant collocation points are taken 

as follows for this technique: 
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The residual is defined as following: 
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and applying conditions at collocation points, you get: 
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5. NUMERICAL EXAMPLES 

 

In this part, we give some illustrative examples to clarify 

our work 

Example 1 

Consider the LVFIES 
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Applying the Hermite collocation method to approximate 

the solution λ(τ). 
 

Table 1. Results for Example 1 

 

Val of τ Ex. Sol Error (N=3) 
Error [25] 

(N=3) 

0.0625 1.0010e+00 1.3323e-15 2.3315e-14 

0.01875 1.0080e+00 4.4409e-16 2.3537e-14 

0.3125 1.0270e+00 4.4409e-16 2.4425e-14 

0.4375 1.0640e+00 8.8818e-16 2.5313e-14 

0.5625 1.1250e+00 1.3327e-15 2.6867e-14 

0.6875 1.2160e+00 1.1102e-15 2.8644e-14 

0.8125 1.3430e+00 1.9984e-15 3.0864e-14 

0.9375 1.5120e+00 2.2204e-15 3.3307e-14 
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Figure 1. The exact and the approximate solutions for 

Example 1 with n=3 

 

 
 

Figure 2. The absolute errors for Example 1 

 

In Table 1, we present the error for Example 1 for N=3 then 

comparing the results with one of Pull Lucas method [25]. 

Figures 1 and 2 present respectively comparisons of the 

exact and approximate solution for n=3, and the absolute 

errors for Example 1. 

 

Example 2 

Consider the LVFIES 
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Table 2. Comparison of the errors for Example 1 

 
Val. of τ Ex. Sol Error (N=8) Error (N=10) 

-1.00e+00 2.7183e+00 3.4542e-08 0.0909e-09 

-0.80e+00 2.2255e+00 2.5994e-08 2.6259e-09 

-0.60e+00 1.8221e+00 5.3301e-09 3.2360e-09 

-0.40e+00 1.4981e+00 2.0799e-09 7.8511e-09 

-0.02e+00 1.2214e+00 1.4442e-08 1.0946e-08 

0.00e+00 1.000e+00 2.1173e-08 1.2330e-08 

0.20e+00 8.1873e-01 2.5802e-08 1.1896e-08 

0.40e+00 6.7032e-01 3.4290e-08 9.5981e-09 

0.60e+00 5.4881e-01 2.7952e-08 5.4841e-09 

0.80e+00 4.4933e-01 4.7688e-08 2.5731e-10 

1.00e+00 3.6788e-01 3.7477e-08 7.2157e-09 

 

In Table 2, a comparison of the exact and the approximate 

solution for N=8, N=10 is done. 
 

 
 

Figure 3. Comparison of the exact and approximate solutions 

for Example 2 
 

In Figure 3, we depicted the exact solution and the 

approximate solution for n=8 of the problem in Example 2 

obtained by Hermit collocation method. 
 

Example 3 

Consider the LVFIES 
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Table 3. Comparison of errors for Example 3 
 

Val. of τ Error (N=6) Error (N=8) Error (N=10) 

-1.00e+00 9.4467e-08 3.7348e-10 1.0230e-09 

-0.80e+00 6.3854e-08 6.4632e-12 5.4004e-10 

-0.60e+00 8.5473e-08 3.3289e-10 3.5960e-12 

-0.40e+00 6.5937e-08 1.9525e-10 4.9380e-10 

-0.02e+00 4.5408e-08 2.0440e-10 8.3413e-10 

0.00e+00 4.6028e-08 1.7791e-10 9.6040e-10 

0.20e+00 3.6391e-08 1.6898e-10 8.4951e-10 

0.40e+00 5.3720e-08 1.2672e-10 5.2245e-10 

0.60e+00 7.5637e-08 2.5954e-10 4.1285e-11 

0.80e+00 7.8065e-08 4.7925e-11 4.9974e-11 

1.00e+00 3.8624e-08 1.1737e-10 9.8771e-10 

 

 
 

Figure 4. The absolute errors for Example 3 
 

The comparison of the error of Example 3 is presented in 

Table 3, according to different values of N such that 6, 8 and 

10. It can be noted that the absolute error decreasing as the 

value of the integer N increasing. 

Results presented in the previous table are shown in the 

Figure 4, we remark that error decreases when N increases. 

