
Reinforcement Learning for Rolling Bearing Fault Diagnosis—A Comprehensive Review 

Pratik Jadhav , Sairam V A , Abhyuday Singh , Shrikrishna Kolhar* , Smita Mahajan

Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India 

Corresponding Author Email: shrikrishna.kolhar@sitpune.edu.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570425 ABSTRACT 

Received: 25 June 2024 

Revised: 2 August 2024 

Accepted: 14 August 2024 

Available online: 27 August 2024 

Automatic fault detection and machine diagnosis play a crucial role in preventive 

maintenance. This study highlights the importance of fault diagnosis in machinery and 

emphasizes the benefits of preventive and predictive maintenance strategies. The 

overviews machine and deep learning techniques, and feature extraction methods for 

automatic fault diagnosis in rolling bearings. The study discusses the challenges machine 

and deep learning approaches face, including their limited adaptability to different 

operational conditions and environmental variations. It also suggests reinforcement 

learning as a potential automatic rolling bearing fault detection solution. The study 

differentiates between various reinforcement learning methods, including model-based 

and model-free approaches, and underscores the advantages of deep reinforcement 

learning. Furthermore, it evaluates several studies that utilized reinforcement learning for 

feature optimization, parameter optimization, and addressing class imbalance in rolling 

bearing fault diagnosis. Lastly, the paper summarizes key findings and proposes future 

research directions, including integrating reinforcement learning with other machine or 

deep learning methods and developing new algorithms better suited for large datasets and 

real-time applications. 
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1. INTRODUCTION

Machine diagnosis has been a vital component in the 

industry, especially with the advent of Industry 4.0 and the 

evolution of huge machinery [1]. Machinery is spawned across 

multiple domains like manufacturing, transportation, 

healthcare, research, energy management, etc. Diagnosis and 

identification of faults in these machines are crucial for 

maintaining such complex and expensive machines. The 

occurrence of faults in such machinery is unpredictable, which 

can result in the breakdown of the machinery, resulting in a 

halt in the process [2]. This can harm manufacturing, 

transportation, and healthcare, causing severe damage. Hence, 

the identification of faults in such machines is of high 

importance. 

Preventive maintenance is a standard technique used in the 

industry to maintain machinery [3]. Regular services at timely 

intervals can keep the machine components in proper form, 

preventing faults and maintaining the machine in operating 

conditions. However, this method has a downfall: timely 

regular services result in expenses and downtime for the 

organization. Keeping services at an optimum level (service 

when needed) would be beneficial to reduce downtime and 

expense. This is the typical application of preventive 

maintenance [4].  

Predictive maintenance is a data-based decision-making 

system that identifies machinery faults early to reduce service 

cost and downtime [5]. The primary data source is from 

sensors, like vibration, temperature, stress, pressure, humidity, 

etc. These sensors are attached to the machinery of interest, 

and the signals are analyzed to predict the occurrence of faults 

in them early. This method can be better than preventive 

maintenance, reducing the need for multiple timely services 

and replacing them with services only when needed [6]. 

Several machines and deep learning algorithms are trained on 

large volumes of sensor measurements and are used to identify 

faults in the target machinery in real time [7].  

Many of these sensors produce raw feature values, which 

need further processing to fit into the machine learning 

pipeline. Feature extraction techniques can be of three types: 

time domain, frequency domain, and both time and frequency 

domain [8]. Time domain features involve statistics like mean, 

median, variance, skewness, kurtosis, etc. Frequency domain-

based features are obtained by applying suitable 

transformations on the raw signal, like Fourier, Laplace, etc. 

Sometimes, the time and frequency domain features are 

combined for improved machine performance and deep 

learning algorithms [9].  

Another approach to processing the raw sensor 

measurements is the conversion into frequency plots, called 

spectrograms. The spectrogram is the plot of the frequency 

component in the signal for each time instance [10]. This 

results in generating image data from the raw signal, which 

can be given to deep learning algorithms like convolutional 

neural networks for processing and classifying faults in the 

machinery [11]. Through these two approaches, relevant 

features are extracted from the raw signals obtained from the 

sensors and provided to the machine, as well as deep learning 

algorithms for automated fault diagnosis. An extensive 

literature survey of the machine and deep learning techniques 
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applied to automated fault detection in rolling bearing 

equipment follows. Figure 1 represents the workflow for 

automated fault diagnosis for rolling bearings using machine 

and deep learning techniques. 

 

 
 

Figure 1. General flow diagram for automated fault analysis 

in bearing equipment 

 

 

2. ROLLING BEARING 

 

Rolling bearings minimize friction between moving parts, 

ensuring smooth and reliable rotation and relative movement 

of connected parts [12]. By facilitating the transfer of loads 

and motion, rolling bearings contribute significantly to 

machinery's overall performance and longevity across various 

applications [13]. Rolling bearings constitute a critical 

component in the machinery industry, serving as the 

cornerstone for the efficient operation of various mechanical 

systems [14]. Rolling bearings are critical in tribomachinery. 

Rolling bearings support and transmit power while 

minimizing friction [15]. Rolling bearings are critical for 

rotating machinery and directly impact the transmission 

efficiency of the electrified drive powertrain systems, 

affecting the vehicle's overall performance [16]. 

 

 
 

Figure 2. A rolling bearing with internal components 

 

The bearings are made with the inboard and outboard races, 

bearing the main load-bearing surfaces, while the rolling 

elements are typically the balls or the rollers that distribute the 

load evenly across the races. The cage or the retainer 

guarantees the correct spacing and the position of the moving 

components so they don't touch each other and their relative 

place remains intact. They function as a device to keep them 

away from each other [17]. Furthermore, as seals or shields 

become impermeable to the bearing, they can protect internal 

parts of the bearing from outer contaminants such as dust, dirt, 

and water; otherwise, their functioning might be negatively 

affected [18]. Diagram II- Rolling bearing disassembly, which 

indicates the interior components. Figure 2 presents rolling 

bearings containing internal parts. These are designed and 

constructed to endure and be robust. Rolling bearings are 

subject to different kinds of wear and damage during operation. 

One of the infirmities is fatigue failure, a form of cyclic 

loading and unloading of the bearing components. Thanks to 

this cyclic stress over time, it can lead to the development of 

cracks, spalling of the inner and outer race surfaces, or 

removal from their structural integrity [19]. 

Another potential cause of bearing failure is inadequate 

lubrication, which can increase friction and heat generation 

within the bearing assembly. Insufficient lubrication may lead 

to excessive wear and premature failure of the bearing 

components, particularly the inner and outer races and the 

rolling elements [20]. Furthermore, contamination from 

external sources such as dust, debris, or moisture can 

accelerate wear and corrosion, further exacerbating the risk of 

bearing failure. 

It is approximated that greater than 69% of equipment 

failure originates with bearings, which can affect the reliable 

working of electric motor systems [21]. Failure consequences 

can be significant, which means that bearing failure may lead 

to such severe outcomes as the expenses of unplanned 

maintenance work and even workers’ injuries. Unplanned 

maintenance due to early bearings failure is often a result of 

emergency shutting down of the machinery, followed by loss 

of production time, hurried repairs that can cause other 

complications, and more time off. Emergency maintenance 

tends to threaten workers' lives; thus, by focusing on 

preventive maintenance, the risk of workers being injured on 

the job can be eliminated. Also, the bearing failure damages 

neighboring equipment, for instance, shafts, bearing housings, 

and electric motors [22]. To limit this damage, removing the 

machinery from service as soon as a bearing failure is 

suspected and inspecting neighboring components for any 

signs of damage is important. Downtime and bearing failure 

can lead to production loss, missed deadlines, supply contract 

issues, revenue loss, and costly repairs, posing significant risks 

to a business [23]. 

 

 

3. APPLICATION OF MACHINE LEARNING FOR 

BEARING FAULT ANALYSIS  

 

This section presents a review of the applications of 

machine and deep learning algorithms for automated fault 

diagnosis in rolling bearing equipment through vibration 

analysis. Figure 3 is the bar chart representing the papers on 

machine learning-based bearing fault detection from 2016 to 

2024. 