 

Example 4 

Consider the LVFIES: 
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Table 4 presents the comparison of the error of Example 4 

for N=8 and N=10. 

In Figure 5, we depicted the exact solution and the 

approximate solution for n=6 of the problem in Example 4 

obtained by Hermit collocation method. 

Table 4. Comparison of the errors for Example 4 
 

Val. of t Ex. Sol Error (N=8) Error N=10 

-1.00e+00 3.6788e-01 7.4912e-09 2.2612e-09 

-0.80e+00 4.4933e-01 7.6597e-09 1.0637e-09 

-0.60e+00 5.4881e-01 9.7107e-09 2.0521e-10 

-0.40e+00 6.7032e-01 2.4644e-09 1.3040e-09 

-0.02e+00 8.1873e-01 1.4784e-10 2.0384e-09 

0.00e+00 1.0000e+00 3.7148e-09 2.2841e-09 

0.20e+00 1.2214e+00 7.4832e-09 2.0025e-09 

0.40e+00 1.4918+00 5.2958e-09 1.2455e-09 

0.60e+00 1.8221e+00 1.9362e-08 1.4861e-10 

0.80e+00 2.2255e+00 1.0192e-11 1.0859e-09 

1.00e+00 2.1783e+00 1.8840e-08 2.2178e-09 

 

 
 

Figure 5. The absolute errors for Example 4 

 

Example 5 

Consider the LVFIES 
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Table 5. Results for Example 5 
 

Val. of τ Ex. Sol 
Sol Appro. 

N=10 
Error N=10 

-1.00e+00 -3.6788e-01 -3.6788e-01 1.1805 -09 

-0.80e+00 -3.5946e-01 -3.5946e-01 5.6785e-10 

-0.60e+00 -3.9229e-01 -3.9229e-01 6.7250e-11 

-0.40e+00 -2.6813e-01 -2.6813e-01 6.2277e-10 

-0.02e+00 -1.6375e-01 -1.6375e-01 1.0300e-09 

0.00e+00 0.0000e+00 -1.2419e-09 1.2419e-09 

0.20e+00 2.4428e-01 2.4428e-01 1.2438e-09 

0.40e+00 5.9673-01 5.9673e-01 1.0556e-09 

0.60e+00 1.0933e+00 1.0933e+00 7.2827e-10 

0.80e+00 1.7804e+00 1.7804e+00 3.4034e-10 

1.00e+00 2.1783e+00 2.7183e+00 3.9580e-11 
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The comparison of the exact and the approximate solutions 

for N=10. The results for Example 5 are presented in Table 5. 
 

Example 6 

Consider the LVFIES 
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The comparison of the exact and approximate solutions for 

N=3 for Example 5 is presented in Figure 6. 

Figures 7 and 8 present respectively the absolute errors for 

Example 6 and the absolute errors for Example 7. The results 

for Example 5 are presented in Table 6. 

 

 
 

Figure 6. The exact and approximate solutions for Example 

5 

 

 
 

Figure 7. The absolute errors for Example 6 

Table 6. Results for Example 6 

 

Val. of τ Ex. Sol Error N=3 
Error [8] 

(Adomian) 

0.10e-01 3.4000e-01 7.3275e-15 2.0000e-07 

0.20e-01 7.6000e-01 7.6605e-15 2.0000e-07 

0.30e-01 1.2600e-01 7.9936e-15 4.0000e-07 

0.40e-01 1.8400e-01 7.99360e-15 6.0000e-07 

0.50e-01 2.5000e+00 8.8818e-15 1.2000e-06 

0.60e-01 3.2400e-01 1.0658e-14 2.4000e-06 

0.70e-01 4.0600-01 9.7700e-15 5.2000e-06 

0.80e-01 4.9600e+00 1.1546e-14 1.1700e-05 

0.90e-01 5.9400e+00 1.2434e-14 2.6900e-05 

1.00e+00 7.0000e+00 1.4211e-14 6.2500e-05 

 

Example 7 

Consider the LVFIES 
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The comparison of the exact and the approximate solutions 

for N=4 and N=8. Tables 7 and 8 present respectively the 

results for Example 7 and a comparison of errors for Example 

7 with Adomian. Figure 8 presents the absolute errors for all 

errors of the same example. 