Alonso-González et al. [24] applied envelope analysis to 

vibration signals from bearing equipment for fault detection 

using the Case Western Reserve University (CWRU) dataset. 

Time and frequency domain features were extracted, and 

machine learning algorithms, including KNN, SVM, naive 

Bayes, and decision trees, were trained on the features. Patil 

and Phalle [25] presented a study on ensemble machine-

learning models for fault detection in anti-friction bearings. 

The study involves the use of random forest, gradient boosting, 

and extra trees classifiers and highlights their significance in 

feature selection and computation time. The research 

underlines the significance of accurate feature ranking and 

classifier tuning to improve diagnostics in anti-friction 
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bearings using ensemble machine-learning methods. 

 

 
 

Figure 3. Year-wise count of publications on bearing fault 

analysis using machine learning approaches 

 

Adamsab [26] investigated classification techniques for 

fault detection in rotating machines. This paper focuses on 

some of the most widely used machine learning algorithms, 

including the support vector machine (SVM), the artificial 

neural network (ANN), the decision tree (DT), and the k-

nearest neighbor (k-NN) for fault detection and diagnosis. It 

also underlines the importance of early defect identification to 

reduce operating costs and mitigate failures. There are also 

SVR and RVM methods for fault diagnosis. RVM is preferred 

as its output is probabilistic values. The paper also discusses 

the feature selection and parameter optimization issues of 

SVM. In conclusion, the study focuses on applying machines 

to perform the proper maintenance and reduce the failure times 

of machines in industries. Goyal et al. [27] introduced a new 

approach to diagnosing bearing defects, incorporating 

sophisticated signal processing and AI. Optical accelerometer 

technology captures the signals of the vibrations of machines 

and processes with the help of the Hilbert transform. Principal 

component analysis (PCA) and sequential forward floating 

selection (SFFS) feature selection methods filter the redundant 

information. The paper utilizes an artificial neural network 

(ANN) and support vector machine (SVM) for classification 

purposes. As for the potential use of non-contact sensors, this 

research depicts the effectiveness of ANNs over other 

prevalent supervised machine learning algorithms in bearing 

failures’ classification. 

Piltan et al. [28] suggested a new approach for diagnosing 

the rolling-bearing issues using an expert system-based 

machine learning-based observer (ESMO). The fuzzy SMO 

method, paved with advanced algorithms and decision trees, 

improves fault detection accuracy but reveals inaccuracies at 

certain times. The above approach gives good classification 

results and an acceptable method of identifying trouble with 

the rolling-element bearings for varying operating conditions. 

Another study describes using deep learning techniques in 

bearing fault diagnostics based on CWRU dataset [29]. The 

paper explains the hierarchical adaptive deep conviction 

network (ADCNN) trained with LeNet5. The need to use data 

augmentation techniques to enhance the efficiency of deep 

learning in identifying defects is highlighted. The study also 

points out the suitability of the deep learning approach in 

recognizing machinery faults, particularly in handling large 

volumes of data and setting a benchmark for fault diagnosis 

and prognosis. Overall, it points to the significant potential of 

deep learning in diagnosing machinery problems. Overall, it 

points to the significant potential of deep learning in 

diagnosing machinery problems. 

 

 

4. CHALLENGES FACED BY MACHINE AND DEEP 

LEARNING METHODS 

 

The traditional machine and deep learning algorithms 

produce excellent results in the singular datasets, indicating 

great performance in single operating conditions. However, 

these algorithms must perform better in real-world situations 

with multiple operating conditions. The operating conditions 

refer to the variation in the torque, frequency, and the make of 

the rolling bearing. The conventional algorithms trained on 

one such type of sensor measurement might not be able to 

generalize on other sensor measurements [7]. Another issue 

observed with the conventional machine and deep learning 

algorithm is the need for adaptability to environmental 

variations, including sensor values due to vibrations, noise by 

external factors, human interference, and so on. The dataset 

used to train these algorithms is pre-processed and cleaned, 

removing these erroneous values. Hence, these models need to 

perform better in real-time situations [30]. The machine 

learning algorithms are trained on datasets with minimal fault 

modes; however, many fault modes can occur in real time, and 

these algorithms might not be exposed to such faults, 

producing erroneous values in the due result. 

To detect bearing faults using classical ML algorithms, 

characteristic fault frequencies are calculated based on rotor 

speed and bearing geometry, which serve as fault features. 

However, challenges such as sliding, frequency interplay, 

external vibration, observability, and sensitivity can affect 

classification accuracy [31]. The challenges in applying DL 

algorithms to real-world applications include difficulty 

transferring knowledge from lab setups to real-world scenarios 

of naturally occurring faults, limited accurately labeled data 

for training the algorithms, particularly for faults that evolve 

naturally over time, imbalance in data, as it can be challenging 

to collect sufficient faulty condition data for effective training, 

dealing with noisy data from industrial scenarios, as 

environmental vibrations and noise can affect the performance 

of DL algorithms trained on vibration data [31, 32].  

 

 

5. REINFORCEMENT LEARNING 

 

One of the promising solutions to the above-mentioned 

problem is reinforcement learning. These algorithms interact 

with the environment, learn in due process, and correct based 

on the reward/feedback. Hence, powerful algorithms are 

obtained with high adaptability and can perform well under 

different operating conditions [33, 34].  

Reinforcement learning is a branch of machine learning 

where the algorithm interacts with the environment and seeks 

to take actions by maximizing the rewards. The algorithm, 

named as agent, interacts with the environment and takes 

actions correspondingly. A reward or punishment is decided 

based on the action and returned to the agent. Through 

multiple training iterations, the agent learns continuously 

through interaction with the environment based on its actions 

and experiences. In due process, the agent corrects itself and 

takes the correct actions to maximize the reward [35]. This 

type of learning helps the algorithm adapt to different 

situations in the environment, and this method can be a potent 
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solution to the lack of adaptability and generalization faced by 

conventional machine and deep learning algorithms. Figure 4 

represents the flowchart of the taxonomy of reinforcement 

learning algorithms.  

 

 
 

Figure 4. Taxonomy of reinforcement learning techniques 

 

The techniques in reinforcement learning fall into two types, 

namely, model-based and model-free techniques. Model-

based techniques have a mathematical model/equation to 

determine the value of each state and the corresponding reward. 

The probability values associated with each possible action are 

provided, known as the state transition probability matrix [36]. 

Dynamic programming and bellman equations fall into this 

category, in which the value of the current state is based on the 

value of the next state along with the discounted reward. These 

techniques are useful for environments with small states and 

full observability [37]. 

Model-free techniques do not rely on mathematical 

models/equations to determine the state value and reward. In 

such a scenario, a policy is generated and updated based on 

evaluation. Some classic techniques include Monte Carlo 

learning [38], which samples multiple complete experiences 

and takes their empirical mean to determine the state value and 

reward function. Another standard technique is the temporal 

difference (TD) [39], which learns from incomplete 

experiences, updating the state value based on the temporal 

difference between future state values. The Monte Carlo is an 

on-policy approach, whereas the Temporal Difference is an 

off-policy approach.  

Deep reinforcement learning techniques have been gaining 

popularity in recent years due to the integration of 

reinforcement learning principles with deep neural networks. 

These neural networks automatically estimate the 

mathematical relationships between the state values and 

rewards [40]. Some standard techniques in deep reinforcement 

learning include policy gradient, actor-critic network, 

controller sub-controller network, deep Q learning, etc.  

The policy gradient is a primitive approach in deep 

reinforcement learning. This technique uses the gradient 

descent approach to fine-tune and update the agent's policy. 

The gradient descent is used to optimize the policy to 

overcome the effects of instability and degradation, as 

observed in the Markov decision process. A random policy is 

generated, and the agent interacts with the environment, takes 

action, and gets the reward. Based on the action probabilities 

and rewards, the policy gradient is estimated and updated 

similarly to the gradient descent technique of updating the 

parameters in a neural network [41]. 