 

Table 7. Results for Example 7 

 
Val. of τ Ex. Sol App. Sol N=4 App. Sol N=8 

00e+00 0 5.7732e-15 -6.3288e-09 

0.10e-01 1.1052e-01 1.1027e-01 1.1052e-01 

0.20e-01 2.4428e-01 2.4418e-01 2.4428e-01 

0.30e-01 4.0496e-01 4.0501e-01 4.0496e-01 

0.40e-01 5.9673e-01 5.9681e-01 5.9673e-01 

0.50e-01 8.2436e-01 8.2434e-01 8.2436e-01 

0.60e-01 1.0933e+00 1.0931e+00 1.0933e+00 

0.70e-01 1.4096e+00 1.4095e+00 1.4096e+00 

0.80e-01 1.7804e+00 1.7805e+00 1.7804e+00 

0.90e-01 2.2136e+00 2.2139e+00 2.2136e+00 

1.00e+00 2.7183e+00 2.7182e+00 2.7183e+00 

 

Table 8. Comparison of errors for Example 7 with 

Adomian 
 

Val. of τ Error N=4 Error N=8 
Error [8] 

[Adomian] 

0.10e-01 2.5191e-04 5.1900e-09 1.1984e-03 

0.20e-01 1.0304e-04 2.8525e-09 2.4176e-03 

0.30e-01 5.6762e-05 1.3126e-09 3.6788e-03 

0.40e-01 7.6581e-05 7.4250e-10 5.0039e-03 

0.50e-01 2.3198e-05 2.6313e-09 6.4158e-03 

0.60e-01 1.2701e-04 4.4717e-09 7.9393e-03 

0.70e-01 1.0983e-04 6.3900e-09 9.6006e-03 

0.80e-01 6.6356e-05 7.6748e-09 1.1429e-02 

0.90e-01 2.4402e-04 9.7343e-09 1.3455e-02 

1.00e+00 5.1972e-05 1.0413e-08 1.5716e-02 
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Figure 8. The absolute errors for Example 7 

 

Convergence analysis 

Hermite polynomials, owing to their orthogonality and 

recurrence relations, exhibit strong convergence properties 

when applied to functions that can be well-represented. 

Error bounds 

Error bounds provide a quantitative measure of how close 

the numerical solution is to the exact solution. For Hermite 

polynomials, the error bound is influenced by the smoothness 

of the target function and its behavior at the boundaries. This 

error bound illustrates that as N increases, the error decreases 

factorially, indicating high accuracy for sufficiently large N. 

Stability 

Stability is a critical aspect in numerical methods to ensure 

that errors do not amplify through computations. Hermite 

polynomials benefit from their orthogonality, which 

inherently contributes to numerical stability. This property 

ensures that the polynomial terms do not interact destructively, 

maintaining the integrity of the approximation over a wide 

range of values. 

Moreover, the stability of Hermite polynomial-based 

methods is reinforced by their recurrence relations, which 

allow for the efficient and stable computation of higher-order 

terms. These relations mitigate the risk of numerical instability 

that might arise from direct computation methods, making 

Hermite polynomials a robust choice for high-precision 

applications. 

 

 

6. CONCLUSIONS 

 

In this study, we approximate the solution of linear 

Fredholm-Volterra integral equations using the Hermite 

collocation method. Different examples are mentioned in 

order to show the efficiency of the Hermite collocation method. 

Obtained results are presented through tables and figures 

that illustrate both the exact and numerical solutions. By 

comparing these solutions, we demonstrate that the numerical 

solution closely matches the exact solution, confirming the 

efficiency of the presented method. 

Future research could focus on enhancing the accuracy and 

computational efficiency of the Hermite combination method 

by incorporating adaptive algorithms or higher-order 

interpolation techniques. 

A comparative study with other numerical methods for 

solving Fredholm-Volterra integral equations, such as 

Galerkin methods, or spline-based approaches, could provide 

deeper insights into the relative strengths and weaknesses of 

the Hermite combination method. 

Exploring the applicability of the Hermite combination 

method to other types of integral equations, such as non-linear 

Fredholm or Volterra integral equations, may reveal new 

potential uses and limitations. 

Incorporating parallel computing techniques into the 

Hermite combination method could significantly reduce 

computation time, making it more feasible for large-scale 

problems. 
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