The deep Q-learning algorithm is the deep learning version 

of Q-learning, where a deep neural network is used to estimate 

the Q-values (state-action pair). The neural network takes the 

state value as input and outputs the probabilities for all 

possible actions, using the softmax activation function. This 

method can be highly useful and reliable for environments 

with many states and multiple actions where the manual 

formulation of the Q-table could be more convenient. Some 

versions of DQN use two neural networks of the same 

architecture, where one network is used for target prediction, 

and another is used for updating the parameters. The gradient 

descent technique optimizes the neural network, gradually 

finding the correct probabilities for all actions and maximizing 

rewards in due process. However, in some situations, the 

neural network might converge in local minima and produce a 

non-linear Q function most of the time. To overcome this 

problem, the experience replay technique was proposed. In 

this technique, the agent stores an experience (state, action, 

and reward triplet) and replays it in further iterations of 

training [42]. 

The actor-critic network is fundamental and popularly used 

in deep reinforcement research. As the name suggests, there 

are two neural networks: actor and critic network. The actor-

network determines the probability of all possible actions, 

whereas the critic network evaluates the decisions made by the 

actor-network. The policy gradient technique is applied to the 

actor-network, and the value function-based reward and state 

value estimation is applied to the critic network [43]. Actor-

critic networks can be applied to real-time problems with 

continuous action spaces. However, implementing actor-critic 

networks is computationally expensive as two networks must 

be trained simultaneously.  

The controller sub-controller network is yet another 

application of deep reinforcement learning. This is a set of two 

neural networks, where the controller is like the parent, which 

determines the parameters to be considered, and the sub-

controllers are the children, which develop the neural network 

based on the parameters advised by the controller. The 

developed neural networks get trained on the data, and the 

accuracy or equivalent performance metric is estimated. The 

reward is calculated by comparing the metric in the current 

state to that of the previous state. Based on the 

positive/negative reward obtained, the controller network 

decides better neural network parameters, gradually 

improving performance [44]. 

 

 

6. REINFORCEMENT LEARNING APPLICATIONS 

FOR ROLLING BEARING FAULT DIAGNOSIS 

 

Around 30 papers related to applying reinforcement 

learning techniques on rolling bearing fault diagnosis have 

been identified for the proposed review. Figure 5 represents 

the year-wise count of papers on reinforcement learning 

applications in rolling bearing fault analysis.  

These papers have been categorized into three objectives: 

RL techniques for feature optimization, RL techniques for 

parameter optimization, and RL techniques for handling class 

imbalance. Figure 6 represents the flowchart of the different 

RL techniques and objectives related to rolling bearing fault 

diagnosis application. 
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Figure 5. Line plot representing the year-wise publication on 

reinforcement learning approaches for rolling bearing fault 

diagnosis 

 

 
 

Figure 6. Classification of reinforcement learning algorithms 

as per objective of bearing fault diagnosis 

 

6.1 Reinforcement learning techniques for feature 

optimization 

 

The objective of feature optimization is to develop 

reinforcement learning techniques to learn the most effective 

features and store them in local or online mode, and then 

iteratively repeat for multiple operational modes. The agent 

learns and adapts to multiple operational conditions in due 

process, improving its accuracy and other evaluation metrics. 

Wang et al. [45] worked on a system comprised of a deep 

learning network and reinforcement learning to improve the 

bearing fault classification accuracy where a neural network 

with attention layers captures intricate vibration features, and 

a deep Q network (DQN) was used with the neural network as 

the agent to improve the classification accuracy. The self-

learning and self-improvising algorithm aimed to maximize 

the short-term and long-term cumulative rewards. Hence, the 

proposed system successfully acquired the best features from 

the sensory data and improved classification accuracy despite 

having multiple variations and noisy data. Li et al. [46] 

developed an online domain adaption framework using 

CapNet and deep reinforcement learning techniques for rolling 

bearing fault identification. The CapNet algorithm was used 

for automated feature extraction from sensory data, and deep 

reinforcement learning techniques improved the system's 

flexibility under different operational modes. 

In another study [47], a reinforcement learning-based 

ensemble transfer learning network was used to improve the 

classification accuracy of rolling bearing faults. The ensemble 

unsupervised technique was used to develop the best reward 

function and to implement the ensemble model for multi-

source, multi-target datasets. Wang et al. [48] proposed a 

novel method for multi-label fault recognition using deep 

reinforcement learning and curriculum learning. They 

implemented the proximal policy optimization (PPO) method 

and demonstrated the methodology in two roller-bearing 

experiments, proving it more accurate than traditional methods. 

In another study, Kang et al. [49] proposed the dual experience 

model using deep reinforcement learning for fault diagnosis of 

roller bearings with an unbalanced dataset. The model 

combines deep reinforcement learning with a dual-experience 

pool structure to address the challenges caused by unbalanced 

data in diagnosing faults. It effectively copes with the 

imbalance data challenge and shows potential for high 

accuracy and efficiency in fault diagnosis in mechanical 

systems. 

Wang et al. [50] focus on gathering multi-source 

information, utilizing self-attention mechanisms and deep 

reinforcement learning algorithms to improve fault diagnosis 

in mechanical systems. They use the machine-learning MSIF 

feature extraction method and a sliding window attention 

mechanism to address differences in information between 

sources. The proposed architecture covers failure monitoring 

of bearing defects and pantographic tools, leading to more 

efficient equipment, shorter downtimes, and better 

maintenance decisions. Qian and Liu [51] developed CNN-RL 

and GRU-RL models to handle preprocessed vibration 

spectrum data. Spatial and temporal features from CNN and 

GRU are further processed using fully connected layers ending 

with a softmax output layer for fault diagnosis. DQN network 

takes the output and completes the process by assigning Q-

values to potential fault actions based on extracted features. 

Zheng et al. [52] proposed that the deep reinforcement 

learning (DRL) method be applied to estimate the remaining 

useful life (RUL) of rolling bearings. This approach combines 

deep learning (DL) for feature extraction and TD3 for 

sequential decision-making. State construction is a significant 

architectural part of this technique, where degradation 

information is extracted from raw vibration signals using a 

ResNet-based Autoencoder (AE). Consequently, the state 

vector is the expected lifetime and degraded information 

predicted by each instant. The TD3 algorithm allows for 

continuous action spaces, making it possible to be stable 

enough even when applied continuously. 

 

6.2 Reinforcement learning techniques for parameter 

optimization 

 

Parameter optimization, or reinforcement learning-based 

neural architecture search (RL-NAS), aims to identify the 

optimal parameters in deep learning for improved performance. 

Wang et al. [53] integrated reinforcement learning techniques 

to enhance neural architecture search (NAS) for rolling 

bearing fault diagnosis. Their proposed system includes a 

controller algorithm and child networks to update the 

parameters of convolutional neural networks. Similarly, Zhou 

et al. [54] developed an RL-NAS system with a controller, 
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sub-controller, and child components, utilizing a three-layer 

MLP as the controller for efficiency. The algorithm 

incorporates greedy search, experience relay, and weight-

sharing for convergence and efficiency. 

Wang et al. [55] used reinforcement learning with a 1D 

convolutional network to detect compound faults in rolling 

bearings. They segmented and stacked three channels (x, y, 

and z) for feature extraction, then passed onto a 1D CNN. The 

DRL algorithm was the actor-critic algorithm that improved 

CNN's performance in classifying compound-bearing faults. 

Ding et al. [56] implemented deep Q-learning for intelligent 

fault analysis in rotatory machinery. Their approach used a 

sparse autoencoder (SAE) for anomaly detection and 

reinforcement learning in a game format. This improved the 

SAE network's decision-making, resulting in enhanced 

classification accuracy. Cao et al. [57] present a unique 

method for fault diagnosis network structure design using deep 

learning. They use reinforcement learning to assist in the 

automatic process and apply Pareto Optimization to reduce the 

multi-dimensionality of the model. They suggest two 

approaches for the RL algorithm, proximal policy 

optimization (PPO) and actor-critic (AC), which appear 

convenient in network engineering. Finally, they chose the 

NAS-PERIRB algorithm for its features of independence and 

challenging the auto-creation of neural network structure. Wen 

et al. [58] proposed an LSTM–DDPG framework that uses an 

actor-network driven by LSTM to adjust CNN 

hyperparameters and a critic network to guide policy 

optimization. Experimental results demonstrate its 

effectiveness compared to four state-of-the-art 

hyperparameter optimization (HPO) and traditional ML/DL 

methods. However, the framework has limitations, requiring 

re-training of the DRL agent after each run. Future research 

could explore NAS and transfer learning for higher efficiency 

and better performance.  

Wang et al. [59] introduced the deep dual reinforcement 

learning network (DDRLN), a sophisticated framework 

designed to solve the problem of fault quantitative 

identification with limited samples. The architecture consists 

of two main components: the actor and critic models. The actor 

model uses convolutional and fully connected layers for 

identifying unknown samples and extracting essential features. 

In contrast, the critic model focuses on optimizing a Q-

learning function to estimate expected future rewards. An 

experience storage unit is integrated to address the lack of 

samples, allowing the model to improve prediction accuracy 

in fault diagnosis across different industrial settings. 

 

6.3 Reinforcement learning for handling class imbalance 

 

The objective of handling class imbalance is to develop 

reinforcement learning techniques to overcome the issue of 

class imbalance. The distribution of datasets used in fault 

diagnosis is usually skewed. Traditional machine and deep 

learning algorithms work well with balanced datasets, whereas 

with imbalanced datasets, these algorithms tend to overfit the 

majority classes compared to minority classes. The deep 

reinforcement learning-based approach treats this as a 

sequential problem. The agent receives the state of the 

environment, takes a diagnosis action guided by a policy, and 

receives a positive/negative reward based on the correctness 

of the action. Higher rewards are given to minority classes 

compared to majority classes. The proposed approach 

performs better than traditional machine learning methods on 

imbalanced datasets [60].  

In another study, Yang et al. [61] proposed a framework 

with a deep reinforcement learning model based on double 

deep Q networks integrated with transfer learning. This 

framework efficiently extracts fault features and accurately 

classifies fault types using bearing vibration signal data. The 

proposed networks showed a 13% improvement with 

imbalanced data compared to the traditional DDQN 

framework. Li et al. [62] proposed a diagnostic framework for 

deep reinforcement learning (DRL) to detect faults in rolling 

bearings. It uses the DenseNet model and advantage actor-

critic (A2C) algorithm for intelligent decision-making. The 

model includes modifications to improve performance and 

adopts the synthetic minority over-sampling technique 

(SMOTE) to handle class imbalance problems. 

 

 

7. CONCLUSIONS 

 

The paper reviews the applications of reinforcement 

learning (RL) in automated fault diagnosis of rolling bearing 

equipment. Classic machine and deep learning algorithms 

prove to be useful in multiple specific operating conditions but 

face issues in generalizing to diverse real-world scenarios. RL 

addresses these challenges by allowing agents to interact with 

their environment, learn from experience, and adapt to 

different circumstances. 

The study the use of various RL methods, including model-

free and model-based approaches, deep reinforcement 

learning, and generic algorithms like deep Q-learning, actor-

critic networks, and controller sub-controller networks in fault 

detection. The study illustrated the use of RL techniques in 

three rolling bearing fault diagnosis domains: feature selection, 

parameter optimization, and addressing class imbalances. The 

review indicates that RL can be used to determine useful 

features, optimize model parameters, and handle imbalanced 

datasets. 

RL presents a promising approach to building reliable fault 

detection systems for rolling bearing machines. Its ability to 

learn from diverse data sources and adapt to new situations 

makes it useful for improving the accuracy and reliability of 

automated fault detection in real-world conditions. 

Additionally, combining RL with other AI techniques, such as 

machine learning and deep learning, holds significant potential 

for advancing the field. Consequently, further research should 

focus on creating hybrid systems that leverage RL with other 

methods to ensure better fault diagnosis performance and 

robustness. Future research directions could involve 

integrating RL into spectrogram analysis for bearing fault 

detection and multimodal feature fusion for enhanced 

diagnosis. 
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